
OV E R F O U R D E C A D E S have passed since the concept
of computational modeling and simulation as a
new branch of scientific methodology—to be used
alongside theory and experimentation—was first
introduced. In that time, computational modeling
and simulation has embodied the enthusiasm and

20th century. In that light, it seems clear
that while computational science has
had many remarkable successes, it is
still at a very early stage in its growth.

Many of those who want to hasten
that growth believe the most progres-
sive steps in that direction require much
more community focus on the vital core
of computational science: software and
the mathematical models and algo-
rithms it encodes. Of course, the gener-
al and widespread obsession with hard-
ware is understandable, especially given
exponential increases in processor per-
formance, the constant evolution of
processor architectures and supercom-
puter designs, and the natural fascina-
tion that people have for big, fast ma-

The
Evolution of
Mathematical
Software

DOI:10.1145/3554977

Tracing how software and algorithms
follow the hardware.

BY JACK J. DONGARRA

TURING
LECTURE
Jack. J. Dongarra is the
recipient of the 2021
ACM A.M. Turing Award,
recognized for his
pioneering contributions
to numerical algorithms
and libraries that enabled
high-performance
computational software to
keep pace with exponential
hardware improvements
for over 40 years.

sense of importance that people in our
community feel for the work they are
doing. Yet, when we try to assess how
much progress we have made and where
things stand along the developmental
path for this new “third pillar of sci-
ence,” recalling some history about the
development of the other pillars can
help keep things in perspective. For ex-
ample, we can trace the systematic use
of experiment back to Galileo in the ear-
ly 17th century. Yet for all the incredible
successes it enjoyed over its first three
centuries, the experimental method ar-
guably did not fully mature until the ele-
ments of good experimental design and
practice were finally analyzed and de-
scribed in detail in the first half of the

66 COMMUNICATIONS OF THE ACM | DECEMBER 2022 | VOL. 65 | NO. 12

turing lecture

https://dx.doi.org/10.1145/3554977

chines. I am not exactly immune to it.
When it comes to championing compu-
tational modeling and simulation as a
new part of the scientific method, the
complex software “ecosystem” that co-
incides must be forefront.

At the application level the science
must be captured in mathematical
models, which in turn are expressed al-
gorithmically and ultimately encoded
as software. Accordingly, on typical
projects much of the funding goes to
support this translation process that
starts with scientific ideas and ends
with executable software, and which
over its course requires intimate collab-
oration among domain scientists, com-
puter scientists, and applied mathema-
ticians. This process also relies on a
large infrastructure of mathematical li-
braries, protocols, and system software
that has taken years to build up and that
must be maintained, ported, and en-
hanced for many years to come if the
value of the application codes that de-
pend on it are to be preserved and ex-
tended. The software that encapsulates
all this time, energy, and thought, rou-
tinely outlasts (usually by years, some-
times by decades) the hardware it was
originally designed to run on.

Thus, the life of computational sci-
ence revolves around a multifaceted
software ecosystem. Domain scientists
now want to create much larger, multi-
dimensional applications in which a va-
riety of previously independent models
are coupled together, or even fully inte-
grated. They hope to be able to run these
applications on exascale systems with
tens of thousands of processors, to ex-
tract all performance that these plat-
forms can deliver, and to do all this
without sacrificing good numerical be-
havior or programmability.

High-performance computers con-
tinue to increase in speed and capacity,
with exascale machines here in 2022.30
Alongside these developments, archi-
tectures are becoming progressively
more complex, with multi-socket,
multi-core central processing units
(CPUs), multiple graphics processing
unit (GPU) accelerators, and multiple

network interfaces per node. This new
complexity leaves existing software un-
able to make efficient use of the in-
creased processing power.

For decades, processor performance
has been improving in each generation
consistent with Moore’s Law doubling
transistor counts every two years and
Dennard Scaling6 enabling increases in
clock frequency. Combined, these dou-
bled peak performance every 18
months. Since Dennard Scaling ceased
around 2006 due to physical limits, the
push has been toward multi-core archi-
tectures. Instead of getting improved
performance for “free” through hard-
ware improvements, software had to be
adapted to parallel, multi-threaded ar-
chitectures.

