
Theme Article: Converged Computing: A Best-of-Both Worlds of HPC
and Cloud

XaaS: Acceleration as a Service to Enable
Productive High-Performance Cloud
Computing
Torsten Hoefler, ETH Zurich & Swiss National Supercomputing Centre (CSCS), Switzerland

Marcin Copik, ETH Zurich, Switzerland

Pete Beckman, Argonne National Laboratory, USA

Andrew Jones, Microsoft, United Kingdom

Ian Foster, Argonne National Laboratory, USA

Manish Parashar, Utah University, USA

Daniel Reed, Utah University, USA

Matthias Troyer, Microsoft, USA

Thomas Schulthess, Swiss National Supercomputing Centre (CSCS), Switzerland

Dan Ernst, NVIDIA, USA

Jack Dongarra, University of Tennessee, USA

Abstract—HPC and Cloud have evolved independently, specializing their innova-
tions into performance or productivity. Acceleration as a Service (XaaS) is a recipe
to empower both fields with a shared execution platform that provides transparent
access to computing resources, regardless of the underlying cloud or HPC service
provider. Bridging HPC and cloud advancements, XaaS presents a unified architec-
ture built on performance-portable containers. Our converged model concentrates
on low-overhead, high-performance communication and computing, targeting
resource-intensive workloads from climate simulations to machine learning. XaaS
lifts the restricted allocation model of Function-as-a-Service (FaaS), allowing
users to benefit from the flexibility and efficient resource utilization of serverless
while supporting long-running and performance-sensitive workloads from HPC.

A cceleration as a Service (XaaS) is a recipe for
enabling high-performance computing (HPC)
workloads in the cloud. Cloud computing (“the

Cloud”) provides the opportunity to offer computational
capabilities as a simple transactional service, similar to
how we use electricity or the internet. Today’s Cloud
already offers a wide range of powerful services, from
online storage to specific applications such as video
calls or search. However, its performance is limited
by inefficiencies in current Cloud architectures. XaaS

XXXX-XXX © 2021 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

addresses those inefficiencies and enables the com-
putation of high-performance accelerated workloads,
ranging from simulations to AI/ML inference and train-
ing, as a high-performance cloud service capable of
serving most demanding workloads.

XaaS provides different opportunities
for people with different backgrounds and
mindsets. Members of the HPC com-
munity will find a vision for produc-
tive high-performance computing con-
necting today’s manually compiled-and-
run HPC applications to a new world of
automated high-performance containers running fine-

Month Published by the IEEE Computer Society Publication Name 1

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

THEME

supercomputing

cloud computing

Virtual
Machines

Compiled Source
Code / Applications

Portable XaaS Containers

Portability

Efficiency
(compared to VMs)

Scalability

Productivity

DevOps
(CI/CD)

Transactional
Accounting

FIGURE 1. Both Cloud and HPC converge to containers as an application and service deployment model. Containers bind all
dependencies and system aspects (users, rights, etc.) into a single portable unit that can be flexibly deployed. XaaS enables
HPC features for such containers.

grained transactional computations. Members of the
datacenter systems and cloud computing communities
will find a vision for lifting standard container deploy-
ments seamlessly to low-overhead, high-performance
accelerated infrastructures. This enables fastest com-
munication and specialized computing at the highest
system utilization and reliability. Deployed containers
utilize library interfaces and remote direct memory
access (RDMA) technologies for specialized accelera-
tion and communication with close-to-zero overheads
compared to traditional bare-metal deployments.

Here, we define HPC workloads as resource-
intensive and performance-sensitive applications. Tra-
ditionally, HPC systems were aimed at executing ex-
tremely demanding scientific computing workloads.
Recently, HPC systems have also been employed for
data analytics, machine learning, and other workloads
that, like scientific computing, require massive concur-
rency and rapid interprocess communication. Super-
computing is the subset of HPC that uses the fastest
and most powerful general purpose scientific comput-
ing systems available at any given time1. Cloud com-
puting can be characterized by the desire to separate
provider and user by a simple, clear, and automatable
interface (ideally as simple as a power socket!) and by
business and operations models designed to ensure
that user requests can always be satisfied. To this
end, cloud native computing employs composable (mi-
cro)services that run in containers and interact through
clearly defined interfaces (e.g., REST, JSON) that often

however compromise performance.
Applications that only rely on container and cloud

service interfaces are called “cloud native.” Container
creation, deployment, and management are largely
handled by the de-facto standards Docker and Ku-
bernetes. However, cloud service interfaces such as
storage or machine learning inference are usually spe-
cific to the provider’s ecosystem. Most modern cloud
systems aim to offer an execution environment for
cloud-native containers, which is similar to an operating
system’s interface to a process. The Cloud Native
Computing Foundation’s Kubernetes project seeks to
define an interface in the spirit of the POSIX inter-
facesa. This design is traditionally aimed at providing
a productive ecosystem. Only recently, performance
has become a center of attention when using compute
accelerators for demanding video processing tasks
or AI/ML workloads.Thus, the goals of modern cloud
computing and HPC align well and could converge
towards the same infrastructure.

HPC and Cloud have progressed largely indepen-
dently in the past. Both according to their specializa-
tion: The Cloud innovates in terms of business
model, software packaging (containers), and pro-
ductive ecosystems (e.g., cloud native) and HPC
in terms of performance (e.g., RDMA) and abstrac-
tions for performance (performance libraries). How-

ahttps://kubernetes.io/blog/2016/09/cloud-native-
application-interfaces/

2 Publication Title Month 2021

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

https://kubernetes.io/blog/2016/09/cloud-native-application-interfaces/
https://kubernetes.io/blog/2016/09/cloud-native-application-interfaces/

THEME

TABLE 1. Comparison point of existing Cloud offerings.

