CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3403

A scalable approach to solving dense linear algebra problems on
hybrid CPU-GPU systems

Fengguang Song!*" and Jack Dongarra®3-*

VIndiana University—Purdue University Indianapolis, Indianapolis, IN 46202, USA
2 University of Tennessee, Knoxville, TN 37996, USA
30ak Ridge National Laboratory, Oak Ridge, TN 37831, USA
4 University of Manchester, Manchester M13 9PL, UK

SUMMARY

Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid
CPU-GPU systems to solve dense linear algebra problems, we design a class of heterogeneous tile algo-
rithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate
the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our
decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and trans-
fers data between compute nodes automatically. The runtime system uses a new distributed task assignment
protocol to solve data dependencies between tasks without any coordination between processing units. By
overlapping computation and communication through dynamic scheduling, we are able to attain scalable per-
formance for the double-precision Cholesky factorization and QR factorization. Our approach demonstrates
a performance comparable to Intel MKL on shared-memory multicore systems and better performance than
both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments:
heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with
multiple GPUs. Copyright © 2014 John Wiley & Sons, Ltd.

Received 5 July 2014; Revised 27 August 2014; Accepted 30 August 2014

KEY WORDS: dense linear algebra; heterogeneous HPC systems; distributed dataflow scheduling; runtime
systems

1. INTRODUCTION

This paper expands our previous work [1] published in the 24th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA 2012), with a number of major additions listed as follows: a
new discussion on graphics processing unit (GPU) task sizes, a new section to introduce heteroge-
neous algorithms, new pseudocode for CUDA communication, the first complete description of our
distributed protocol, two new experiments on shared-memory manycore systems and on the newer
distributed Nvidia Kepler K20 GPUs, and a new analysis of the reasons for our software system’s
high efficiency such as effect of virtual tiles and effect of dynamic task graph scheduling.

Over the last few years, the computational performance, ease of programming, cost per flops, and
power efficiency on GPUs have improved steadily [2-5]. Hence, it becomes more appealing and
more common to attach multiple GPUs to a multicore host system to deliver the highest performance
possible. However, there is little software that can take advantage of large-scale heterogeneous
systems efficiently, especially utilizing all CPU cores and all GPUs.

In the same way as multicore CPUs affect new software design [6-9], we must rethink our soft-
ware design for the heterogeneous multicore and multi-GPU architectures. Because many common

*Correspondence to: Fengguang Song, Department of Computer Science, Indiana University—Purdue University
Indianapolis, Indianapolis, IN 46202, USA.

TE-mail: fgsong@cs.iupui.edu

Copyright © 2014 John Wiley & Sons, Ltd.

F. SONG AND J. DONGARRA

operations in scientific computing are carried out through linear algebra libraries, we target at the
basic linear algebra computations on the new heterogeneous systems. A number of high performance
parallel linear algebra libraries have been developed so far. For instance, LAPACK[10], Intel MKL,
AMD ACML, and PLASMA[11] are mainly designed for shared-memory multicore machines.
ScalLAPACK [12] and TBLAS[13, 14] are designed for distributed-memory CPU-based machines.
CUBLASI15], CULA[16], and MAGMA[17] provide a subset of the subroutines of LAPACK for
GPUs. The current releases of these libraries, however, do not support distributed-memory multicore
and multi-GPU clusters.

In this paper, we attempt to take into account a combination of nice properties — ‘heterogeneity
friendly’, ‘multicore friendly’, communication reducing, and synchronization reducing—to achieve
the maximum performance possible. Our goal is to provide a unified framework to solve linear alge-
bra problems on any number of CPU cores, any number of GPUs, and on either shared-memory or
distributed-memory systems. We design heterogeneous algorithms with hybrid-size tasks to accom-
modate the processor heterogeneity. The heterogeneous algorithms are based on a block data layout
and can generate fine-grain tasks and exhibit a high degree of parallelism such that no CPU core
or GPU becomes idle. To minimize communication, we introduce a static scheme to distribute data
across different host systems and GPUs on a cluster. The essentially data-centric computing is able
to reduce many unnecessary data transfers. Within each host or GPU, we use a dynamic scheduling
method to schedule tasks to reduce synchronizations and to overlap computation and communication
to a large extent.