In addition to multi-threaded CPU
architectures, hybrid computing has
also become a popular approach to in-
creasing parallelism, with the introduc-
tion of CUDA in 2007 and OpenCL in
2009. Hybrid computing couples’ heavy-
weight CPU cores (using out-of-order
execution, branch prediction, hardware
prefetching, among others) with com-
paratively lighter weight (using in-order
execution) but heavily vectorized GPU
accelerator cores. There is also hetero-
geneity in memory: large, relatively slow
CPU DDR memory coupled with small-
er but faster GPU memory such as 3-D
stacked high-bandwidth memory
(HBM). To take advantage of these capa-
bilities, modern software must explicit-
ly program for multicore CPUs and GPU

DECEMBER 2022 | VOL. 65 | NO. 12 | COMMUNICATIONS OF THE ACM 67

I
M

A
G

E
 B

Y
 W

H
I

T
E

M
O

C
C

A

enable a broad spectrum of applica-
tions to exploit the power of next-gener-
ation hardware platforms is a mission-
critical challenge for scientific
computing generally, and for HPC spe-
cifically. This challenge raises a variety
of difficult issues. For instance, pro-
gramming models and hardware archi-
tectures are still in a state of flux, and
this uncertainty is bound to inhibit the
development of libraries as new config-
urations and abstractions are tried. It is
additionally prudent to expand on exist-
ing libraries instead of developing en-
tirely new ones, when possible, as this
will disperse some of the software main-
tenance costs, provide backward com-
patibility, and make transition for appli-
cations easier. Introducing radically
different algorithms and methods at
low levels, without radically altering us-
age characteristics of familiar packages
at high levels, remains a software engi-
neering conundrum. Moreover, many
HPC applications will need to run on
platforms ranging from leadership-
class machines to smaller-scale clus-
ters, workstations, and even laptops.
These architectural changes have come
every decade or so, thereby creating a
need to rewrite or refactor the software
for the emerging architectures. Scien-
tific libraries have long provided a large
and growing resource for high-quality,
reusable software components upon
which applications can be rapidly con-
structed—with improved robustness,
portability, and sustainability.

Background
Today’s scientists often tackle prob-
lems that are too abstruse to parse theo-
retically, or too hazardous to tackle ex-
perimentally. How can a researcher
peer inside a star to see exactly how it
explodes? Or how can one predict im-
pacts of climate change with so many
variables?

Simulations using high-perfor-
mance computers have thus become a
critical resource for research in all sci-
entific domains. But scientists first
need to express their problem in a
mathematical language that the com-
puter can understand.

Standards are critical for software
development. Research has always ben-
efited from the open exchange of ideas
and the opportunity to build on the
achievements of others. Standards such

accelerators while also managing data
movement between CPU and GPU
memories and across the network to
multiple nodes.

The compute speed, memory and
network bandwidth, and memory and
network latency increase at different
exponential rates, leading to an in-
creasing gap between data movement
speeds and computation speeds. For
decades, the machine balance of com-
pute speed to memory bandwidth has
increased 15%–30% per year (see the
accompanying figure). Hiding commu-
nication costs is thus becoming in-
creasingly more difficult. Instead of
just relying on hardware caches, new
algorithms must be designed to mini-
mize and hide communication, some-
times at the expense of duplicating
memory and computation.

Very high levels of parallelism also
mean that synchronization becomes in-
creasingly expensive. With processors
at around 1GHz–3GHz, exascale ma-
chines, with 1018 64-bit floating point
operations per second, must have bil-
lion-way parallelism. This is currently
anticipated to be achieved by roughly
2GHz × 10,000 nodes × 100,000 thread-
level and vector-level parallelism. Thus,
the computational and communication
parallelism must become asynchro-
nous and dynamically scheduled.

Mathematical libraries are, histori-

cally, among the first software adapted
to the hardware changes occurring over
time, both because these low-level
workhorses are critical to the accuracy
and performance of many different
types of applications, and because they
have proved to be outstanding vehicles
for finding and implementing solutions
to the problems that novel architectures
pose. We have seen architectures
change from scalar to vector to symmet-
ric multiprocessing to distributed par-
allel to heterogeneous hybrid designs
over the last 40 years. Each of these
changes has forced the underlying im-
plementations of the mathematical li-
braries to change. Vector computers
used Level 1 and Level 2 basic linear al-
gebra subprograms (BLAS);4 with the
change to cache-based memory hierar-
chies, algorithms were reformulated
with block operations using Level 3
BLAS matrix multiply. Task-based
scheduling has addressed multicore
CPUs, while more recently—as the com-
pute-speed-to-bandwidth ratio increas-
es—algorithms have again been refor-
mulated as communication avoiding.
In all these cases, ideas that were first
expressed in research papers were sub-
sequently implemented in open source
software, to be integrated into scientific
and engineering applications, both
open source and commercial.