Cloud Overview
Generic Specialized

IaaS PaaS CaaS FaaS SaaS DaaS
Hardware Environment ✓ ✓ ✓ ✓ ✓ ✓

Software Environment ✓ ✓ ✓
Pre-Configured Service

Bespoke Software ✓ ✓

Fine-grained Accounting ✓ ✓ ✓

Example Services
AWS EC2, Azure VMs Google App Azure AKS AWS Lambda, Azure Gmail OneDrive, Box
GCP Compute Engine Engine AWS EKS Functions, GCP Functions Microsoft 365 Xignite for stock data

ever, each field trails the other in other respects: for ex-
ample, HPC has explored as-a-services abstractions2

and is only just beginning to embrace the simpler
deployment philosophy of containerized environments,
while cloud started to explore ideas of RDMA. Each
feature was established in the other community a
decade ago. XaaS provides a way to accelerate this
transition to a common architecture based on high-
performance containers. Figure 1 shows a schematic
overview of where each field is coming from and what
containerized deployments could enable today or in the
near future. If those two communities do not join forces,
they are bound to re-invent each other’s methods.

All-in-all, the high-level architectural vision for a
converged high-performance cloud with XaaS is based
on three fundamental principles:

1) Performance portable containers (Infrastruc-
ture)

2) High-performance communication and I/O (In-
put/Output)

3) High-performance allocation, scheduling, and
accounting (Invocation)

In the following, we outline three key techniques
that can be used to build this architecture: Flexible
hooked libraries and specialized builds can enable
performance portability of the container infrastructureb.
RDMA and other direct memory access techniques
can provide the lowest overhead interface to the out-
side world3. Direct peer-to-peer allocations and high-
performance scheduling and accounting can provide
performant and available integration into a full system3.

State of the Art
We provide detailed descriptions of HPC and CC, con-
sidering each field’s idiosyncrasies and commonalities.

HPC has traditionally supported demanding
workloads in centralized datacenters. Supercom-
puters have long been used to serve the most de-
manding applications, such as weather prediction or

bhttps://github.com/eth-cscs/sarus

the numerical simulation of complex structures; more
recently, they are also used to train very large-scale AI
models. Due to the necessary large investment, super-
computers often pool the resources of many individuals
at the regional or national level to address problems
relevant to society. While they are architected to run the
largest jobs, they may spend much of their life running
smaller applications. HPC centers have long led the
design and development of large-scale systems, often
in collaboration with system vendors. HPC has driven
the wide adoption of vector processing, massive par-
allelism based on commodity CPUs, general-purpose
GPUs, and high-performance interconnects for multiple
decades through long-term engagement with vendor
partners.

Cloud emerged as a paradigm to sell compute
cycles to a diverse set of customers, ranging from
anonymous customers with credit cards to long-term
engagements. The Cloud’s success in this endeavor
has allowed it to realize, at scale, the vision of utility4−5

and grid computing6, whereby computing as a ser-
vice enables new services in many fields, including
computational sciences7.This approach changed the
dynamics of IT businesses at large, giving startups a
significantly lower barrier of entry compared to the dot-
com days where the necessary CapEx proved to be a
huge burden. The Cloud’s aim to widen the customer
base has led to a wide range of offerings at various
levels of complexity and capability of compute ser-
vices, encompassing Infrastructures (IaaS), Platforms
(PaaS), Containers (CaaS), and Functions (FaaS),
as well as full application services such as Service
Architectures/Software (SaaS) and Data (DaaS). The
focus is usually on reducing the barrier of entry and
improving usability instead of performance, leading to
using relatively inefficient but simple web interfaces
such as REST, even for compute- and data-intensive
tasks. The latest push in this direction is the defini-
tion of cloud-native interfaces, for which performance
and efficiency initially played only a secondary role.
Yet, due to economies of scale, cloud computing has
become more performance-sensitive, especially in the
emerging AI area.

Month 2021 Publication Title 3

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

https://github.com/eth-cscs/sarus

THEME

Commercial Cloud Providers

XaaS Simulation Platform

Standard Portable Container API
(e.g., OCI)

Base Operating System Layer (e.g., Ubuntu/Debian/… - POSIX)

XaaS Accelerated Compute, Communication, I/O libraries, and APIs

Generic Containers
(e.g., docker)

System-Specific
(e.g., HPE, Intel)

Climate QCD Materials …
XaaS Service Platform

Climate
 Data

Materials
 Data

… Domain-Specific
(e.g., Climate)

M
ain

tain
ed

 b
y

P
ro

vid
er

M
ain

tain
ed

 b
y

C
o

m
m

u
n

ity

AWS Azure GCP …
HPC Service Providers

ALCF … Market / Policy-Specific
 (e.g., public vs. private)

FIGURE 2. XaaS ecosystem and components.

