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Abstract—Today’s largest and most powerful supercomputers
in the world are built on heterogeneous platforms; and using
the combined power of multi-core CPUs and GPUs, has had a
great impact accelerating large-scale applications. However, on
these architectures, parallel algorithms, such as the Fast Fourier
Transform (FFT), encounter that inter-processor communication
become a bottleneck and limits their scalability. In this paper, we
present techniques for speeding up multi-process communication
cost during the computation of FFTs, considering hybrid network
connections as those expected on upcoming exascale machines.
Among our techniques, we present algorithmic tuning, making
use of phase diagrams; parametric tuning, using different FFT
settings; and MPI distribution tuning based on FFT size and
computational resources available. We present several experi-
ments obtained on Summit supercomputer at Oak Ridge National
Laboratory, using up to 40,960 IBM Power9 cores and 6,144
NVIDIA V-100 GPUs.

Index Terms—Exascale FFT, Hybrid systems, Scalability, MPI
tuning

I. INTRODUCTION

During the last two decades, major improvements in

the development of supercomputers allowed to build faster

and more efficient software for problems in science and

engineering, which constantly grow in scale. One of the

major challenges that these developments have had, consists

on minimizing the cost of communication between processors,

which depends on the bandwidth and latency of the system,

features that have not been growing at the same rate as

the arithmetic computational power. Thus, communication

is known to be the bottleneck for important algorithms

in computer science, and efficient algorithms need to be

developed [1]. One of the most widely used algorithms for

numerical applications is the Fast Fourier Transform (FFT),

which was considered as one of the top 10 algorithms of the

20th century [2].

In essence, the FFT of x, an m-dimensional vector of size

N ≡ N1 × N2 × · · · × Nm, is denoted y = FFT (x) and

defined as an m-dimensional vector the same size as x by the

following equations:

ŷ =

N1−1∑

n1=0

N2−1∑

n2=0

· · ·

Nm−1∑

nm=0

x̄ · e
−2πi

(

k1n1

N1
+

k2n2

N2
···+

kmnm

Nm

)

(1)

where ŷ ≡ y(k1, k2, . . . , km) for 0 ≤ ki ≤ Ni − 1, i =
1, . . . ,m, where x̄ = x(n1, . . . , nm).

Note that from Eq. 1, we see that the FFT could be directly

computed by a tensor product; however, this would cost

O(N
∑m

i=1
Ni). The advantage of the FFT is that the cost

can be reduced to O(N log2 N) operations by exploiting the

structure of the tensor.

There exist single-device efficient implementations to

compute multidimensional FFTs. In this paper we focus on

computing 3-D FFTs. One of the most widely used libraries

for this purpose is FFTW [3], which has been tuned to

optimally perform in several architectures. Vendor libraries

for this purpose have also been highly optimized, such is the

case of MKL (Intel) [4], ESSL (IBM) [5], rocFFT (AMD) [6]

and CUFFT (NVIDIA) [7]. Novel libraries are also being

developed to further optimize single-device FFTs, among

them: OneAPI for Intel GPUs [8], Vulkan FFT (VkFFT) [9],

KFR [10], and FFTX [11], where the latter is part of the ECP

software community.

In the last decade, several distributed CPU-based FFT

implementations have been developed. Algorithm 1 presents

the classical parallel FFT algorithm with different parameter

options. Figure 1 shows three different decomposition

approaches used in FFT algorithms. Among the libraries,

the widely-used FFTW employs a 1-D decomposition

approach, which limits its scalability to a small number

of nodes. P3DFFT [12] extends FFTW functionalities

and supports both 1-D and 2-D decompositions. Libraries

2DECOMP&FFT [13], nb3dFFT [14] and AccFFT [15],

showed good scalability but are no longer maintained. Finally,

large scale applications have built their own FFT library, such

as fftMPI [16] (built-in on LAMMPS [17]) and SWFFT [18]

(built-in on HACC [19]). These libraries are widely known

in the molecular-dynamics and astrophysics literature.