Developing numerical libraries that

Processor and machine balance increasing, making communication relatively more
expensive. Plot for 64-bit floating point data movement and operations; bandwidth
from CPU or GPU memory to registers. Data from vendor specs and STREAM benchmark.26

30
%

 p
er

 ye
ar

Machine Balance
(Double-Precision Floating Point Operations Per Read)

100

10

1

1975 1980 1985 1990 1995

15% per y
ear20% per y

ear

2000 2005 2010 2015 2020 2025

Year

F
lo

p
/s

W
or

d
/s

MI250X Matrix

MI250XH100 Matrix

H100
V100

MI100

MI50 EPYC 7453

Fugaku

KNL

KNC

Raspberry Pi

MI25

M2050
Core2DuoOrigin2000

Pentium

T3E
PII PIII

Cray X1

NEC SX-7

NEC SX-5

NEC SX-4

CM-5E

486DX2

C90

Y-MPVAX-11

8088

C1060
K10

K Computer

Core i7

K40

A100 Matrix

A100

68 COMMUNICATIONS OF THE ACM | DECEMBER 2022 | VOL. 65 | NO. 12

turing lecture

this glaring problem has always been
the development of performance-porta-
ble software libraries that hide many
machine-specific details yet allow auto-
mated adaptation to the user’s platform
of choice.

LAPACK3 is an example of a mathe-
matical software package wherein the
highest-level components are portable,
while machine dependencies are hid-
den in lower-level modules. Such a hier-
archical approach is probably the clos-
est one can come to software
performance-portability across diverse
parallel architectures. The BLAS that
LAPACK heavily relies on provide a por-
table, efficient, and flexible standard for
application programmers.

Portable performance layers. The
layered approach to performance porta-
bility is indispensable for building ever
more intricate libraries on top of a less
complex portability layer with desirable
performance characteristics. The first
mathematical subroutine library for a
computer was written by Maurice V.
Wilkes, David J. Wheeler, and Stanley
Gill for the EDSAC at the University of
Cambridge in England in 1951.33 The
programs were written in machine lan-
guage, and certainly no thought was
given to portability; to have a library at
all was remarkable. That was followed
by the foundational book edited by
Wilkinson and Reinsch that described
the algorithms in Algol.34 Intuitively, our
notion of portable numerical software
is quite clear: portable applications suc-
cessfully run on a variety of computer
architectures and configurations.

Examples of different computer ar-
chitectures include single processor
with uniform random-access memory,
pipeline or vector computers, parallel
computers, and heterogeneous or hy-
brid computers, to name a few. Differ-
ent versions of a library routine may be
written for different architectures,
where each version has the same calling
sequence interface. Or the library rou-
tine may have the ability to determine
which architecture to run on and to
choose which path to take to execute on
the underlying architecture successfully
and efficiently. Applications use these
numerical libraries, and it is these li-
braries we expect to be portable across
different architectures.

Specific techniques and approaches.
Here, we cover the transitional process

as MPI, the BLAS, IEEE floating point
standards, and numerical libraries are
built on the experience of a wider com-
munity and based on best practices.

BLAS. Since the early days of HPC, the
Level 1, Level 2, and Level 3 BLAS stan-
dards13–16,25 abstracted away the low-lev-
el hardware details from scientific li-
brary developers by encoding high-level
mathematical concepts like vector, ma-
trix-vector, and matrix-matrix products.

Critical to effective high-perfor-
mance computing, avoiding unneces-
sary memory movement has provided
considerable motivation for devising al-
gorithms that minimize data move-
ment. Along these lines, much activity
in the past 30 years has involved the re-
design of basic routines in linear alge-
bra, using block algorithms based on
matrix-matrix techniques.3 These have
proved effective on a variety of modern
computer architectures with vector pro-
cessing or parallel-processing capabili-
ties, on which high performance can
potentially be degraded by excessive
transfer of data between different levels
of memory (for example, registers,
cache, main memory, and solid-state
disks).

By organizing the computation into
blocks, we provide for full reuse of data
while each block is held in cache or lo-
cal memory, avoiding excessive move-
ment of data, and giving a surface-to-
volume effect for the ratio of data
movement to arithmetic operations,
that is, O(n2) data movement to O(n3)
arithmetic operations. In addition, par-
allelism can be exploited in two ways:

	˲ operations on distinct blocks may
be performed in parallel; and

	˲ within the operations on each
block, scalar or vector operations may
be performed in parallel.