It appears as if the market-driven Cloud field
is moving organically towards a productive higher-
performance environment in order to reduce costs of
centralized services. Meanwhile, many organizations
in the community-driven HPC field remain in some
sort of innovator’s dilemma whereby today’s traditional
HPC environment, with its batch system setups, make-
files, and other venerable features, works well enough
to throttle development and experimentation. Yet this
environment is increasingly not fit for purpose for
emerging workloads that involve complex workflows or
real-time computing. Only a bottom-up movement, with
potentially some top-down incentives, can change the
field. Only the right productive high-performance tech-
nology will move the community! We believe we need
an architecture that enables portable, composable,
and scalable workloads that allows users to build
community-driven platforms at various levels. We
believe that a fine-grained billable and containerized
deployment, similar to FaaS (Table 1) but allowing
much longer runtimes and large parallel jobs, would
serve the community well. While we do not prescribe
implementations for such a service, we believe a mi-
croservices architecture could be used to implement
and operate a XaaS infrastructure. We continue by
capturing and contrasting the state of the art in
both HPC and Cloud along multiple axes: usage,
accounting, hardware, co-design, scheduling, and
security, and we outline a path to convergence to-
wards productive high-performance accelerated cloud
computing.

The basis of a XaaS ecosystem is a portable
container API that abstracts interfaces from cloud and
HPC providers together with a standard operating sys-
tem layer (Figure 2). The key addition in the XaaS
software ecosystem is a system-specific set of accel-
erated APIs for compute (e.g., BLAS), communication

(e.g., MPI, libfabric), and I/O (e.g., NetCDF) that are
tuned to each target system and maintained by the
provider. A recompilation layer would apply to the
workflow of either building or deploying containers and
is not shown. A standard XaaS layer enables portable
accelerated domain-specific simulations and services
in specific domains such as weather and climate,
quantum chromodynamics and quantum simulations,
or material sciences. Those domain-specific containers
would be maintained by the respective community.

On-premises HPC and Cloud are two extremes
in a tradeoff between capital expense (CapEx) and
operational expense (OpEx). A convergence of work-
loads and interfaces across both enables interesting
opportunities to balance the two in the future.

Containers
Containers form an interesting design point in software
deployment. They emulate important parts of an oper-
ating system (e.g., a file system, processes, users) in
a lightweight runtime that runs on a host operating sys-
tem. The key is that containers provide a standardized
clean and slim interface to the host OS and can thus
be portable across many platforms and architectures.
They have their weaknesses, for example, excessive
memory consumption due to limited sharing8. Yet, they
form an interesting point solution in a complex design
space. Originally, computers ran individual applications
that had to interface to all hardware directly. The
emergence of multiprogramming in OSs then drove
the adoption of portable interfaces (POSIX). The cloud
started its journey by offering rented virtualized hard-
ware as “Infrastructure as a Service” (IaaS), whereby
customers would deploy their full OS as a virtual
machine. Concurrently, HPC centers offered compute
time to applications running in a machine-specific en-

4 Publication Title Month 2021

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

THEME

vironment. Deploying a new application in such an
environment routinely takes hours. The main difference
to early Cloud VMs was that HPC applications were
typically recompiled (to optimize them) for the specific
machine and Cloud deployments were typically binary
compatible (often x86). Such portable Cloud VMs are
deployable in minutes on today’s cloud providers and
provide the highest isolation as well as flexible choice
of OS. When accounting for costs, VMs are typically
charged by the hour.

Containers started as a way to package libraries
and dependencies together with an application and
quickly developed into an encapsulated OS-like envi-
ronment for more complex services. Most containers
are significantly smaller than an OS VM (Megabytes
vs. tens of Gigabytes) and can be deployed in sec-
onds rather than minutes. Their light weight enables a
finer-grained accounting for “Container as a Service”
(CaaS), often at a minute or second granularity. Con-
tainers also support fast scale-up: a container image
can be replicated to other machines to spin up more
compute instances in seconds. The latest develop-
ment, “Function as a Service” (FaaS) separates
the deployment from the use of the containers.
Requests simply invoke a function (which is defined
in a container) that returns a result. Initially, such
functions were stateless, but they have recently been
extended with local state and can of course access
cloud APIs for persistent storage. The main benefit of
FaaS is that the user is not involved in the deployment,
which simplifies life for users while also enabling a fine-
grained billing model on a millisecond scale for each
function and allowing the operator to schedule function
executions creatively. Such functions can be executed
in containers or even micro-VMs for higher isolation.

Portability requires that binary containers execute
on different machines. This needs both compatible
container APIs as well as compatible binary executable
formats. Furthermore, many high-performance work-
loads require running parallel computations distributed
to multiple machines; thus, containers need to be able
to communicate efficiently over a network. Today’s
containers are based on standards defined by Docker
and the Open Container Initiative (OCI) and portability
is achieved by compiling containers for a given tar-
get architecture. For example, the popular container
repository DockerHub lists seven architectures ranging
from x86 and ARM to IBM’s Z series. Yet, performance-
critical workloads requiring lowest-overhead communi-
cations have received comparatively little attention so
far. These workloads require specialization that goes
beyond multi-platform images and provides access to
high-performance computing and network hardware.

We define performance portable containers as con-
tainers that achieve excellent performance on a variety
of architectures. The term “excellent” admits various
detailed definitions, such as “percent of peak” or “uti-
lization”, which we purposefully leave open.

Using resources
Users of HPC systems often engage with centers
in a long-term (multi-year or decadal) relationship.
This is partially due to what one could call “data
gravity”, i.e., the hardship of moving massive amounts
of data, but also due to the complexity of setting up a
new environment and social aspects such as working
practices and personal relationships. HPC centers are
interested in high utilization of their machines with
economy-of-scale arguments. Today’s batch systems
typically reorder jobs to achieve the highest utiliza-
tion. This often leads to delays of large jobs but can
also accelerate the scheduling of smaller jobs through
“backfilling” a gap that a waiting larger job may cause.
This mode of operation is of course only amenable
to run-to-completion jobs and cannot be used to op-
erate online services or interactive sessions. Impor-
tant urgent or interactive applications such as dis-
ease and pandemic simulation9, real-time tsunami and
earthquake simulation10, and time-constrained data
processing to guide future experiments11−12 require
bespoke solutions on HPC systems or simply move
to cloud systems. A corollary of this mode of operation
is that (1) system availability plays a secondary role
– HPC systems are often down for days at a time
during working hours; (2) even system reliability is
secondary because checkpoint/restart is a viable mode
of operation as long as the storage system is reliable.

