
OV E R  F O U R  D E C A D E S  have passed since the concept 
of computational modeling and simulation as a 
new branch of scientific methodology—to be used 
alongside theory and experimentation—was first 
introduced. In that time, computational modeling 
and simulation has embodied the enthusiasm and

20th century. In that light, it seems clear 
that while computational science has 
had many remarkable successes, it is 
still at a very early stage in its growth.

Many of those who want to hasten 
that growth believe the most progres-
sive steps in that direction require much 
more community focus on the vital core 
of computational science: software and 
the mathematical models and algo-
rithms it encodes. Of course, the gener-
al and widespread obsession with hard-
ware is understandable, especially given 
exponential increases in processor per-
formance, the constant evolution of 
processor architectures and supercom-
puter designs, and the natural fascina-
tion that people have for big, fast ma-
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sense of importance that people in our 
community feel for the work they are 
doing. Yet, when we try to assess how 
much progress we have made and where 
things stand along the developmental 
path for this new “third pillar of sci-
ence,” recalling some history about the 
development of the other pillars can 
help keep things in perspective. For ex-
ample, we can trace the systematic use 
of experiment back to Galileo in the ear-
ly 17th century. Yet for all the incredible 
successes it enjoyed over its first three 
centuries, the experimental method ar-
guably did not fully mature until the ele-
ments of good experimental design and 
practice were finally analyzed and de-
scribed in detail in the first half of the 
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chines. I am not exactly immune to it. 
When it comes to championing compu-
tational modeling and simulation as a 
new part of the scientific method, the 
complex software “ecosystem” that co-
incides must be forefront.

At the application level the science 
must be captured in mathematical 
models, which in turn are expressed al-
gorithmically and ultimately encoded 
as software. Accordingly, on typical 
projects much of the funding goes to 
support this translation process that 
starts with scientific ideas and ends 
with executable software, and which 
over its course requires intimate collab-
oration among domain scientists, com-
puter scientists, and applied mathema-
ticians. This process also relies on a 
large infrastructure of mathematical li-
braries, protocols, and system software 
that has taken years to build up and that 
must be maintained, ported, and en-
hanced for many years to come if the 
value of the application codes that de-
pend on it are to be preserved and ex-
tended. The software that encapsulates 
all this time, energy, and thought, rou-
tinely outlasts (usually by years, some-
times by decades) the hardware it was 
originally designed to run on.

Thus, the life of computational sci-
ence revolves around a multifaceted 
software ecosystem. Domain scientists 
now want to create much larger, multi-
dimensional applications in which a va-
riety of previously independent models 
are coupled together, or even fully inte-
grated. They hope to be able to run these 
applications on exascale systems with 
tens of thousands of processors, to ex-
tract all performance that these plat-
forms can deliver, and to do all this 
without sacrificing good numerical be-
havior or programmability.

High-performance computers con-
tinue to increase in speed and capacity, 
with exascale machines here in 2022.30 
Alongside these developments, archi-
tectures are becoming progressively 
more complex, with multi-socket, 
multi-core central processing units 
(CPUs), multiple graphics processing 
unit (GPU) accelerators, and multiple 

network interfaces per node. This new 
complexity leaves existing software un-
able to make efficient use of the in-
creased processing power.

For decades, processor performance 
has been improving in each generation 
consistent with Moore’s Law doubling 
transistor counts every two years and 
Dennard Scaling6 enabling increases in 
clock frequency. Combined, these dou-
bled peak performance every 18 
months. Since Dennard Scaling ceased 
around 2006 due to physical limits, the 
push has been toward multi-core archi-
tectures. Instead of getting improved 
performance for “free” through hard-
ware improvements, software had to be 
adapted to parallel, multi-threaded ar-
chitectures.