More ops ≠ more time. Complexity
theory clearly dictates that fewer opera-
tions, especially at a lower asymptotic
bound, are preferable for optimal exe-
cution time. In high performance and
scientific computing, a similar guide-
line was applied when every cycle and
every instruction was at a premium. But
this was the case in the single-core
world, and it has already changed in the
multicore era. Worse yet, it’s further ex-
acerbated in the case of hardware accel-
erators with total compute power ex-
ceeding 1,000GFLOPs in double
precision and bandwidth topping at

200Gbytes/s. An order of magnitude
more operations must be performed for
every byte that arrives from the main
memory. Computation is fast only when
it happens in processor registers—even
the fastest cache needs a handful of
clock cycles to deliver data items.

Compared to the main memory that
holds most data structures, operations
on registers are virtually free, with data
movement and synchronization being
the essential factors contributing to al-
gorithm speed. Projections for future
machines only exacerbate the current
data movement crisis. Even with the
newly introduced stacked memory that
promises a mind-boggling 1Tbytes/s of
bandwidth, computing devices will
eventually achieve performance levels
more than 10TFLOPs, and the band-
width/compute imbalance will become
even more pronounced. In such an envi-
ronment, we must abandon the notion
that knowing the number of operations
for an algorithm is a good indicator of
its ultimate performance. Rather, we
must look critically at the kind of opera-
tions that are required. And above all,
we must focus on data movement, syn-
chronization points, and understand-
ing of the nature of the interaction be-
tween threads and processes in the
system to make sure that they can pro-
ceed on their own for as long as possible
without costly communication. In addi-
tion, we must examine the amount of
data the algorithm accesses and choose
one that can minimize accesses—we
call this approach “communication
avoiding.”

Software PACKs. Delivering special-
ized scientific software in the form of
packages, such as EISPACK,20 LIN-
PACK,12 LAPACK,3 ScaLAPACK,9 and
others, continues to be essential for de-
livering robust solvers that enable por-
table performance across ever more
specialized hardware systems.

The portability of software library
code has always been an important con-
sideration, made much more difficult
by diverse modern hardware designs
and the corresponding flourishing of a
diverse programming language land-
scape. Understandably, scientific teams
do not wish to invest significant effort to
port large-scale application codes to
each new machine when the teams are
focused on science results rather than
software engineering. Our answer to

DECEMBER 2022 | VOL. 65 | NO. 12 | COMMUNICATIONS OF THE ACM 69

turing lecture

mance and energy consumption.
Mixed-precision algorithms are being
developed to leverage these significant
advances in computational power,
while still maintaining accuracy and
stability on par with the classic single or
double precision formats through care-
ful consideration of the numerical ef-
fects of half precision. Even though re-
search on mixed-precision algorithms
has been presented in papers and con-
ferences over the last few decades, these
techniques mostly remained in a proto-
type state and rarely made it into pro-
duction code. Recently, the U.S. Depart-
ment of Energy (DOE) Exascale
Computing Project (ECP) has allocated
resources to bring these techniques
into production.1

Approximate, randomized, and proba-
bilistic approaches. In the past, the main
goals for robust high-performance nu-
merical libraries were accuracy first and
efficiency second. The current outlook,
informed by application needs, has
been transforming rapidly: accuracy it-
self is often a tunable parameter. It is
now one of the major contributors to ex-
cessive computation and is therefore
directly at odds with speed. In a wide
range of applications, from high-perfor-
mance data analytics (HPDA) to ma-
chine/deep learning, and from edge
sensors producing extreme amounts of
data (including redundant or faulty
data) to large data stores, the modern
requirement for various optimizations
is to establish a “best” solution in a lim-
ited period. This realignment of priority
motivates the development of algo-
rithms that call for approximations,
randomization, probabilistic accuracy,
and convergence bounds. The preferred
algorithms compute quickly while still
being sufficiently accurate through
non-traditional, innovative approaches.
Here we see distinct feedback from ap-
plication needs back to the develop-
ment of new algorithms.

Machine learning/autotuning. Al-
though Moore’s Law is still in effect,
the multicore and accelerator revolu-
tion has initiated a processor design
trend of moving away from architectur-
al features that do not directly contrib-
ute to processing throughput. This
means a preference toward shallow
pipelines with in-order execution and
cutting down on branch prediction
and speculative execution. On top of

for mathematical software in greater de-
tail.17

Dataflow scheduling. In the late
1970s, dataflow scheduling was realized
for mapping programs represented as a
direct acyclic graph (DAG) of tasks to a
specialized hardware configuration of
systolic arrays.24 In the ensuing decades,
many task-based runtime systems have
been proposed and remain ac-
tive2,5,7,8,11,23,28 with an overarching pur-
pose to address programmability and
management of parallelism in the con-
text of HPC. The next step is to turn the
dataflow scheduling approach into a
standard akin to MPI.