Cloud users want to remain flexible and able to
change systems to allow the market to regulate
pricing. Yet, cloud providers have little incentive to
standardize their interfaces to achieve easy portability.
Proprietary interfaces and the high monetary costs of
moving data out of the cloud result in some form of
involuntary gravity towards a specific vendor. Funda-
mentally, all cloud systems work similarly: they provide
customers with a set of online services and microser-
vices. Even though providers can pass on their cost
to customers if the market allows, optimizing the cost
of foundational services can save millions of dollars in
operational costs and is thus attractive to providers.
Sometimes, performance considerations even lead to
service consolidation. However, providers have only
indirect incentives to improve the performance of cus-
tomer workloads (who are charged per minute com-
pute time). In addition, new models such as FaaS allow

Month 2021 Publication Title 5

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

THEME

providers to use their infrastructure more efficiently
and thus lower costs while improving usability and
enabling completely new service and billing models
(pay as you go and scale down to zero). For many
cloud services, availability is critical and indeed non-
negotiable as many important online systems run in
cloud settings (e.g., credit card transactions, communi-
cation infrastructure). Availability is achieved by highly
resilient and redundant infrastructure that increases
costs at all levels. Scalability (aka “elasticity”) is also
important, and while aggregate user demand may
exhibit less variance than that of individual users, it
ultimately requires costly idle resources at the time of
each request. In practice, resources are limited and
requests can only be fulfilled if resources are available.

Opportunities of converged XaaS Both paradigms
drive towards convergence: HPC requires increasingly
reliable services, for example, for running performance-
and availability-critical data systems such as the ma-
terials cloudc, medical cloudsd, metagenomic analysis
services13, and earth virtualization engines14. Cloud
systems, on the other hand, already run batch jobs for
background processing and are increasingly running
large-scale bulk-synchronous AI training workloads in
an HPC-like setting (e.g., using optimized libraries,
accelerators, and high-performance interconnects) in-
tegrated with many services. One aspect to drive this
convergence would be to consciously split work-
loads into interactive and non-interactive parts. For
example, for a climate simulation, producing the data
is a non-interactive component but analyzing and navi-
gating the data is often driven by interactive discovery.

Another important topic is ease-of-use. Cloud ar-
chitectures with containers in HPC would allow com-
munities to build their own platforms on top of
a portable containerized environment. This way,
HPC providers could support high-performance
container interfaces and communities could layer
domain-specific services inside containers, e.g., a
climate simulation setup pre-installed in a container
(cf. Fig. 2). The domain-specific layers could then
drive scientific reproducibility and faster progress.

Scheduling
By scheduling we mean the process of allocating re-
sources to compute jobs. Ideally, a compute job would
never wait for resources and always start immediately.
Yet, having some jobs wait may greatly increase the

chttps://www.materialscloud.org/
dhttps://www.cancergenomicscloud.org/

average utilization in a compute system by shifting
demand in time. From a user’s perspective, one needs
to consider the whole response time. Humans oper-
ate in milliseconds and interactive requests, such as
loading webpages, should return in that time-frame.
Some high-performance jobs such as ML inference
need to operate in those time frames while others,
such as climate simulations, do not. Yet, even for non-
interactive workloads, large amounts of computation
must sometimes be provided in short time-frames,
such as in emergency situations like natural disasters
or pandemics.

High-performance computers are usually used
through batch systems that enable complex or-
chestration of scheduling of different hardware types
with advanced requests such as reservations. They
aim at high utilization and trade-off interactivity and
waiting times and sometimes also performance (e.g.,
allocating arbitrary nodes instead of close nodes).
Some HPC centers are beginning to offer basic interac-
tive services (at least a debug queue) and more and
more are beginning to support “run forever” (server)
type workloads. Such workloads are often supported
by bespoke solutions or cloud technologies in which
some begin to employ a microservice architecture
as infrastructure. Thus, service workloads are slowly
finding their way into HPC infrastructure and the job-
based allocation model changes slowly. One could say
that a services allocation model requires committing
some resources forever (at least very long periods of
time) and not on a per-job basis.

Cloud initially scheduled only single VMs but
moved quickly to groups of VMs to deploy mi-
croservices with orchestrators such as Kubernetes.
The business was mostly focused around services for
which reliability and availability is much more impor-
tant than performance. Thus, performance was often
sacrificed for reliability, for example when allocating
groups of VMs into different racks to avoid correlated
failures in the power supply. In addition, service level
agreements often state time expectations for submit-
to-completion of interactive services. In addition, most
cloud service providers run batch jobs to operate parts
of the services that do not need to be interactive,
for example, backups, nightly builds, or precomputed
inference suggestions.