In addition to multi-threaded CPU 
architectures, hybrid computing has 
also become a popular approach to in-
creasing parallelism, with the introduc-
tion of CUDA in 2007 and OpenCL in 
2009. Hybrid computing couples’ heavy-
weight CPU cores (using out-of-order 
execution, branch prediction, hardware 
prefetching, among others) with com-
paratively lighter weight (using in-order 
execution) but heavily vectorized GPU 
accelerator cores. There is also hetero-
geneity in memory: large, relatively slow 
CPU DDR memory coupled with small-
er but faster GPU memory such as 3-D 
stacked high-bandwidth memory 
(HBM). To take advantage of these capa-
bilities, modern software must explicit-
ly program for multicore CPUs and GPU 
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enable a broad spectrum of applica-
tions to exploit the power of next-gener-
ation hardware platforms is a mission-
critical challenge for scientific 
computing generally, and for HPC spe-
cifically. This challenge raises a variety 
of difficult issues. For instance, pro-
gramming models and hardware archi-
tectures are still in a state of flux, and 
this uncertainty is bound to inhibit the 
development of libraries as new config-
urations and abstractions are tried. It is 
additionally prudent to expand on exist-
ing libraries instead of developing en-
tirely new ones, when possible, as this 
will disperse some of the software main-
tenance costs, provide backward com-
patibility, and make transition for appli-
cations easier. Introducing radically 
different algorithms and methods at 
low levels, without radically altering us-
age characteristics of familiar packages 
at high levels, remains a software engi-
neering conundrum. Moreover, many 
HPC applications will need to run on 
platforms ranging from leadership-
class machines to smaller-scale clus-
ters, workstations, and even laptops. 
These architectural changes have come 
every decade or so, thereby creating a 
need to rewrite or refactor the software 
for the emerging architectures. Scien-
tific libraries have long provided a large 
and growing resource for high-quality, 
reusable software components upon 
which applications can be rapidly con-
structed—with improved robustness, 
portability, and sustainability.

Background
Today’s scientists often tackle prob-
lems that are too abstruse to parse theo-
retically, or too hazardous to tackle ex-
perimentally. How can a researcher 
peer inside a star to see exactly how it 
explodes? Or how can one predict im-
pacts of climate change with so many 
variables?

Simulations using high-perfor-
mance computers have thus become a 
critical resource for research in all sci-
entific domains. But scientists first 
need to express their problem in a 
mathematical language that the com-
puter can understand.

Standards are critical for software 
development. Research has always ben-
efited from the open exchange of ideas 
and the opportunity to build on the 
achievements of others. Standards such 

accelerators while also managing data 
movement between CPU and GPU 
memories and across the network to 
multiple nodes.

The compute speed, memory and 
network bandwidth, and memory and 
network latency increase at different 
exponential rates, leading to an in-
creasing gap between data movement 
speeds and computation speeds. For 
decades, the machine balance of com-
pute speed to memory bandwidth has 
increased 15%–30% per year (see the 
accompanying figure). Hiding commu-
nication costs is thus becoming in-
creasingly more difficult. Instead of 
just relying on hardware caches, new 
algorithms must be designed to mini-
mize and hide communication, some-
times at the expense of duplicating 
memory and computation.

Very high levels of parallelism also 
mean that synchronization becomes in-
creasingly expensive. With processors 
at around 1GHz–3GHz, exascale ma-
chines, with 1018 64-bit floating point 
operations per second, must have bil-
lion-way parallelism. This is currently 
anticipated to be achieved by roughly 
2GHz × 10,000 nodes × 100,000 thread-
level and vector-level parallelism. Thus, 
the computational and communication 
parallelism must become asynchro-
nous and dynamically scheduled.