Communication avoiding algorithms.
The new normal in HPC may be sum-
marized as follows: compute time de-
pends on memory accesses and not on
total operation count. In other words,
the number of arithmetic instructions
executed no longer directly reflects the
time spent in running the program; the
type of operation is the essential aspect
to consider. Opting for higher complex-
ity algorithms may be preferable if the
operations better fit the hardware and
transfer less data across the modern
memory hierarchy and on-node inter-
connects.21,22 To better represent the ex-
ecution time of software, the perfor-
mance model must be a function of
both computation and communication
costs. To address the computation-
communication imbalance, several
communication-avoiding (CA) algo-
rithms have been developed by rede-
signing existing methods to obtain the
minimum theoretical communication
cost for a particular solver,4,27 including
CALU and CAQR factorization algo-
rithms.10 After basic research estab-
lished their advantages, communica-
tion avoiding algorithms are now being
integrated into various libraries such as
LAPACK, ScaLAPACK, MAGMA, SLATE,
and vendor libraries.

Mixed precision. The emergence of
deep learning as a leading computa-
tional workload on large-scale cloud in-
frastructure installations has led to a
plethora of heavily specialized hardware
accelerators that can tackle these types
of problems. These new platforms offer
new 16-bit floating-point formats with
reduced mantissa precision and expo-
nent range at significantly higher
throughput rates, which makes them at-
tractive in terms of improved perfor-

To better represent
the execution time
of software,
the performance
model must be
a function of both
computation
and communication
costs.

70 COMMUNICATIONS OF THE ACM | DECEMBER 2022 | VOL. 65 | NO. 12

turing lecture

	˲ the development and analysis of al-
gorithms for standard mathematical
problems which occur in a wide variety
of applications;

	˲ the practical implementation of
mathematical algorithms on comput-
ing devices, including study of interac-
tions with particular hardware and soft-
ware systems;

	˲ the environment for the construc-
tion of mathematical software, such as
computer arithmetic systems, languag-
es, and related software development
tools;

	˲ software design for mathematical
computation systems, including user
interfaces;

	˲ testing and evaluation of mathe-
matical software, including methodolo-
gies, tools, testbeds, and studies of par-
ticular systems; and,

	˲ issues related to the dissemination
and maintenance of software.

Each of these items requires an in-
vestment of time and funding to suc-
cessfully accomplish its task. The Na-
tional Science Foundation and the
Department of Energy have contributed
to the promotion of various aspects of
this overall research and development
process.

Personnel for long-running projects.
Training and retention of a cadre of
young people to engage in long term
projects are critical. A strong research
program cannot be established without
a complementary education compo-
nent, which is as important as adequate
infrastructure support. A continuing
supply of high-quality computational
scientists available for work in our field
is critical. This starts with graduate stu-
dents, who contribute to the software
development, and continues with post-
docs who care about the development
and help with the research directions,
as well as research professors and col-
leagues, who contribute to the overall
effort. Without a continuous effort full
of qualified people at these levels, such
long-term projects cannot be carried
out at our universities. Students and
post-docs are with the project for only a
short time. It is critical that the design is
well documented, and the documenta-
tion is faithful to the software that is de-
veloped. For the student, it can lead to a
thesis or dissertation. For post-docs, it
can solidify their interest in the field
and lead to new research areas.

that, virtually all modern architectures
require some form of vectorization to
achieve top performance, whether it be
short-vector, single instruction, multi-
ple data (SIMD) extensions of CPU
cores or single instruction, multiple
threads (SIMT) pipelines of GPU accel-
erators. With the landscape of future
HPC populated with complex, hybrid
vector architectures, automated soft-
ware tuning could provide a path to-
ward portable performance without
heroic programming efforts.32

Impact and Lessons Learned
Measuring impact. Even if expertly de-
veloped and superbly polished, soft-
ware is worthless unless it has an im-
pact in the hands of the end user. It is
not enough to make users aware of a
software’s existence, they must be con-
vinced the software they are currently
using is inferior enough to endanger
their work, and that the new software
will remove that danger. Though, that is
a difficult task in itself, as users must
overcome their reluctance to modify
their existing software stack.