Opportunities of converged XaaS Portable high-
performance containers would be beneficial for
Cloud and HPC. For example, if one aims to collect
low-rate sensor data over long periods of time, a
normal cloud service is sufficient and cheap. However,
when it comes to processing or analyzing this data,

6 Publication Title Month 2021

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

https://www.materialscloud.org/
https://www.cancergenomicscloud.org/

THEME

a XaaS job is likely better. For serving results to
external users XaaS may be appropriate if requests are
computationally expensive, or a normal cloud service
may be more cost-effective for data access requests.
Cloud service providers also see growing demand for
non-interactive and large compute jobs such as AI
(re)training on incoming data. Both, HPC and Cloud
providers need to analyze the requirements of inter-
active vs. non-interactive jobs carefully; XaaS could
provide additional flexibility and new opportunities for
both cases.

Accounting for resources
HPC resources are often provided by agencies
that make the acquisition of large resources easier
than the money it would cost. Users propose research
projects to acquire fixed allocations of resources to be
consumed in a fixed time period. Those allocations
cannot be repurposed for other things such as person-
nel. This approach, while it enables explorative high-
risk research without the fiscal limitations, leads to a
setup where research groups can acquire computa-
tional resources relatively cheaply (in terms of effort)
but must invest their own people’s time into using them.
Sometimes, users form consortia to support each other
in such efforts, often focused on specific software
(e.g., the US Lattice Quantum Chromodynamics or
the Icosahedral Nonhydrostatic Weather and Climate
Model Collaboration). However, such a setup often
makes it hard to justify investing personnel resources
into code optimizations, and performance conscious-
ness thus varies largely across research groups and
communities. Ultimately, users care about the total time
and effort it takes to install, optimize, and execute their
codes in a specific platform, rather than the aggregate
efficiency of that platform.

Cloud resources are acquired with real money
paid by the users directly in highly varying plans
ranging from pay-as-you-go credit card transactions to
year-long rentals for fixed provisioning. Many account-
ing schemes are complex and set up to have users
spend more at a certain provider (e.g., free starting
credits, through loyalty programs, or simply charging
for outbound data copies while providing free inbound
data copying). Performance has a direct pricing incen-
tive and one can translate person-effort into money
rather directly.

Opportunities of converged XaaS Funding agencies
are already thinking about merging the two models.
For example, NSF’s open science grid cloud and cloud-
bank operate with an allocation-based funding model

at the user-facing side but buy the compute resources
with real money from private and public clouds. This
model exploits the flexibility to trade off CapEx and
OpEx and the power of large-volume contracts.

Early hardware access, co-design, and code
optimization
HPC centers often provide early access to hard-
ware that they are going to deploy for users, in
order to improve “application readiness”. Some-
times even pre-production hardware is offered in col-
laboration with vendors who are interested to opti-
mize key applications for their architectures to provide
the best price/performance ratio for compute centers
and users. Achieving the best price/performance also
drives system-level co-design that balances relatively
high-level ratios, for example, network bandwidth per
compute or storage bandwidth per compute. Engag-
ing in more detailed hardware designs with vendors
is complex because, despite the specialized purpose
of HPC systems, their application mix is frequently
diverse. Some HPC architectures were designed for
specific applications (for example, IBM’s BlueGene
was originally designed for biological applications), but
they are generally used for a larger set of applications.
Thus, co-design happens to a limited extent for some
systems but is certainly not common practice today.

Cloud service providers usually have access
to early vendor designs and plans early on, but
rarely expose that information to their users. One
reason for this is that they want to run standard setups
that they can scale quickly, cheaply, and at low risk
to large user-bases. Diversity in special-purpose and
early access hardware tends to hinder this scaling.
Yet, today’s cloud providers are often first to roll out
the newest technologies, and specialized compute may
be supported if the user base is large enough or the
service is profitable enough. For optimizing the work-
loads to the target architecture, cloud providers usually
rely on HPC techniques such as libraries or compilers.
Large markets (e.g., SQL databases or AI) can drive
significant specialization and co-design at scale. Many
of the architectures that providers use internally to
provide such large-scale services are prime examples
of co-design but are usually not exposed to the general
public.

Opportunities of converged XaaS Hardware vendors
pay more attention to larger markets and opportuni-
ties. Thus, an economy-of-scale argument benefits
both HPC and Cloud. Today, most vendor attention
is focused on cloud providers and thus growing the

Month 2021 Publication Title 7

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

THEME

performance-awareness in this context would be ben-
eficial for all. The opportunity to co-design hardware
for AI and HPC workloads is huge and could be
fueled by XaaS setups, especially when combined
with the flexibility of future chiplet-based architectures.

Security and Isolation
HPC systems traditionally do not focus on security
and isolation at the system level. They either deploy
unconnected (“air gapped”) systems or have relatively
weak security standards because users are generally
trusted after a careful admission check. HPC systems
and users also generally trust system and network
administrators. Yet, recently, with the increased impor-
tance of HPC in AI, health-care, and defense, security
of HPC systems is receiving much more attention.

Cloud systems see security and isolation
as mission-critical requirements. Encryption is of-
ten the default and trusted execution environments
and even zero-trust environments are being rolled
out. These capabilities are necessary because cloud
providers (want to) admit anonymous users to their
systems based solely on a credit card or other pay-
ment. Such users cannot be trusted. Furthermore,
some big customers are not comfortable trusting the
operator’s sysadmins. Thus cloud providers routinely
implement special measures to implement “zero trust”
settings (e.g., encrypt all stored data by default with
user-provided securely handled keys).

Opportunities of converged XaaS As both HPC and
Cloud have to deal with sensitive data and compu-
tations, both will require performant security so-
lutions. Cloud systems could benefit from security
solutions for high-performance systems to minimize
overheads when providing privacy and isolation.