Mathematical libraries are, histori-

cally, among the first software adapted 
to the hardware changes occurring over 
time, both because these low-level 
workhorses are critical to the accuracy 
and performance of many different 
types of applications, and because they 
have proved to be outstanding vehicles 
for finding and implementing solutions 
to the problems that novel architectures 
pose. We have seen architectures 
change from scalar to vector to symmet-
ric multiprocessing to distributed par-
allel to heterogeneous hybrid designs 
over the last 40 years. Each of these 
changes has forced the underlying im-
plementations of the mathematical li-
braries to change. Vector computers 
used Level 1 and Level 2 basic linear al-
gebra subprograms (BLAS);4 with the 
change to cache-based memory hierar-
chies, algorithms were reformulated 
with block operations using Level 3 
BLAS matrix multiply. Task-based 
scheduling has addressed multicore 
CPUs, while more recently—as the com-
pute-speed-to-bandwidth ratio increas-
es—algorithms have again been refor-
mulated as communication avoiding. 
In all these cases, ideas that were first 
expressed in research papers were sub-
sequently implemented in open source 
software, to be integrated into scientific 
and engineering applications, both 
open source and commercial.

Developing numerical libraries that 

Processor and machine balance increasing, making communication relatively more 
expensive. Plot for 64-bit floating point data movement and operations; bandwidth 
from CPU or GPU memory to registers. Data from vendor specs and STREAM benchmark.26
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this glaring problem has always been 
the development of performance-porta-
ble software libraries that hide many 
machine-specific details yet allow auto-
mated adaptation to the user’s platform 
of choice.

LAPACK3 is an example of a mathe-
matical software package wherein the 
highest-level components are portable, 
while machine dependencies are hid-
den in lower-level modules. Such a hier-
archical approach is probably the clos-
est one can come to software 
performance-portability across diverse 
parallel architectures. The BLAS that 
LAPACK heavily relies on provide a por-
table, efficient, and flexible standard for 
application programmers.

Portable performance layers. The 
layered approach to performance porta-
bility is indispensable for building ever 
more intricate libraries on top of a less 
complex portability layer with desirable 
performance characteristics. The first 
mathematical subroutine library for a 
computer was written by Maurice V. 
Wilkes, David J. Wheeler, and Stanley 
Gill for the EDSAC at the University of 
Cambridge in England in 1951.33 The 
programs were written in machine lan-
guage, and certainly no thought was 
given to portability; to have a library at 
all was remarkable. That was followed 
by the foundational book edited by 
Wilkinson and Reinsch that described 
the algorithms in Algol.34 Intuitively, our 
notion of portable numerical software 
is quite clear: portable applications suc-
cessfully run on a variety of computer 
architectures and configurations.

Examples of different computer ar-
chitectures include single processor 
with uniform random-access memory, 
pipeline or vector computers, parallel 
computers, and heterogeneous or hy-
brid computers, to name a few. Differ-
ent versions of a library routine may be 
written for different architectures, 
where each version has the same calling 
sequence interface. Or the library rou-
tine may have the ability to determine 
which architecture to run on and to 
choose which path to take to execute on 
the underlying architecture successfully 
and efficiently. Applications use these 
numerical libraries, and it is these li-
braries we expect to be portable across 
different architectures.

Specific techniques and approaches. 
Here, we cover the transitional process 

as MPI, the BLAS, IEEE floating point 
standards, and numerical libraries are 
built on the experience of a wider com-
munity and based on best practices.

BLAS. Since the early days of HPC, the 
Level 1, Level 2, and Level 3 BLAS stan-
dards13–16,25 abstracted away the low-lev-
el hardware details from scientific li-
brary developers by encoding high-level 
mathematical concepts like vector, ma-
trix-vector, and matrix-matrix products.

Critical to effective high-perfor-
mance computing, avoiding unneces-
sary memory movement has provided 
considerable motivation for devising al-
gorithms that minimize data move-
ment. Along these lines, much activity 
in the past 30 years has involved the re-
design of basic routines in linear alge-
bra, using block algorithms based on 
matrix-matrix techniques.3 These have 
proved effective on a variety of modern 
computer architectures with vector pro-
cessing or parallel-processing capabili-
ties, on which high performance can 
potentially be degraded by excessive 
transfer of data between different levels 
of memory (for example, registers, 
cache, main memory, and solid-state 
disks).