The ultimate measure of impact
stems from indications of usage. Ideal-
ly, it is best if impact measurements are
easy to factor and objective. Some pos-
sible metrics include: growth of the con-
tributor base; number of users; number
of software releases; number of down-
loads and citations; level of user satis-
faction; level of vendor adoption; num-
ber of research groups using the
resources; percentage of reasonably re-
solved tickets; time-to-resolve tickets;
number of publications citing or using
the resource; and subjective user experi-
ence reports.

Calculating metrics for LAPACK, for
example, we see there have been around
6.4 million downloads of LAPACK and
1.5 million downloads from ScaLAPACK
per year, averaged over the last 29 years
for LAPACK and over the last 25 years for
ScaLAPACK.31 This is for the packages as
well as various components from the
packages. These packages are also in-
cluded in software products like Mat-
lab, Julia, R, Mathematica, and Intel’s
MKL, which we cannot easily count. In-
deed, many scientists are not even
aware they are using LAPACK, let alone
the BLAS.

As much of the scientific software
stack is open source, one can also inves-

tigate different package managers (for
example, Spack19) to measure depen-
dencies and usage, or use sites that do
this automatically (for example, librar-
ies.io monitors close to five million
open source packages across 37 differ-
ent package managers). However, usage
typically needs to be compared to other
developments, quality and quantity is
also important, and measurements be-
come more difficult and subjective. Al-
though there are several measures of
impact that can be used for software,
they are not well established nor sup-
ported, which stands in contrast to the
number of citations or h-index calculat-
ed for publications.

Licensing for users and manufactur-
ers. An important lesson learned for sci-
entific software is the significance of its
licensing. Much of the scientific soft-
ware is open source, frequently using a
Berkeley Software Distribution (BSD)-
derived license, which originated in the
BSD Unix OS.29

The BSD license is a permissive, free
software, license imposing minimal re-
strictions on the use and redistribution
of covered software. A BSD style license
is a good choice for long duration re-
search or other projects that require a
development environment that has
near zero cost for end users, will evolve
over a long period of time, and permits
anyone to retain the option of commer-
cializing final results with minimal le-
gal issues.

The success of the scientific software
stack can, in part, be attributed to the
choice of software licensing. Not only is
the software, in general, of high quality,
well tested, portable, and actively main-
tained; it is also capable of being incor-
porated into other software applications
with minimal restrictions on the use
and redistribution of the application
software; in other words, the license is
not a hindrance and allows users to em-
ploy the software how they see fit.

Funding for research and develop-
ment. With the development of mathe-
matical software, the process begins
with a sound foundation in mathemat-
ics that expresses the correctness and
stability of the computation. A numeri-
cal algorithm is then developed that ex-
presses the mathematics as an algo-
rithm that encompasses the various
cases the mathematics considers. A
more complete picture would be:

DECEMBER 2022 | VOL. 65 | NO. 12 | COMMUNICATIONS OF THE ACM 71

turing lecture

subprograms. ACM Trans. Mathematical Software 16
(1990), 1–17.

14.	 Dongarra, J., Croz, J., Duff, I., Hammarling, S. A set of
Level 3 Basic linear algebra subprograms. ACM Trans.
Mathematical Software 16 (1990), 18–28.

15.	 Dongarra, J., Croz, J., Hammarling, S., Hanson, R.
An extended set of FORTRAN Basic linear algebra
subprograms. ACM Trans. Mathematical Software 14, 1–17.

16.	 Dongarra, J., Croz, J., Hammarling, S., Hanson, R.
Algorithm 656: An extended set of FORTRAN Basic
linear algebra subprograms. ACM Trans. Mathematical
Software 14 (1988), 18–32.

17.	 Dongarra, J., Gates, M., Luszczek, P., Tomov, S.
Translational process: Mathematical software
perspective. J. of Computational Science 52 (2021),
101216. Case Studies in Translational Computer
Science; https://www.sciencedirect.com/science/
article/pii/S1877750320305160

18.	 Dongarra, J., van de Geijn, R. Two-dimensional basic
linear algebra communication subprograms. Tech. Rep.
LAPACK Working Note 37. Computer Science Department,
University of Tennessee, Knoxville, TN (1991).

19.	 Gamblin, T., et al. The Spack package manager:
bringing order to HPC software chaos. In Proceedings
of 2015 ACM Supercomputing. J. Kern, J. S. Vetter
(Eds.), 40:1–40:12; http://dblp.uni-trier.de/db/conf/sc/
sc2015.html#GamblinLCLMSF15

20.	 Garbow, B., Boyle, J., Moler, C., Dongarra, J. Matrix
eigensystem routines—EISPACK guide extension.
LNCS 51. Springer, Berlin, 1977; doi:10.1007/3-540-
08254-9.