Summary
From our state of the art discussion, we conclude
that XaaS opens many opportunities when converging
high-performance and cloud approaches and work-
loads. XaaS requires but also enables a culture
change in the communities to enable layered
high-performance software platforms driven by
performance-portable XaaS containers. Thus, we
believe that we are at a perfect time and in a perfect
setting to converge on XaaS architectures!

High-performance Accelerated
Cloud Computing - A Road to
Convergence

High-Performance Acceleration as a Service aims
at a significant market, with AI as a service and
HPC as a service being subsets, i.e., platforms
that XaaS would enable. It will allow new solutions
and scalable business on both the provider and
user sides. Mainstream and most productive software
development happens in the cloud space today and
spawns a significant workforce that would provide
value to the HPC community. Yet, cloud development
focuses more on ease of use than highest-performing
solutions, which provides an opportunity for cloud com-
puting to benefit from decreased cost and CO2 output
for higher-performance solutions.

Networking support and support for acceleration
are two key areas of difference in HPC and cloud
infrastructures today. While HPC has used both for
decades, they are only now becoming relevant in
generic cloud settings. XaaS should enable both in a
manner that is consistent with the original cloud vision
of simplest deployment (“plug and play”).

We now refine the observations made above into
three principal technical requirements that we already
outlined in the introduction. We outline (a path toward)
technical solutions for each of those requirements in
the next section.
Performance portability needs to ensure not only
high-performing containers but also the ability to move
containers between systems while still achieving good
performance on all. These requirements imply low
overheads for isolation and virtualization as well as
support for native acceleration and specialization fea-
tures at each system.
High-performance communication and I/O is re-
quired to move data in and out of the portable envi-
ronment. These capabilities are needed both for data
stored in the provider’s system (e.g., storage access)
and for data exchanged between different instances of
containers during the computation (e.g., MPI communi-
cation). Low overhead schemes require operating sys-
tem bypass solutions, well-known from HPC, whereby
user-space applications directly communicate with the
hardware.
High-performance allocation systems are needed
to reduce the waiting time for user applications.
These allocation systems also need to support com-
plex scheduling policies to differentiate interactive and
batch jobs and potentially large requests that need
to launch thousands of container instances into a
large-scale job. Providing these capabilities will likely

8 Publication Title Month 2021

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

THEME

require decentralized or at least parallelized scheduling
strategies.

Enabling Technologies for XaaS
We now briefly outline technologies and strategies
that could be used to implement each of the three
principal requirements (aka the “three Is”): Infrastruc-
ture for portable containers, fast communication and
Input/Output to containers, and low-overhead and
flexible Invocation.

High-Performance Container Infrastructure
and Input/Output
Containers provide a simple and effective environment
for software deployment by minimizing the interface
to the outer (operating) system to clearly defined and
slim calls. The Open Container Initiative (OCI) defines
standards for container management. OCI offers hooks
that allow dynamically linking system-specific libraries
to containers during deployment. These hooks enable
the provider to bind system-optimized libraries to the
container without the full system being aware of the
software running in the container. This additional layer
of indirection allows programmers to extend the slim
container interface with their own calls to performance
libraries (e.g., BLAS or DNN). These capabilities can
be enabled with Docker containers sitting on top of
standard Linux namespaces and cgroups, for example.
The upcoming Node Resource Interface could also
support similar mechanisms.

Existing HPC container infrastructures such as
Apptainer (former Singularity) and Sarus are designed
with performance in mind and take advantage of such
features. Yet, there is no widely agreed standard for
what libraries are supported for hooking across sys-
tems and what are the detailed interfaces and seman-
tics of their calls.

Having such a flexible library hooks interface
also comes with some burdens. For example, not all
libraries have the same hooks - if you want to hook into
an MPI library, the interface will depend on whether
the container binary was compiled against Open MPI
or MPICH. Unfortunately, each has different ABI defi-
nitions. This problem can be solved, albeit at the cost
of additional complexity, by implementing multiple ABIs
in each provider. The ecosystem could benefit from an
ABI standardization.

Library hooks solve the problem whenever
performance-critical parts can be isolated into
defined function calls. However, sometimes, complex
application logic makes up for the majority of the time.

In this case, compilers may be able to take advantage
of specialties of the target architecture’s instruction
set architecture (ISA). For example, NVIDIA’s H100
tensor cores offer much more functionality than V100
cores, and Intel CPUs that support AVX2 are more
powerful than those that support AVX1 only. Using
such features requires recompilation to the specific
target architecture. Unfortunately, such recompilation
is somewhat in conflict with the simple binary-
deployment strategy of containers, and endangers the
model of “compile and test on my laptop and then
deploy on the largest supercomputers”.

One approach to consider for the ISA issue is
deployment recompilation, similar to software de-
ployment models in Gentoo Linux or Spack. One could
attach a set of build scripts to each software to rebuild
it at the target system using the system-specific opti-
mizing compiler. This approach would greatly increase
the complexity of container deployment in different
execution environments - from simple binary ISAs and
APIs to complex source codes. One could protect from
failure by always including portable binaries that use
only the lowest-common-denominator ISA features, but
that approach would compromise performance porta-
bility. An alternative solution would require deploying
a collection of images with different specifications and
letting the runtime select the most suitable ones, as
proposed by working groups within the OCI specifica-
tions. Another approach would be to ship precompiled
source code in a compiler intermediate representation
form (e.g., LLVM IR or DaCe SDFGs15) that are then
optimized at the target architecture. Other portability
approaches such as WASM are probably not perfor-
mant enough.