By organizing the computation into 
blocks, we provide for full reuse of data 
while each block is held in cache or lo-
cal memory, avoiding excessive move-
ment of data, and giving a surface-to-
volume effect for the ratio of data 
movement to arithmetic operations, 
that is, O(n2) data movement to O(n3) 
arithmetic operations. In addition, par-
allelism can be exploited in two ways:

	˲ operations on distinct blocks may 
be performed in parallel; and

	˲ within the operations on each 
block, scalar or vector operations may 
be performed in parallel.

More ops ≠ more time. Complexity 
theory clearly dictates that fewer opera-
tions, especially at a lower asymptotic 
bound, are preferable for optimal exe-
cution time. In high performance and 
scientific computing, a similar guide-
line was applied when every cycle and 
every instruction was at a premium. But 
this was the case in the single-core 
world, and it has already changed in the 
multicore era. Worse yet, it’s further ex-
acerbated in the case of hardware accel-
erators with total compute power ex-
ceeding 1,000GFLOPs in double 
precision and bandwidth topping at 

200Gbytes/s. An order of magnitude 
more operations must be performed for 
every byte that arrives from the main 
memory. Computation is fast only when 
it happens in processor registers—even 
the fastest cache needs a handful of 
clock cycles to deliver data items.

Compared to the main memory that 
holds most data structures, operations 
on registers are virtually free, with data 
movement and synchronization being 
the essential factors contributing to al-
gorithm speed. Projections for future 
machines only exacerbate the current 
data movement crisis. Even with the 
newly introduced stacked memory that 
promises a mind-boggling 1Tbytes/s of 
bandwidth, computing devices will 
eventually achieve performance levels 
more than 10TFLOPs, and the band-
width/compute imbalance will become 
even more pronounced. In such an envi-
ronment, we must abandon the notion 
that knowing the number of operations 
for an algorithm is a good indicator of 
its ultimate performance. Rather, we 
must look critically at the kind of opera-
tions that are required. And above all, 
we must focus on data movement, syn-
chronization points, and understand-
ing of the nature of the interaction be-
tween threads and processes in the 
system to make sure that they can pro-
ceed on their own for as long as possible 
without costly communication. In addi-
tion, we must examine the amount of 
data the algorithm accesses and choose 
one that can minimize accesses—we 
call this approach “communication 
avoiding.”

Software PACKs. Delivering special-
ized scientific software in the form of 
packages, such as EISPACK,20 LIN-
PACK,12 LAPACK,3 ScaLAPACK,9 and 
others, continues to be essential for de-
livering robust solvers that enable por-
table performance across ever more 
specialized hardware systems.

The portability of software library 
code has always been an important con-
sideration, made much more difficult 
by diverse modern hardware designs 
and the corresponding flourishing of a 
diverse programming language land-
scape. Understandably, scientific teams 
do not wish to invest significant effort to 
port large-scale application codes to 
each new machine when the teams are 
focused on science results rather than 
software engineering. Our answer to 
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mance and energy consumption. 
Mixed-precision algorithms are being 
developed to leverage these significant 
advances in computational power, 
while still maintaining accuracy and 
stability on par with the classic single or 
double precision formats through care-
ful consideration of the numerical ef-
fects of half precision. Even though re-
search on mixed-precision algorithms 
has been presented in papers and con-
ferences over the last few decades, these 
techniques mostly remained in a proto-
type state and rarely made it into pro-
duction code. Recently, the U.S. Depart-
ment of Energy (DOE) Exascale 
Computing Project (ECP) has allocated 
resources to bring these techniques 
into production.1

Approximate, randomized, and proba-
bilistic approaches. In the past, the main 
goals for robust high-performance nu-
merical libraries were accuracy first and 
efficiency second. The current outlook, 
informed by application needs, has 
been transforming rapidly: accuracy it-
self is often a tunable parameter. It is 
now one of the major contributors to ex-
cessive computation and is therefore 
directly at odds with speed. In a wide 
range of applications, from high-perfor-
mance data analytics (HPDA) to ma-
chine/deep learning, and from edge 
sensors producing extreme amounts of 
data (including redundant or faulty 
data) to large data stores, the modern 
requirement for various optimizations 
is to establish a “best” solution in a lim-
ited period. This realignment of priority 
motivates the development of algo-
rithms that call for approximations, 
randomization, probabilistic accuracy, 
and convergence bounds. The preferred 
algorithms compute quickly while still 
being sufficiently accurate through 
non-traditional, innovative approaches. 
Here we see distinct feedback from ap-
plication needs back to the develop-
ment of new algorithms.