In the realm of hybrid architectures, the impact of the

communication bottleneck needs to be efficiently managed

to properly target exascale systems [20], [21]; which makes

hybrid-distributed FFT a challenging task. Few state-of-the-art
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Input 3-D grid
Output 3-D grid

Slabs (1-D decomposition)

Pencils (2-D decomposition)

Bricks decomposition

Fig. 1. The sequence of steps for computing the 3D FFT for different decomposition of the input tensor. The pencil decomposition (green bars throughout)
is the default option in most libraries. Using slabs (orange box at the top) saves an extra step of data reshape. The bricks decomposition (purple translucent
cubes) is supported by some libraries and could be beneficial on some platforms.

libraries exist for CPU-GPU architectures, and they have based

their developments on minimizing the communication effect.

For instance, the 1-D decomposition approach introduced in

[22] is one of the first heterogeneous codes for large FFT

computation on GPUs. Its optimization approach is limited

to small number of nodes and focus on reducing tensor

transposition cost by exploiting infiniband-interconnection

using the IBverbs library, which makes it not portable. Further

improvements to scalablity have been presented in FFTE

library [23] which supports pencil and slab decompositions

and includes several optimizations, although with limited

features and limited improvements on communication. Also,

FFTE relies on the commercial PGI compiler, which may

limit its usage. In [15], authors developed AccFFT, a library

that seeks to overlap computation and blocking collective

communication by reducing the PCIe overhead, they provide

good (sublinear) scalability results for large real-to-complex

transforms using NVIDIA K20 GPUs. Finally, heFFTe

[24]–[28], is a recent open source FFT library which targets

exascale. It is open source and its optimizations yield to

linear scalability for large node-count.

The standard algorithm, known as pencil decomposition,

consists of a sequence of 1D FFTs for each of the m directions,

c.f., [29]. A variant of this is the slab decomposition, which

uses 2D FFTs, c.f., Figure 1. Alg. 1 shows the standard

approach to compute a distributed FFT.

A. Related work

In [30], authors introduced a communication framework for

accelerating the data-exchanges on CPU-based parallel FFTs,

their approach has the potential to further speedup the libraries

listed above.

Algorithm 1 m-dimensional FFT computation

1: Input: n-dimensional array, processor grids: Pin, Pout

2: Tune parameters based on array size and Pin

3: Define processor grids (MPI groups) for each direction

Call: Load balancing algorithm to distribute data.

4: Define best permutation order of computation

5: for k ← 1 to m do

6: Compute local 1-D FFTs .. ..aaaaaaa.............................

..... Call: Single-device library, e.g., FFTW, CUFFT.

7: Pack data

8: for P on my MPI group do

9: Exchange (Send/receive) local box with neighbors

............Call: Point-to-Point or Collective MPI

10: end for

11: Unpack data

12: end for

13: Reshape data on Pout grid

B. Contributions

• We push the boundaries of the existing FFT software

stack by introducing novel implementation improvements

on the communication bottleneck with efficient MPI

tuning.

• Our improvements yield to speedups on the computation

of parallel 3-D FFT. Our implementation within heFFTe

library achieves linear scalability and close to the peak

performance.

• We introduce communication tuning parameters for dif-

ferent FFT algorithmic approaches and exchanges needed

within the transposition kernels of state-of-the-art FFT

libraries.
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TABLE I
MPI ROUTINES USED FOR TENSOR TRANSPOSITION WITHIN DISTRIBUTED FFT LIBRARIES.

Library
Language Developer

Point-to-Point exchange Collective exchange Process
Name Blocking Non-Blocking Blocking Non-Blocking Topology