Fine-grained Invocation, Billing, Operations,
and Integration
Simple and fast invocation is key for accelerated high-
performance cloud services. Such services often form
workflows that are triggered or interfaced to from the
outside. The connection to outside users could be
offered through a web-service interface, for example
based on a REST API such as FireCRESTe, which
extends the established console interface with modern
standard web services. Yet, REST must not be on the
critical path due to its performance limitations, e.g.,
when transferring large data volumes. Yet, as a control
interface, for example, to coordinate the deployment of
a job or a virtual cluster, it is sufficient. Thus, as in

ehttps://products.cscs.ch/firecrest/

Month 2021 Publication Title 9

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

https://products.cscs.ch/firecrest/

THEME

Globus, the control channel may be REST, while the
data channel employs high-performance protocols.

XaaS should support batch jobs as well as interac-
tive services and enable deployment at various levels.
While the typical deployment of XaaS may likely be
FaaS, run-forever services could be deployed either at
the IaaS, PaaS, CaaS, or FaaS levels. This variety of
deployment levels will enable users to build and deploy
their own high-performance microservice architectures
in an environment that is most productive for them.
Service providers can then support such executions
or subsets of such executions (e.g., only FaaS) based
on their business model.

Opportunities
We close by summarizing some of the opportunities of
XaaS going forward. A shared and compatible exe-
cution platform between cloud providers and high-
performance computing centers provides many
opportunities. It would widen the market and en-
able seamless access to various compute resources,
independent of the provider. Data location remains
a challenging and somewhat fundamental issue, but
decoupling the interfaces to data placement and to
purchasing compute cycles will democratize big parts
of the market. Furthermore, XaaS layers can enable
scientific communities to distribute not only their
source code but also their whole setup to others
and thus enable seamless execution of their soft-
ware across many architectures and providers at
reasonable performance. A flexible scheduling and
execution interface for XaaS maintains many of the
benefits of FaaS workloads such that providers can
increase their machine utilization; it will also enable
large longer-running computations and sophisticated
scheduling strategies.

Acknowledgments
The authors would like to thank Satoshi Matsuoka for
valuable advice and comments.
Additional references that did not fit the strict limits of
the journal can be found in the full version of this paper
on arXiv: https://arxiv.org/abs/2401.04552.

References
1. J. J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. van der

Vorst, Numerical Linear Algebra for High-Performance
Computers. SIAM 1998.

2. M. AbdelBaky et al., Enabling High-Performance Com-
puting as a Service, in Computer, vol. 45, no. 10, pp.
72-80, Oct. 2012.

3. M. Copik, K. Taranov, A. Calotoiu and T. Hoefler,
rFaaS: Enabling High Performance Serverless with
RDMA and Leases. IPDPS 2023.

4. I. Foster, Globus Online: Accelerating and Democra-
tizing Science through Cloud-Based Services, in IEEE
Internet Computing, vol. 15, no. 3, pp. 70-73, May-
June 2011.

5. M. Armbrust, Above the Clouds: A Berkeley View of
Cloud Computing, Technical Report No. UCB/EECS-
2009-28. URL: https://www2.eecs.berkeley.edu/Pubs/
TechRpts/2009/EECS-2009-28.pdf

6. I. Foster, Y. Zhao, I. Raicu and S. Lu, Cloud Computing
and Grid Computing 360-Degree Compared. 2008
Grid Computing Environments Workshop, 2008.

7. I. Foster, D. B. Gannon, Cloud Computing for Science
and Engineering. MIT Press 2017.

8. W. Qiu, M. Copik, Y. Wang, A. Calotoiu, T. Hoefler,
User-guided Page Merging for Memory Deduplication
in Serverless Systems, IEEE Big Data 2023.

9. N. Brown, et al., Utilising urgent computing to
tackle the spread of mosquito-borne diseases. 2021
IEEE/ACM HPC for Urgent Decision Making (Urgen-
tHPC).

10. T. Goubier, N. Rakowsky and S. Harig, Fast Tsunami
Simulations for a Real-Time Emergency Response
Flow. 2020 IEEE/ACM HPC for Urgent Decision Mak-
ing (UrgentHPC).

11. A. Kremin, S. Bailey, J. Guy, T. Kisner and K. Zhang,
Rapid Processing of Astronomical Data for the Dark
Energy Spectroscopic Instrument. 2020 IEEE/ACM
HPC for Urgent Decision Making (UrgentHPC).

12. R. Vescovi et al., Linking scientific instruments and
computation: Patterns, technologies, and experiences.
Patterns, Volume 3, Issue 10, 2022.

13. K. P. Keegan, E. M. Glass, F. Meyer, MG-RAST, a
Metagenomics Service for Analysis of Microbial Com-
munity Structure and Function. Methods in Molecular
Biology, vol 1399, pp. 207-233, 2016.

14. T. Hoefler et al., Earth Virtualization Engines: A
Technical Perspective, in Computing in Science &
Engineering, vol. 25, no. 3, pp. 50-59, May-June 2023.

15. T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schnei-
der, T. Hoefler, Stateful dataflow multigraphs: a data-
centric model for performance portability on heteroge-
neous architectures. SC 2019.

Torsten Hoefler is a professor at ETH Zurich and the
Chief Architect for Machine Learning at the Swiss Na-
tional Supercomputing Center. His research interests
revolve around high-performance artificial intelligence

10 Publication Title Month 2021

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2401.04552
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf

THEME

and computing systems. Hoefler received his highest
degree in Computer Science from Indiana University.
He is a fellow of the IEEE and ACM as well as a
member of Academia Europaea. Contact him at http:
//htor.ethz.ch/.