Machine learning/autotuning. Al-
though Moore’s Law is still in effect, 
the multicore and accelerator revolu-
tion has initiated a processor design 
trend of moving away from architectur-
al features that do not directly contrib-
ute to processing throughput. This 
means a preference toward shallow 
pipelines with in-order execution and 
cutting down on branch prediction 
and speculative execution. On top of 

for mathematical software in greater de-
tail.17

Dataflow scheduling. In the late 
1970s, dataflow scheduling was realized 
for mapping programs represented as a 
direct acyclic graph (DAG) of tasks to a 
specialized hardware configuration of 
systolic arrays.24 In the ensuing decades, 
many task-based runtime systems have 
been proposed and remain ac-
tive2,5,7,8,11,23,28 with an overarching pur-
pose to address programmability and 
management of parallelism in the con-
text of HPC. The next step is to turn the 
dataflow scheduling approach into a 
standard akin to MPI.

Communication avoiding algorithms. 
The new normal in HPC may be sum-
marized as follows: compute time de-
pends on memory accesses and not on 
total operation count. In other words, 
the number of arithmetic instructions 
executed no longer directly reflects the 
time spent in running the program; the 
type of operation is the essential aspect 
to consider. Opting for higher complex-
ity algorithms may be preferable if the 
operations better fit the hardware and 
transfer less data across the modern 
memory hierarchy and on-node inter-
connects.21,22 To better represent the ex-
ecution time of software, the perfor-
mance model must be a function of 
both computation and communication 
costs. To address the computation-
communication imbalance, several 
communication-avoiding (CA) algo-
rithms have been developed by rede-
signing existing methods to obtain the 
minimum theoretical communication 
cost for a particular solver,4,27 including 
CALU and CAQR factorization algo-
rithms.10 After basic research estab-
lished their advantages, communica-
tion avoiding algorithms are now being 
integrated into various libraries such as 
LAPACK, ScaLAPACK, MAGMA, SLATE, 
and vendor libraries.

Mixed precision. The emergence of 
deep learning as a leading computa-
tional workload on large-scale cloud in-
frastructure installations has led to a 
plethora of heavily specialized hardware 
accelerators that can tackle these types 
of problems. These new platforms offer 
new 16-bit floating-point formats with 
reduced mantissa precision and expo-
nent range at significantly higher 
throughput rates, which makes them at-
tractive in terms of improved perfor-

To better represent 
the execution time 
of software, 
the performance 
model must be 
a function of both 
computation 
and communication 
costs.
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	˲ the development and analysis of al-
gorithms for standard mathematical 
problems which occur in a wide variety 
of applications;

	˲ the practical implementation of 
mathematical algorithms on comput-
ing devices, including study of interac-
tions with particular hardware and soft-
ware systems;

	˲ the environment for the construc-
tion of mathematical software, such as 
computer arithmetic systems, languag-
es, and related software development 
tools;

	˲ software design for mathematical 
computation systems, including user 
interfaces;

	˲ testing and evaluation of mathe-
matical software, including methodolo-
gies, tools, testbeds, and studies of par-
ticular systems; and,

	˲ issues related to the dissemination 
and maintenance of software.

Each of these items requires an in-
vestment of time and funding to suc-
cessfully accomplish its task. The Na-
tional Science Foundation and the 
Department of Energy have contributed 
to the promotion of various aspects of 
this overall research and development 
process.