21.	 Haidar, A., Kurzak, J., Luszczek, P. An improved parallel
singular value algorithm and its implementation for
multicore hardware. In Proceedings of the Intern.
Conf. on High Performance Computing. Networking,
Storage and Analysis. ACM, 2013, 90.

22.	 Haidar, A., Luszczek, P., Dongarra, J. New algorithm for
computing eigenvectors of the symmetric eigenvalue
problem. In Proceedings of the Workshop on Parallel
and Distributed Scientific and Engineering Computing.
(Phoenix, AZ, 2014), 130; doi:10.1109/IPDPSW.

23.	 Heller, T., Kaiser, H., Iglberger, K. Application of the
ParalleX execution model to stencil-based problems.
Computer Science—R&D 28, 2–3 (2013), 253–261;
doi:10.1007/s00450-012-0217-1.

24.	 Kung, H., Leiserson, C. Systolic arrays (for VLSI). In
Proceedings of Society for Industrial and Applied
Mathematics (1978), 256–282.

25.	 Lawson, C., Hanson, R., Kincaid, D., Krogh, F. Basic
linear algebra subprograms for FORTRAN usage. ACM
Trans. Math. Soft. 5 (1979) 308–323.

26.	 McCalpin, J. et al. Memory bandwidth and machine
balance in current high-performance computers.
IEEE CS Tech. Committee on Computer Architecture
Newsletter 2, 19–25 (1995); https://www.cs.virginia.
edu/stream/

27.	 Mohiyuddin, M., Hoemmen, M., Demmel, J., Yelick, K.
Minimizing communication in sparse matrix solvers.
In Proceedings of the Conf. on High-Performance
Computing Networking, Storage and Analysis. ACM,
2009, 36.

28.	 OpenMP 5.0 Complete Specifications, Nov. 2018;
https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification5.0.pdf.

29.	 Open-Source Initiative. The 3-clause BSD license,
1998; https://opensource.org/licenses/BSD-3-Clause.

30.	 Strohmaier, E., Meuer, H., Dongarra, J., Simon, H.
The TOP500 list and progress in high-performance
computing. Computer 48, 11 (2015), 42–49.
doi:10.1109/MC.2015.338.

31.	 University of Tennessee. Oak Ridge National
Laboratory. Netlib Libraries Access Counts; http://
www.netlib.org/master_counts2.html

32.	 Whaley, R., Petitet, A., Dongarra, J. Automated
empirical optimization of software and the atlas
project. Parallel Computing 27, 11 (2000).

33.	 Wilkes, M., Wheeler, D., Gill, S. The Preparation
of Programs for an Electronic Digital Computer
(Charles Babbage Institute Reprint). The MIT Press,
Cambridge, MA, 1984.

34.	 Wilkinson, J., Reinsch, C. Linear Algebra, Vol. II of
Handbook for Automatic Computation. F.L. Bauer
(Chief Ed), 1971.

Jack J. Dongarra is a University Distinguished Professor
of Computer Science at the University of Tennessee,
Knoxville, TN. He also holds appointments with Oak
Ridge National Laboratory, USA, and the University of
Manchester, U.K.

© 2022 ACM 0001-0782/22/12
.

Traditionally, individual researchers
working alone or in pairs have charac-
terized the style of much of the work in
the sciences. This situation is different
in computational science where in-
creasingly a multidisciplinary team ap-
proach is required. There are several
compelling reasons for this. First and
foremost, problems in modern scien-
tific computing transcend the bound-
aries of a single discipline. In general,
the computational approach has made
science more interdisciplinary than
ever before. There is a unity among the
various steps of the overall modeling
process from the formulation of a sci-
entific or engineering problem to the
construction of appropriate mathe-
matical models, the design of suitable
numerical methods, their computa-
tional implementation, and, last but
not least, the validation and interpreta-
tion of the computed results. For most
of today’s complex scientific or techno-
logical computing problems a team ap-
proach is required involving scientists,
engineers, applied and numerical
mathematicians, statisticians, and
computer scientists.

Clearly, the investment costs, as well
as the longer duration of typical com-
putational projects—especially when
extensive software development is in-
volved—necessitate a certain continu-
ity and stability of the entire research
infrastructure.