MPI Isend MPI Alltoallv
AccFFT C++ GA Tech. MPI Sendrecv

MPI Irecv MPI Bcast
- MPI Cart create

2DECOMP&FFT Fortran NAG MPI Send MPI Irecv
MPI Alltoall

-
MPI Cart create

MPI Alltoallv MPI Cart sub

U. Tsukuba MPI Isend MPI Alltoallv
FFTE Fortran

Riken
-

MPI Irecv MPI Alltoallw
MPI Ialltoallv -

FFTMPI C++ Sandia MPI Send MPI Irecv
MPI Allreduce

-
MPI Group

MPI Alltoallv MPI Comm create

MPI Group
FFTW C MIT - - MPI Alltoallv -

MPI Comm create

heFFTe C++ UTK
MPI Send MPI Isend MPI Allreduce

heFFTe Alltoallv
MPI Group

MPI Recv MPI Irecv MPI Alltoallv MPI Comm create

RTWH MPI Send MPI Allreduce
nb3dFFT Fortran

Aachen MPI Recv
-

MPI Alltoallv
- MPI Group

P3DFFT C++ UCSD - - MPI Alltoallv -
MPI Cart create
MPI Cart sub

ETH MPI Allreduce MPI Group
SpFFT C++

Zürich
MPI Send MPI Irecv

MPI Alltoallv
-

MPI Comm create

SWFFT C++ Argonne MPI Send MPI Irecv
MPI Allreduce

-
MPI Cart create

MPI Alltoallv MPI Cart sub

C. Paper organization

In Section II, we provide an extensive study of the

communication bottleneck for computing a parallel FFT

using MPI. We analyze the different MPI routines being

used on a dozen of well-known libraries. We provide an

offline tuning technique to accelerate the communication

by using a phase diagram that can be built for CPU and

CPU-GPU hybrid systems. Next, Section III presents several

experiments on Summit supercomputer using up to 40,960

IBM Power9 cores and 6,144 NVIDIA V-100 GPUs. We

show how the communication impact the performance

of parallel FFT, and how our developments can help to

mitigate its effects on scalability. Then, we present a roofline

performance analysis. Finally, Section IV concludes our paper.

II. ACCELERATING MULTI-PROCESS COMMUNICATION

A major issue with distributed-hybrid FFTs is that, due to

the sheer compute capabilities of today’s supercomputers, the

algorithm quickly becomes communication bound. Authors

in [20] performed an extensive theoretical analysis on

hybrid systems targeting exascale and realized that the FFT

computation itself would take only a small fraction of the

total run time, while the communication between processes

would be the bottleneck where most of the run time is spent.

However, they did not provide an efficient library for such

computation.

We refer to hybrid systems as those consisting of heteroge-

neous components, or multiple sub-systems (as in the case of

grid computing). In this paper, we focus on hybrid platforms

that use graphics processing units (GPUs), which can highly

accelerate the execution of arithmetic operations; however,

when a large amount of GPU-GPU communication is required,

TABLE II
NUMBER OF MESSAGES REQUIRED TO BE SENT PER PROCESS DURING A

3-D RESHAPE USING A P
1/3

× P
1/3

× P
1/3 PROCESSOR GRID.

Reshape Type # Messages

Brick ⇐⇒ Pencil P
1/3

Brick ⇐⇒ Slab P
2/3

Pencil ⇐⇒ Pencil P
2/3

Pencil ⇐⇒ Slab P
2/3

Slab ⇐⇒ Slab P

this could greatly affect performance gains of speeding up

local computations. Algorithms that get affected by this issue

are known as communication bounded algorithms, among

them: the Fast Fourier Transform (FFT).

A. Quantifying the FFT communication bottleneck

Typical input data is given by the user in brick shape, which

is defined over an 3-D data grid., c.f., Figure 1. To obtain

the FFT transform in the x direction, data communication

is required. For both possible final distributions (pencils or

slabs), the number of messages is the same, as shown in

Table II, where an input grid of size P 1/3 × P 1/3 × P 1/3

is assumed, P being the total number of processes. The

number of messages is accounted for in every MPI group,

which are defined from overlapping process topologies at

consecutive reshape stages (i.e., an MPI group contains

processes that need to exchange data before the 1-D [or

2-D] FFT computation on the next direction). Figure 2

shows the exponential growth on a number of messages for

a 3-D FFT using heFFTe with a CPU and GPU backend,

where all intra-node resources on Summit are used (i.e., the

network was saturated). In [31], authors studied multi-GPU

communication for FFT computation.
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Fig. 2. Number of messages sent for a double-complex precision 3-D FFT
of size 1024

3. Using a CPU and GPU backend, 6 V100 GPUs per node for
cuFFT, and 40 IBM POWER9 CPUs per node for FFTW.

Next, one can analyze which reshape procedure would be

the most beneficial for computing a full FFT. For the sake of

simplicity, one can consider a 3-D FFT, where the possible

reshape combinations are (B:brick, P:pencil, S:slab):

• Pencils: B2P → P2P → P2P → P2B; this approach

is the one available in the AccFFT, and fftMPI libraries.