Personnel for long-running projects. 
Training and retention of a cadre of 
young people to engage in long term 
projects are critical. A strong research 
program cannot be established without 
a complementary education compo-
nent, which is as important as adequate 
infrastructure support. A continuing 
supply of high-quality computational 
scientists available for work in our field 
is critical. This starts with graduate stu-
dents, who contribute to the software 
development, and continues with post-
docs who care about the development 
and help with the research directions, 
as well as research professors and col-
leagues, who contribute to the overall 
effort. Without a continuous effort full 
of qualified people at these levels, such 
long-term projects cannot be carried 
out at our universities. Students and 
post-docs are with the project for only a 
short time. It is critical that the design is 
well documented, and the documenta-
tion is faithful to the software that is de-
veloped. For the student, it can lead to a 
thesis or dissertation. For post-docs, it 
can solidify their interest in the field 
and lead to new research areas.

that, virtually all modern architectures 
require some form of vectorization to 
achieve top performance, whether it be 
short-vector, single instruction, multi-
ple data (SIMD) extensions of CPU 
cores or single instruction, multiple 
threads (SIMT) pipelines of GPU accel-
erators. With the landscape of future 
HPC populated with complex, hybrid 
vector architectures, automated soft-
ware tuning could provide a path to-
ward portable performance without 
heroic programming efforts.32

Impact and Lessons Learned
Measuring impact. Even if expertly de-
veloped and superbly polished, soft-
ware is worthless unless it has an im-
pact in the hands of the end user. It is 
not enough to make users aware of a 
software’s existence, they must be con-
vinced the software they are currently 
using is inferior enough to endanger 
their work, and that the new software 
will remove that danger. Though, that is 
a difficult task in itself, as users must 
overcome their reluctance to modify 
their existing software stack.

The ultimate measure of impact 
stems from indications of usage. Ideal-
ly, it is best if impact measurements are 
easy to factor and objective. Some pos-
sible metrics include: growth of the con-
tributor base; number of users; number 
of software releases; number of down-
loads and citations; level of user satis-
faction; level of vendor adoption; num-
ber of research groups using the 
resources; percentage of reasonably re-
solved tickets; time-to-resolve tickets; 
number of publications citing or using 
the resource; and subjective user experi-
ence reports.

Calculating metrics for LAPACK, for 
example, we see there have been around 
6.4 million downloads of LAPACK and 
1.5 million downloads from ScaLAPACK 
per year, averaged over the last 29 years 
for LAPACK and over the last 25 years for 
ScaLAPACK.31 This is for the packages as 
well as various components from the 
packages. These packages are also in-
cluded in software products like Mat-
lab, Julia, R, Mathematica, and Intel’s 
MKL, which we cannot easily count. In-
deed, many scientists are not even 
aware they are using LAPACK, let alone 
the BLAS.

As much of the scientific software 
stack is open source, one can also inves-

tigate different package managers (for 
example, Spack19) to measure depen-
dencies and usage, or use sites that do 
this automatically (for example, librar-
ies.io monitors close to five million 
open source packages across 37 differ-
ent package managers). However, usage 
typically needs to be compared to other 
developments, quality and quantity is 
also important, and measurements be-
come more difficult and subjective. Al-
though there are several measures of 
impact that can be used for software, 
they are not well established nor sup-
ported, which stands in contrast to the 
number of citations or h-index calculat-
ed for publications.

Licensing for users and manufactur-
ers. An important lesson learned for sci-
entific software is the significance of its 
licensing. Much of the scientific soft-
ware is open source, frequently using a 
Berkeley Software Distribution (BSD)-
derived license, which originated in the 
BSD Unix OS.29

The BSD license is a permissive, free 
software, license imposing minimal re-
strictions on the use and redistribution 
of covered software. A BSD style license 
is a good choice for long duration re-
search or other projects that require a 
development environment that has 
near zero cost for end users, will evolve 
over a long period of time, and permits 
anyone to retain the option of commer-
cializing final results with minimal le-
gal issues.

The success of the scientific software 
stack can, in part, be attributed to the 
choice of software licensing. Not only is 
the software, in general, of high quality, 
well tested, portable, and actively main-
tained; it is also capable of being incor-
porated into other software applications 
with minimal restrictions on the use 
and redistribution of the application 
software; in other words, the license is 
not a hindrance and allows users to em-
ploy the software how they see fit.