Our solution mainly consists of four components: (i) a simple heterogeneity-aware data distribu-
tion method; (ii) a class of heterogeneous tile algorithms; (iii) a decentralized dynamic scheduling
runtime system; and (iv) a distributed task assignment protocol. It works as follows. Given a matrix
input, we first split it into tiles of different sizes. Then, we distribute the tiles to the host system
memories and GPU device memories on a cluster using a multilevel distribution method. Each com-
pute node executes a runtime system (launched as a message passing interface (MPI) process) that
schedules tasks within the node dynamically. Different nodes communicate with each other through
MPI messages, and within each node, a runtime system launches a number of threads to control the
node’s CPU cores and GPUs. Our runtime system follows the dataflow programming model and
builds then executes a partial directed acyclic graph (DAG) dynamically.

The class of heterogeneous tile algorithms is designed to take advantage of the architectural
strengths from both CPUs and GPUs. That is, GPUs are optimized for throughput and require much
larger input size than CPUs to obtain high performance [2]. We modify and extend tile algorithms [8]
to heterogeneous tile algorithms so that during an execution, there are a large number of small tasks
for CPU cores and a large number of large tasks for GPUs, available to be executed concurrently at
any time.

The core component in our approach is the distributed dynamic scheduling runtime system. Every
compute node is executing a runtime system that can solve data dependencies dynamically and send
data from a parent task to its children transparently. The runtime system on each node consists of
seven subcomponents: (i) a fixed-size task queue to store generated tasks; (ii) ready task queues; (iii)
a task generation thread to execute a sequential program and generate new tasks; (4) a set of CPU
computation threads (one thread per CPU core); (5) a set of GPU management threads (one thread
per GPU); (6) a CUDA communication thread to transfer data among the host and GPUs within a
node; and (7) an MPI communication thread to transfer data between different nodes.

Moreover, the core technology used in the distributed runtime system is a distributed task
assignment protocol. All runtime systems (one runtime per node) will execute the distributed task
assignment protocol to build subsets of a DAG dynamically. The protocol guarantees that there is
no communication or coordination required when building the DAG. It also guarantees that all run-
time systems make a unanimous decision without coordinating with each other such that every task
is executed by one and only one computing unit (on a host or GPU). Every input and output of a
task is represented by an instance of the task, where an input task instance denotes a ‘consumer’
and an output instance denotes a ‘producer’. A runtime system inspects every new task on behalf of
the runtime’s resident node. If an input of the task is allocated to the node, the runtime system will
create an input instance, while the other runtime systems will ignore the input instance. On the basis

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

of the protocol, an input or output task instance is always assigned to the computing unit where the
input or output data is actually stored.

Our experiments with Cholesky and QR factorizations, on the heterogeneous Keeneland system
[18] at the Oak Ridge National Laboratory, show good scalability on 100 hybrid CPU-GPU nodes.
We also apply our framework to the other three possible environments: clusters without GPUs, a
shared system with both CPUs and GPUs, and a shared-memory system only with CPUs. Com-
pared with vendor-optimized (e.g., Intel MKL) and open source libraries (e.g., PLASMA, StarPU),
our framework is able to provide much higher performance on clusters without GPUs (66% better
with 100 nodes) and on shared-memory multiGPUs (up to 250% better). Even in the smallest-scale
environment (i.e., a shared-memory system with multicore CPUs only), we can still attain a high
performance comparable to the vendor-optimized libraries. In addition, we attain scalable perfor-
mance of 21 TFlops on an Nvidia Kepler GPU cluster using 32 nodes, each with 16 AMD Opteron
cores and a single Nvidia Kepler K20 GPU.