• Slabs: B2P → P2S → S2B; this approach uses a

combination of pencils and slabs, and it is included in

heFFTe and FFTE libraries.

From Figure 1, we can clearly see that the slab decomposi-

tion reduces the number of data reshapes. However, its global

advantage does not always hold, see Figure 9. In theory, for a

distributed 3-D FFT of size K3, the slab decomposition can

scale up to K processes. For the experiments of this paper,

the MPI communication cost can be quantified as follows:

Tc = nB2PTB2P+nP2PTP2P+nP2STP2S+nS2BTS2B , (2)

Assuming 3-D, double-complex data—and using Equation 2

and Table II with a 25GB/s theoretical bandwidth and 1µs
latency— Figure 3 is a phase diagram for Summit, which

allows one to choose the fastest theoretical decomposition to

use. Note that formula (2) can be extended to support higher

dimensions transforms.

In Figure 9, the tuning methodology is experimentally veri-

fied for multi-precision complex 3D-FFT of size 10243 on the

Summit supercomputer. The advantage of slab decomposition

breaks out around 384 MPI processes, and it actually starts

to break the linear scaling a little earlier. This is consistent

with the phase diagram, and it becomes more accurate when

the real-world, observed bandwidth and latency are used at

that scale. This communication model can also be extended to

other architectures.

3
D

 F
F

T
 s

iz
e

Number of MPI processes

Slabs

Decompostion

Pencils

Decompostion

Fig. 3. Selection of the best reshape approach based on the 3-D FFT size
and the number of resources.

B. Communication and Roofline models

Few communication models are available for studying

the bottleneck of hybrid parallel FFTs [15], [20], [32].

Those models target the throughput from each component

or processor involved in the communication. As another

approach, below we present a rather simple model that

focuses on inter-node communication, which, according to

our experience, better describes the global bottleneck for

CPU-GPU based systems. This is because intra-node fast

interconnection is usually available in modern systems, e.g.,

via NVLINK, while inter-node bandwidth is much slower.

Also, within a single node, highly optimized local FFT

computations can be performed, e.g, using CUFFTXt [7]

or FFTX [11]. And then, all the bottleneck comes from

inter-node communication. This model is also suitable for

cases where there is not much information on subcomponents

of the hybrid system, which can be the case of grid computer

systems.

In [33], authors developed a communication model for

estimating the time, in seconds, necessary to perform a single

reshape within the computation of a 3-D FFT on Summit

supercomputer, given as:

ΨSummit := 1.953P log(N), (3)

where P is the total number of processes and N is the FFT

size. Fig. 10, shows heFFTe’s performance for a typical FFT

of size N = 10243, and compares it to the roofline peak for

increasing number of nodes, getting about to 90% close to

peak value.

C. Accelerating MPI communication via tuning

Once a communication framework is established, c.f.,

Section II-A, we only rely on the MPI capabilities. FFT
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libraries support different types of communication as shown

in Table I, and supercomputers usually offer multiple MPI

libraries; e.g. OpenMPI, MVAPICH and SpectrumMPI.

The choice of MPI transfer type, either point-to-point or

all-to-all, is critical for performance and scalability. Making

the right choice depends on:

• The FFT size and algorithmic choice (pencil/slabs)

• Type and quantity of computing resources

• Underlying network topology

• Available MPI distribution

In Fig. 4, we compare OpenMPI with UCX support,

MVAPICH2-GDR, and the default MPI distribution in

Summit (IBM’s Spectrum MPI). The latter does not perform

very well for small data volume, which corresponds to small

FFT sizes, typically found on applications such as LAMMPS

[17]. The difference in performance can be considerable;

and therefore, adding the choice of the MPI distribution as a

tuning feature would potentially yield to greater speedups.

Recently, vendors providing GPU accelerators are

developing frameworks for faster data transfer between

nodes; among them, libraries such as NCCL , RCCL,

OpenSHMEM and NVSHMEM. Currently, there is ongoing

work in heFFTe for an early adoption of these tools and

linking them to the MPI framework of applications. Also, a

collaboration with OMPI-X (ECP project) has led to a novel

all-to-all one-sided communication routine targeting parallel

FFT and different MPI distributions [34], [35].