Funding for research and develop-
ment. With the development of mathe-
matical software, the process begins 
with a sound foundation in mathemat-
ics that expresses the correctness and 
stability of the computation. A numeri-
cal algorithm is then developed that ex-
presses the mathematics as an algo-
rithm that encompasses the various 
cases the mathematics considers. A 
more complete picture would be:

DECEMBER 2022  |   VOL.  65  |   NO.  12  |   COMMUNICATIONS OF THE ACM     71

turing lecture



subprograms. ACM Trans. Mathematical Software 16 
(1990), 1–17.

14.	 Dongarra, J., Croz, J., Duff, I., Hammarling, S. A set of 
Level 3 Basic linear algebra subprograms. ACM Trans. 
Mathematical Software 16 (1990), 18–28.

15.	 Dongarra, J., Croz, J., Hammarling, S., Hanson, R. 
An extended set of FORTRAN Basic linear algebra 
subprograms. ACM Trans. Mathematical Software 14, 1–17.

16.	 Dongarra, J., Croz, J., Hammarling, S., Hanson, R. 
Algorithm 656: An extended set of FORTRAN Basic 
linear algebra subprograms. ACM Trans. Mathematical 
Software 14 (1988), 18–32.

17.	 Dongarra, J., Gates, M., Luszczek, P., Tomov, S. 
Translational process: Mathematical software 
perspective. J. of Computational Science 52 (2021), 
101216. Case Studies in Translational Computer 
Science; https://www.sciencedirect.com/science/
article/pii/S1877750320305160

18.	 Dongarra, J., van de Geijn, R. Two-dimensional basic 
linear algebra communication subprograms. Tech. Rep. 
LAPACK Working Note 37. Computer Science Department, 
University of Tennessee, Knoxville, TN (1991).

19.	 Gamblin, T., et al. The Spack package manager: 
bringing order to HPC software chaos. In Proceedings 
of 2015 ACM Supercomputing. J. Kern, J. S. Vetter 
(Eds.), 40:1–40:12; http://dblp.uni-trier.de/db/conf/sc/
sc2015.html#GamblinLCLMSF15

20.	 Garbow, B., Boyle, J., Moler, C., Dongarra, J. Matrix 
eigensystem routines—EISPACK guide extension. 
LNCS 51. Springer, Berlin, 1977; doi:10.1007/3-540-
08254-9.

21.	 Haidar, A., Kurzak, J., Luszczek, P. An improved parallel 
singular value algorithm and its implementation for 
multicore hardware. In Proceedings of the Intern. 
Conf. on High Performance Computing. Networking, 
Storage and Analysis. ACM, 2013, 90.

22.	 Haidar, A., Luszczek, P., Dongarra, J. New algorithm for 
computing eigenvectors of the symmetric eigenvalue 
problem. In Proceedings of the Workshop on Parallel 
and Distributed Scientific and Engineering Computing. 
(Phoenix, AZ, 2014), 130; doi:10.1109/IPDPSW.

23.	 Heller, T., Kaiser, H., Iglberger, K. Application of the 
ParalleX execution model to stencil-based problems. 
Computer Science—R&D 28, 2–3 (2013), 253–261; 
doi:10.1007/s00450-012-0217-1.

24.	 Kung, H., Leiserson, C. Systolic arrays (for VLSI). In 
Proceedings of Society for Industrial and Applied 
Mathematics (1978), 256–282.

25.	 Lawson, C., Hanson, R., Kincaid, D., Krogh, F. Basic 
linear algebra subprograms for FORTRAN usage. ACM 
Trans. Math. Soft. 5 (1979) 308–323.

26.	 McCalpin, J. et al. Memory bandwidth and machine 
balance in current high-performance computers. 
IEEE CS Tech. Committee on Computer Architecture 
Newsletter 2, 19–25 (1995); https://www.cs.virginia.
edu/stream/

27.	 Mohiyuddin, M., Hoemmen, M., Demmel, J., Yelick, K. 
Minimizing communication in sparse matrix solvers. 
In Proceedings of the Conf. on High-Performance 
Computing Networking, Storage and Analysis. ACM, 
2009, 36.

