
1. Introduction

Fig 1. heFFTe v2.0 in the ECP software stack.

2. Even faster FFTs
Many large-scale application-software require Fast
Fourier Transforms (FFT), e.g., within the Exascale
Computing Project (ECP) of the United States.

Hybrid CPU-GPU systems are widely used and are
expected for the upcoming exascale machines.
FFT libraries targeting such architectures have
been accelerated via tuning and asynchronous
kernel evaluation on GPUs [2], obtaining up to 2x
speedup compared to fully CPU libraries.

We present techniques to further accelerate FFT
computation by overcoming the communication
bottleneck, we provide architecture-aware selection
of FFT algorithm, a novel All-to-All routine (which
can considerably speedup default MPI standard
routines), and a mixed-precision implementation.

Current MPI_Alltoall distributions
for GPUs perform poorly compared
to theoretical peaks [3].

NVDIA collective library (NCLL)
does not have an All-to-All option.

Hence, we developed a novel
algorithm, based on One Sided
Communication (OSC_A2A). It can
achieve up to 30% speedup.

3. Mixed-Precision FFT

We developed a mixed-precision version for
heFFTe, which exploits GPU power to
compress data (using casting/ZFP) to save in
All-to-All cost (which usually takes over 90% of
runtime [2,3]). We used a ring version of our
OSC_A2A routine.

A. Ayala, S. Tomov, S. Cayrols, J. Li, G. Bosilca, J. Dongarra
Innovative Computing Laboratory

M. Stoyanov
Oak Ridge Nat. Lab.

A. Haidar*
NVIDIA Corporation
* Contribution done while author was at ICL-UTK

SPONSORED BY:Accelerating FFT towards Exascale Computing

[1] https://bitbucket.org/icl/heffte/
[2] A. Ayala, S. Tomov, A. Haidar, J. Dongarra: heFFTe: Highly Efficient FFT for Exascale,
Lecture Notes on Computational Sciences – Springer, 2020.
[3] A. Ayala, X. Luo, S. Tomov, H. Shaiek, A. Haidar, G. Bosilca, J. Dongarra: Impacts of
Multi-GPU Collective Communications on Large FFT Computation, IEEE/ACM Exascale
MPI, 2019.

6. References

Fig3. Strong scalability of heFFTe on a 10243 FFT, using 6GPUs per
Summit node.

4. Communication model
We introduce a novel communication model for hybrid-distributed
FFTs which can adapt to any architecture [2], and gives a
theoretical estimation of the reshaping cost.
This model assumes that fast communication is available within
a node, e.g., Summit at ORNL, which has NVLINK connections.

For Summit, we get [2]:

5. Applications
Following figures show some applications heFFTe targets, to some of which it has already been integrated, to accelerate FFT calculus while ensuring scalability.

Cosmology
HACC

Molecular Dynamics
EXAALT

Particle Simulations
CoPa

Tomography –
Image processing
– Deep learning

Signal processing –
Randomized FFT –

Matrix Compression

Fig 4. Roofline & scalability for heFFTe,

GPU version uses 6 Volta100 GPUs per node,

CPU version uses 40 IBM Power9 per node.

Fig 2.3. Average throughput of all-to-all
exchange of 2GB of data, 1GPU per node.

Fig. 3, shows that heFFTe linearly scales. We use a 3D complex-data grid, and compute both: single
(FP32) and double (FP64) precision FFTs.

Fig 2.2. Phase diagram for algorithm tuning

Multidimensional FFT are computed by a sequence of 1D or
2D FFTs, with intermediate data reshapes. The latter is the
most expensive task (>90% of runtime [2]), moving data
among processors (!), typically in an All-to-All fashion [2,3].

Fig 2.1. Cost for data reshaping

heFFTe supports any type of reshaping

technique (c.f., Fig. 2.1) and provides a

tool to create architecture-aware Phase
diagrams [1,2]. In Fig. 2.2., we show

the case of Summit, where users can

input their resources and FFT size to

select the fastest reshape approach.

"#$%% = 7.8125! log 0
23 456ℎ8956 ,

where 0 is the FFT size.

Our efforts led

to heFFTe
library v2.0 [1],

which is

open-source,

portable,

scalable,

robust;

and targets

exascale

applications.

CR2 means a compression ratio of 2 times. CR2
is up to 2.6x faster than FP64 and up to 1.4x
faster than FP32. CR4 is up to 5x faster than
FP64 and up to 2.6x faster than FP32. CR2
validation error is ; 10=> , while for FP32 it is
; 10=? ; i.e., we move the same data volume
faster, while getting a better quality FFT output.

Using this model, we derive a

roofline model theoretical peak

performance. Fig. 4 shows heFFTe

achieving about 90% of peak value

up to 48 GPUS; this percentage

then decreases, indicating that too

many resources are being used for

the given FFT size (latency).

https://bitbucket.org/icl/heffte/