2. MOTIVATIONS FOR SEVERAL DESIGN CHOICES

On a CPU-based host that is attached with multiple GPUs via PCI Express connections, the
performance ratio of computation to communication on GPUs keeps increasing. Eventually, the
communication time on the PCI Express connection will become the bottleneck of the entire system.
As proved by Kung [19], if the % ratio rises by «, the device memory on a GPU must
increase by a2 in order to keep the system balanced for matrix computations (a system is ‘balanced’
if the computation time is equal to the IO time on the system). Hence, we place greater emphasis on
minimizing communication overhead in our design. On the other hand, because GPUs are optimized
for throughput[2], GPUs expect a larger task size than CPUs to attain high performance. We perform
experiments with concurrent GPU kernels to test whether we can decrease the task size on GPUs.

2.1. Reasons to use a static data distribution

We first attempted to implement a dynamic scheduling runtime system, where all the CPU cores and
GPUs share a global ready task queue, and each GPU owns a software cache on its device memory.
All the data in the GPUs’ software caches are backed up by the main memory on the host. Whenever
a GPU reads a block of data from the host, it stores the data to its software cache. We have used two
cache writing policies: write through and write back. To achieve the best performance, our software
cache size is configured as large as the input matrix size to eliminate the capacity cache misses (now,
only compulsory and coherence misses are left).

Figure 1 shows our experiments with Cholesky factorization (in double precision) on a single
node of the Keeneland system using 12 CPU cores and 3 Nvidia Fermi GPUs. In the figure,

0 TSe Distri-GPUs framework

700 T=@="\Write-back cache
600 - =¢=Write-through cag

500 StarPU 0"9 ¢
Q.
S 400
(5300
200 .
100 —
o Hr
o o o o o o o o o o o
N < © 9] o ol < © o) o o
[« «© N~ © © [Te) < [s2] N (&Y} —
- e b~ o0 - 0 Rk 2g
Matrix Size

Figure 1. A comparison between various dynamic scheduling runtime systems and our distributed GPU
framework, which is based on a static data distribution method.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

F. SONG AND J. DONGARRA

we compare our attempted software cache dynamic runtime system, the general-purpose dynamic
scheduling system of StarPU [20], and our new GPU framework (we refer to it as distributed
GPUs framework) based on a static data distribution. By changing from the write-through pol-
icy to the write-back policy, we can improve the program performance greatly because of the
reduced communication. StarPU consists of profiling, performance modeling, and different schedul-
ing policies to achieve load balancing and reduce data transfers. However, because our static data
distribution method can guarantee a near lower-bound communication cost and has less runtime
overhead, it is faster than StarPU by up to 250% for small to relatively large matrix sizes. This
inspired us to use a static data distribution strategy. Here, we emphasize that our framework is more
domain specific (in particular, for matrix problems), while StarPU is more generic and can support
various domains.

2.2. Reasons to create large tasks on graphics processing units

There are two possible ways to obtain maximum performance on GPUs: sending a sufficiently large
task to GPU or sending many small-size tasks to GPU and executing them concurrently on different
streaming multiprocessors. Also, we consider three ways to design algorithms to utilize both CPUs
and GPUs: (1) algorithms that generate tasks of uniform size that is large and suitable for GPUs
(e.g., N > 1000), (ii) algorithms that generate tasks of uniform size that is small and suitable for
CPU cores (e.g., N = 200), or (iii) algorithms that generate two types of tasks: small tasks suitable
for CPU cores and large tasks suitable for GPUs.

We did not use the first option because feeding a matrix of size N > 1000 to a single CPU core
is much slower than dividing it into submatrices and computing them in parallel by multiple cores.
One could use several CPUs to solve large tasks in a fork—join manner, but it will induce additional
synchronization overhead and more CPU idle time [7-9].

With the technique of concurrent GPU kernel execution, it seems feasible to design algorithms
that only have small tasks. A host program can create GPU streams to launch many small tasks on a
GPU and execute them in parallel. However, the performance of concurrent kernel execution is not
as good as the performance of computing a large task. Figure 2 shows our experiment with concur-
rent kernel execution for matrix multiplications (i.e., cublasDgemm) on an Nvidia Fermi GPU. As
shown in Figure 2, for every kernel input size, we launch k concurrent matrix multiplication kernels
(1 < k < 16) on the GPU and measure the execution time to complete all the k kernels. From the
experiment, we can make the following observations:

e The concurrent kernel execution may improve performance significantly only when N is small.
For instance, when N = 64, the speed up is 16 by using 16 concurrent kernels. However,
the speedup decreases to twice when N = 320. When N = 960, the maximum speed up is
merely 10%.