Marcin Copik is a senior PhD student at ETH
Zurich. He received a Master’s degree from RWTH
Aachen, Germany. His research interests are in high-
performance solutions for serverless computing and
cloud computing techniques for HPC. He received a
Microsoft Research PhD Fellowship and ACM-IEEE
CS George Michael HPC Fellowship. Contact him at
https://mcopik.github.io.

Pete Beckman is Co-Director of the Northwestern
University / Argonne Institute for Science and Engineer-
ing. His research interests include High-Performance
System Software and Operating Systems. Beckman
received his PhD in Computer Science from Indiana
University. Contact him at beckman@anl.gov.

Andrew Jones is a Principal Program Manager at
Microsoft at Redmond, WA, USA. His research inter-
ests include planning and delivery of large-scale high
performance computing (HPC) services; technical and
economic evaluation methods for HPC technologies
and services; and the economic and human aspects
of HPC, such as cost-value models and evolution of
HPC skills. Jones received his BSc in Physics from
the University of Manchester. He is a member at
ACM SIGHPC. Contact him at www.linkedin.com/in/
andrewjones.

Ian Foster is Distinguished Fellow and Director of
the Data Science and Learning Division at Argonne
National Laboratory in Lemont, Illinois 60439, USA,
and Professor of Computer Science at the University of
Chicago, Chicago, Illinois 60637, USA. His research in-
terests include distributed and high-performance com-
puting and their applications in the sciences. Foster
received his PhD in Computer Science from Imperial
College. He is a Fellow of the AAAS, ACM, BCS, and
IEEE. Contact him at foster@anl.gov.

Manish Parashar is Director of the Scientific Comput-
ing and Imaging (SCI) Institute, Chair in Computational
Science and Engineering, and Presidential Professor,
Kalhert School of Computing at the University of Utah,
Salt Lake City, UT, 84112. His research interests are in
the broad areas of parallel and distributed computing
and computational and data-enabled science and engi-
neering. Parashar received his Ph.D. in Computer En-

gineering from Syracuse University. He is the founding
chair of the IEEE Technical Community on High Per-
formance Computing (TCHPC), and is Fellow of AAAS,
ACM, and IEEE. Contact him at http://manishparashar.
org.

Daniel Reed is a Presidential Professor and Profes-
sor of Computer Science and Electrical & Computer
Engineering at the University of Utah in Salt Lake
City, Utah, 84117, USA. His research interests include
computational science, science and engineering policy,
and high-performance computing. Reed received his
Ph.D. in computer science from Purdue University. He
is a fellow of the ACM, IEEE, and AAAS. Contact him
at dan.reed@utah.edu.

Matthias Troyer is Technical Fellow and Corporate
Vice President at Microsoft Corporation in Redmond,
WA. His interests include Quantum Computation, High-
Performance Cloud Computing and AI acceleration for
for science. Troyer received his PhD in Physics from
ETH Zurich. Contact him at matthias.troyer@microsoft.
com.

Thomas Schulthess is Director of the Swiss National
Supercomputing Center (CSCS). His research inter-
ests include High-Performance and Cloud Computing.
Schulthess received his PhD in Physics from ETH
Zurich. Contact him at schulthess@cscs.ch.

Daniel Ernst is Director of System Architecture at
Nvidia. His research interests include computer mem-
ory systems architecture, system performance model-
ing, and hardware/software co-design. Ernst received
his PhD in Computer Science and Engineering from the
University of Michigan. Contact him at dane@nvidia.
com.

Jack Dongarra is Professor at the University of Ten-
nessee Knoxville. His research interests include High-
Performance Computing, Parallel Programming, and
Numerical Algorithms. Dongarra received his PhD in
Applied Mathematics from the University of New Mex-
ico. He is a Fellow of the IEEE, ACM, SIAM, and
AAAS, member of the US NAE, the US NAS, and a
Fellow of the British Royal Society, as well as recip-
ient of the ACM A.M. Turing Award. Contact him at
dongarra@icl.utk.edu.

Month 2021 Publication Title 11

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2024.3382154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 07:26:34 UTC from IEEE Xplore. Restrictions apply.

http://htor.ethz.ch/
http://htor.ethz.ch/
https://mcopik.github.io
beckman@anl.gov
www.linkedin.com/in/andrewjones
www.linkedin.com/in/andrewjones
foster@anl.gov
http://manishparashar.org
http://manishparashar.org
dan.reed@utah.edu
matthias.troyer@microsoft.com
matthias.troyer@microsoft.com
schulthess@cscs.ch
dane@nvidia.com
dane@nvidia.com
dongarra@icl.utk.edu

	State of the Art
	Containers
	Using resources
	Opportunities of converged XaaS

	Scheduling
	Opportunities of converged XaaS

	Accounting for resources
	Opportunities of converged XaaS

	Early hardware access, co-design, and code optimization
	Opportunities of converged XaaS

	Security and Isolation
	Opportunities of converged XaaS

	Summary

	High-performance Accelerated Cloud Computing - A Road to Convergence
	Enabling Technologies for XaaS
	High-Performance Container Infrastructure and Input/Output
	Fine-grained Invocation, Billing, Operations, and Integration

	Opportunities
	Acknowledgments
	References
	References
	Biographies
	Torsten Hoefler
	Marcin Copik
	Pete Beckman
	Andrew Jones
	Ian Foster
	Manish Parashar
	Daniel Reed
	Matthias Troyer
	Thomas Schulthess
	Daniel Ernst
	Jack Dongarra