D. Software improvements

The novel software developments that we propose in this

paper, have been integrated into heFFTe v.2.1 [24], and they

are based on advanced C++11 features. We created a common

API that allows for a higher-level logic of FFT and reshape

operations to be expressed independent from the CPU or GPU

backends, while explicit instantiation and inlining is used

to remove any unnecessary overhead. The API allows for

an easy selection of tuning parameters (currently supporting

over a dozen of options). For implementing the largest time-

consuming kernel, i.e., the reshape kernel (transposition), we

developed reshape3d alltoallv which exploits features, as

CUDA-Aware MPI, to allow pipelining with kernels such as

1-D FFTs and packing/unpacking that are computed on GPUs.

The data and the reshape operations are wrapped in RAII

containers using std::unique ptr() and custom CUDA vectors

that mimic the move and copy semantics of std::vector. In

addition to the usual RAII benefits, the approach allows to

express any arbitrary combinations of data transformations

based on either one-dimensional pencils or two-dimensional

slabs.

Tuning the communication as described above is the most

critical part for efficient FFTs; to this end, when using point-

to-point MPI, we use an heuristic tool called minimum sur-

face partition, which helps to create intermediate processor

grids to handle the transposition in a load-balanced manner.

When collective communication is necessary, we include

a novel heFFTe feature to allow either MPI Alltoallv or

MPI AlltoAll, where for the latter an efficient padding is

implemented and can potentially overcome the former. The

novel software developments described in this paper are highly

templated to support a wide range of options and parametric

tuning. This helps to easily tune and choose between 6

backends for 1-D and 2-D FFTs, data types, multi-precision,

MPI communication type, intermediate data decomposition

and reshaping options. This is all done while preserving

correctness and allowing in-place and out-of-place transforms.
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Fig. 5. Comparison of MPI runtime for different MPI distributions, on a strong scaling experiment using a 3-D FFT of size 1024
3, with 6 MPI processes

per node, and 1 MPI per V100 GPU.

III. EXPERIMENTAL RESULTS

In this section, we present different experiments to show

how efficiently tuning the FFT parameters and the communi-

cation framework yield to very good performance on one of

the world’s largest supercomputer.

A. Hardware platform

Our experiments were obtained using Summit

supercomputer, which has 4,608 nodes, each composed

by 2 IBM Power9 CPUs and 6 Nvidia V100 GPUs, as shown

in Fig. 6. These 6 GPU accelerators provide a theoretical

double-precision capability of approximately 40 TFlop/s.

Within the same node, processors have two NVIDIA’s

NVLink interconnections, each having a peak bandwidth

of 25 GB/s (in each direction), hence V100 and P900 can

communicate at a peak of 50 GB/s (100GB/s bi-directional).

Summit nodes are interconnected in a Non-blocking Fat Tree

topology, via a dual-rail EDR InfiniBand network which

provides a node injection bandwidth of 25 GB/s.

Fig. 6. Architecture of a single Summit node: computing units and network
connections.

B. Experimental setup

All experiments we present where obtained as an average

of 10 runs, after a warm-up call. Input data was randomly

generated using a fixed seed, it is double-precision complex

and its size is 10243, unless otherwise specified.

C. MPI tuning to improve FFT performance and scaling

As our first experiment, we compare the runtime for strong

scaling of a 3-D FFT using different MPI distributions (Open-

MPI, MVAPICH and Spectrum MPI). In Figure 5, we observe

that MVAPICH with GDR support performs better than the

other two, for up to 192 GPUs (64 nodes); while for a greater

number of resources, the difference is not considerable, and the

default MPI in Summit (IBM’s Spectrum) tends to be faster.

Fig. 7. Variability on the MPI cost for a scalability experiment using a 3-D
FFT of size 1024

3, using 6 MPI processes per node, and 1 MPI per V100
GPU. The horizontal lines of each box correspond to the minimum, first
quartile, median, third quartile, and maximum.
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In the strong scalability experiment presented in Figure 5,

we observe that, at 512 nodes (3,072 GPUs), the algorithm

stops linearly scaling. This is due to the impact of latency.