28.	 OpenMP 5.0 Complete Specifications, Nov. 2018; 
https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification5.0.pdf.

29.	 Open-Source Initiative. The 3-clause BSD license, 
1998; https://opensource.org/licenses/BSD-3-Clause.

30.	 Strohmaier, E., Meuer, H., Dongarra, J., Simon, H. 
The TOP500 list and progress in high-performance 
computing. Computer 48, 11 (2015), 42–49. 
doi:10.1109/MC.2015.338.

31.	 University of Tennessee. Oak Ridge National 
Laboratory. Netlib Libraries Access Counts; http://
www.netlib.org/master_counts2.html

32.	 Whaley, R., Petitet, A., Dongarra, J. Automated 
empirical optimization of software and the atlas 
project. Parallel Computing 27, 11 (2000).

33.	 Wilkes, M., Wheeler, D., Gill, S. The Preparation 
of Programs for an Electronic Digital Computer 
(Charles Babbage Institute Reprint). The MIT Press, 
Cambridge, MA, 1984.

34.	 Wilkinson, J., Reinsch, C. Linear Algebra, Vol. II of 
Handbook for Automatic Computation. F.L. Bauer 
(Chief Ed), 1971.

Jack J. Dongarra is a University Distinguished Professor 
of Computer Science at the University of Tennessee, 
Knoxville, TN. He also holds appointments with Oak 
Ridge National Laboratory, USA, and the University of 
Manchester, U.K. 

© 2022 ACM 0001-0782/22/12
.

Traditionally, individual researchers 
working alone or in pairs have charac-
terized the style of much of the work in 
the sciences. This situation is different 
in computational science where in-
creasingly a multidisciplinary team ap-
proach is required. There are several 
compelling reasons for this. First and 
foremost, problems in modern scien-
tific computing transcend the bound-
aries of a single discipline. In general, 
the computational approach has made 
science more interdisciplinary than 
ever before. There is a unity among the 
various steps of the overall modeling 
process from the formulation of a sci-
entific or engineering problem to the 
construction of appropriate mathe-
matical models, the design of suitable 
numerical methods, their computa-
tional implementation, and, last but 
not least, the validation and interpreta-
tion of the computed results. For most 
of today’s complex scientific or techno-
logical computing problems a team ap-
proach is required involving scientists, 
engineers, applied and numerical 
mathematicians, statisticians, and 
computer scientists.

Clearly, the investment costs, as well 
as the longer duration of typical com-
putational projects—especially when 
extensive software development is in-
volved—necessitate a certain continu-
ity and stability of the entire research 
infrastructure.

Conclusion
Advancing to the next stage of growth 
for computational simulation and 
modeling will require us to solve basic 
research problems in computer sci-
ence and applied mathematics, at the 
same time as we create and promote a 
new paradigm for the development of 
scientific software. To make progress 
on both fronts simultaneously will re-
quire a level of sustained, interdisci-
plinary collaboration among the core 
research communities.

Existing numerical libraries will 
need to be rewritten and extended 
considering emerging architectural 
changes. The technology drivers will 
necessitate the redesign of existing li-
braries and will force re-engineering 
and implementation of new algorithms. 
Because of the enhanced levels of con-
currency on future systems, algo-
rithms will need to embrace asynchrony 

to generate the number of required in-
dependent operations.

As we enter an era of great change, 
strategic clarity and vision will be essen-
tial. Technology disruptions will also 
require innovative new ideas in mathe-
matics and computer science. We need 
sustained investments in creative indi-
viduals and high-risk concepts.

The community has long struggled 
to settle on a good model for sustained 
support for key elements of the software 
ecosystem. This issue will become more 
acute as we move to exascale and be-
yond. The community needs to recog-
nize that software is really a scientific 
facility that requires long-term invest-
ments in maintenance and support.
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