Conclusion
Advancing to the next stage of growth
for computational simulation and
modeling will require us to solve basic
research problems in computer sci-
ence and applied mathematics, at the
same time as we create and promote a
new paradigm for the development of
scientific software. To make progress
on both fronts simultaneously will re-
quire a level of sustained, interdisci-
plinary collaboration among the core
research communities.

Existing numerical libraries will
need to be rewritten and extended
considering emerging architectural
changes. The technology drivers will
necessitate the redesign of existing li-
braries and will force re-engineering
and implementation of new algorithms.
Because of the enhanced levels of con-
currency on future systems, algo-
rithms will need to embrace asynchrony

to generate the number of required in-
dependent operations.

As we enter an era of great change,
strategic clarity and vision will be essen-
tial. Technology disruptions will also
require innovative new ideas in mathe-
matics and computer science. We need
sustained investments in creative indi-
viduals and high-risk concepts.

The community has long struggled
to settle on a good model for sustained
support for key elements of the software
ecosystem. This issue will become more
acute as we move to exascale and be-
yond. The community needs to recog-
nize that software is really a scientific
facility that requires long-term invest-
ments in maintenance and support.

Acknowledgments. Thanks to Terry
Moore, Mark Gates, Piotr Luszczek,
Stanimire Tomov, Sven Hammarling,
Natalie Beams, and Rob Anderson for
their help with this article.	

References
1.	 Abdelfattah, A. et al. A survey of numerical linear

algebra methods utilizing mixed-precision arithmetic.
The Intern. J. of High-Performance Computing
Applications 35, 4 (2021), 344–369; https://doi.
org/10.1177/10943420211003313

2.	 Agullo, E. et al. Harnessing Supercomputers with a
Sequential Task-based Runtime System 13, 9 (2014),
1–14.

3.	 Anderson, E. et al. LAPACK User’s Guide, 3rd Edition.
Society for Industrial and Applied Mathematics,
Philadelphia, 1999.

4.	 Ballard, G., Demmel, J., Holtz, O., Schwartz, O.
Minimizing communication in numerical linear
algebra. SIAM J. on Matrix Analysis and Applications
32, 3 (2011), 866–901.

5.	 Bauer, M., Treichler, S., Slaughter, E., Aiken, A. Legion:
Expressing locality and independence with logical
regions. In Intern. Conf. for High-Performance
Computing. Networking, Storage and Analysis, SC
2012; doi: 10.1109/SC.2012.71.

6.	 Bohr, M. A 30-year retrospective on Dennard’s
MOSFET scaling paper. IEEE Solid-State Circuits
Society Newsletter 12, 1 (2007), 11–13; doi:10.1109/N-
SSC.2007.4785534.

7.	 Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M.,
Hérault, T., Dongarra, J. PaRSEC: A programming
paradigm exploiting heterogeneity for enhancing
scalability. Computing in Science and Engineering 99
(2013), 1; https://hal.inria.fr/hal-00930217

8.	 Bueno, J. et al. Productive programming of GPU
clusters with OmpSs. In Proceedings of the 2012
IEEE 26th Intern. Parallel and Distributed Processing
Symposium, (2012), 557–568; doi:10.1109/
IPDPS.2012.58.

9.	 Choi, Y., Dongarra, J., Pozo, R., Walker, D. ScaLAPACK:
A scalable linear algebra library for distributed
memory concurrent computers. In Proceedings of the
4th Symp. Frontiers of Massively Parallel Computations
(McLean, VA; Oct. 19–21, 1992), 120–127.

10.	 Demmel, J., Grigori, L., Hoemmen, M., Langou, J.
Communication-optimal parallel and sequential QR
and LU factorizations. SIAM J. of Scientific Computing
34, 1 (2012), A206–A239; doi:10.1137/080731992.

11.	 Dokulil, J., Sandrieser, M., Benkner, S. Implementing
the Open Community Runtime for Shared-Memory
and DistributedMemory Systems. In Proceedings
of the 24th Euromicro Intern. Conf. on Parallel,
Distributed, and Network-Based Processing, (2016),
364–368; doi:10.1109/PDP.2016.81.

12.	 Dongarra, J., Bunch, J., Moler, C., Stewart, G.
LINPACK users’ guide. SIAM. (Philadelphia, PA,
1979); doi:10.1137/1. 9781611971811.

13.	 Dongarra, J., Croz, J., Duff, I., Hammarling, S.
Algorithm 679: A set of Level 3 Basic linear algebra

72 COMMUNICATIONS OF THE ACM | DECEMBER 2022 | VOL. 65 | NO. 12

turing lecture