Since 6,144 processes are communicating, Figure 7 helps to

understand this issue, here we saturate the nodes using all

GPU’s, which causes the number of messages sent to increase,

c.f., Figure 2, and the breakdown of MPI time shown proves

that small size message become difficult to be managed by

the MPI distribution due to the system throughput limitations.

Next, in Figure 8, we present a study case where it is

clear that choosing between point-to-point or collective

MPI communication can be critical towards achieving

linear scaling (which is of utmost important for upcoming

exascale software). We compare two state-of-the-art libraries

that are currently under development, where FFTE uses

MPI AlltoAllv, and for heFFTe we leverage both, non-

blocking MPI send/receive and All-to-All. The optimizations

within SpectrumMPI can explain the All-to-All exchange

overcoming the binary (or point-to-point) approach. Refer

to [36] for further performance comparison among different

state-of-the-art libraries.

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

4 8 16 32 64 128 256 512 1,024

T
im

e
 (

s)

Number of Summit Nodes

FFTE
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heFFTe_a2a

Fig. 8. Strong scalability for GPU libraries using 4 NVIDIA V100 GPUs per
node, 2 per socket. Using heFFTe 2.1 and FFTE 7.0 on a 3-D FFT of size
1024

3. Both libraries use cuFFT as 1-D backend.

D. Scalability

In this experiment, we use single and double precision data

and the pencil and slab decomposition approaches, c.f. Section

II, which commonly available in classical FFT libraries. In Fig.

9, we observe that both of these algorithmic choices scale very

well, and tuning between them can be achieved by using the

phase diagram introduced in Section II-A. For this experiment

we choose the best configuration obtained from offline tuning

in heFFTe.

E. Roofline peak performance analysis

In Fig. 10, we numerically analyze how we approach the

roofline peak performance as described in Section II-B. We

observe that by appropriately choosing the transform size and

Number of MPI processes

T
im

e
(s

)

12 24 48 96 192 384 768 614430721536

Slabs

Pencils

Fig. 9. Comparison of pencil and slab decompositions for strong scaling of a
3-D FFT of size 1024

3. Using heFFTe with cuFFT backend, 6 MPI processes
(1 MPI processes per GPU-V100) per node, and complex random data.

the number of nodes, we can get closer to the proposed peak.

The idea of this plot is to show user how a correlation can

be established between these two parameters to ensure that

resources are efficiently used. This is important for several

applications, where the FFT is only a small portion of their

total runtime. And they require some GPU resources to simul-

taneously run other tasks, such as visualization or profiling.
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Fig. 10. Roof-line performance from Eq. 3 and heFFTe performance on a
3D FFT of size 1024

3; using 40 MPI processes, 1MPI/core, per node (blue),
and 6 MPI/node, 1MPI/1GPU-Volta100, per node (red).

Note that for 256 nodes (1536 V100 GPUs) we are only

achieving 20% of the peak. This is because we are using too

much resources for this problem size. Increasing the FFT size

would yield to performance closer to the peak (as shown for

this case at 4 and 8 nodes). Version 2.1 of heFFTe provides

tools for offline tuning which helps to efficiently select the

number of computing resources for a given FFT size.

IV. CONCLUSIONS

This paper provides novel methodologies to further

accelerate FFT computation on CPU and GPU distributed

systems by tuning the multi-process communication. We
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introduced techniques and software improvements that push

the boundaries of state-of-the-art FFT libraries. Our analysis

of the communication bottleneck via different MPI parameters

and distributions, shed light on potential improvements that

can be achieved by an efficient tuning procedure which we

implemented on top of heFFTe library.

Next, we evaluated the impact of the communication bot-

tleneck on FFT scalability. We analyzed different FFT algo-

rithmic approaches (such as pencil and slab decomposition),

and point-to-point and collective MPI communication. From

our analysis, we saw that linear scalability is achievable,

and we can reach very close to the experimental roofline

peak on Summit supercomputer. Future work is expected on

creating a mixed-precision optimization, and the acceleration

of symmetrical, non-uniform and sparse FFTs.
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