Gflops

350
300
250
200
150
100

50

00 600 5op
Kerng ; 1000 120944001500
©f input Size

1800 0
N) 2000

Figure 2. Concurrent kernel execution of double-precision matrix multiplications on an Nvidia Fermi
graphics processing unit.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

o If N < 512, the best performance is just 235 Gflops no matter how many concurrent kernels
are used.

e When N = 1088, even with a concurrency level of 1, the Nvidia Fermi GPU achieves 95% of
the maximum performance (i.e., 302 Gflops).

Considering the fact that a single large task can deliver 22% higher performance than a number of
concurrent small tasks, we choose the third option that generates small and large tasks for CPUs and
GPUs, respectively.

3. HETEROGENEOUS TILE ALGORITHMS

Our previous work has designed and applied heterogeneous tile algorithms to shared-memory
systems [21]. Here, we use Cholesky factorization as an example to describe the algorithms
briefly.

3.1. An example of heterogeneous tile Cholesky factorization

As shown in Figure 3, we factorize a matrix of 3 x 3 top-level large tiles, each of which is divided
into one small and one large rectangular tiles. The factorization goes through six iterations, where
the kth iteration works on a trailing submatrix that starts from the kth tile column. Because all
iterations apply the same operations to A’s trailing submatrices recursively, the figure just shows the
operations of the first iteration.

We also list the computational kernels used in Figure 3 as follows:

e POTF2’(As, Lyi): Given a matrix A, of m x n and m = n, we let A = (ﬁ;’;;) such that
Asg1 is of n X n, and A, is of (m —n) x n. We also let L, = (ZI’:;) POTF2’ computes
(f;g) by solving Ly = Cholesky(A1) and Lygr = Ak L5L.

o TRSM(L;k, Aik, Lix) computes Lix = Aj LT

e GSMM(L;, L ji, Aij) computes A;j = A;j — LiijTk.

(d) (e) ®

Figure 3. The operations of heterogeneous tile Cholesky factorization: (a) symmetric positive definite matrix
A; (b) compute POTF2’ to solve L1; (c) apply L1 to update its right A12 by GSMM,; (d) compute TRSMs
for the tiles below L11; (e) apply GSMMs to update all tiles on the right of the first tile column; and (f) at the
second iteration, repeat (b), (c), (d), and (e) on the trailing submatrix that starts from the second tile column.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

F. SONG AND J. DONGARRA

hGl hG2 hG3

PP PP IP:| P,

P1 P1 P1
Prl PP PP | P 2-D BCDD

P1 P1 P1
P[P PP |P| P,

P1 F,1 P1

Figure 4. A simple multi-level 2-D block cyclic data distribution.

3.2. A simple multilevel block cyclic data distribution

We design a simple multilevel partitioning scheme to create small and large tiles to work with the
previous heterogeneous tile algorithms. The distribution scheme works as follows:

e At the top level, we divide a matrix into a set of p x p large square tiles of size B x B.

e At the middle level, we distribute the p x p large tiles to a process grid with P, rows and P,
columns using a 2-D block cyclic method, where each node has a single process.

e At the bottom level (i.e., within each node), we vertically cut every tile of size B x B on
the local node into a number of s small tiles of size B x b and a remaining large tile of size
B x (B —s-b). We always allocate the small tiles to all CPUs on the host, meanwhile allocate
the remaining tiles to GPUs using a 1-D or 2-D block cyclic method. So far, we use a 1-D
method because of the small number of GPUs (e.g., at most four) on each compute node.

Figure 4 illustrates how to use the simple multilevel 2-D block cyclic method to distribute a matrix
of 6 x 6 large square tiles to a 2 x 2 process grid (i.e., P1, P>, P3, P4). Suppose each process runs
on a compute node with three GPUs installed (i.e., G1, G2, G3). First, the 6 x 6 large tiles are
allocated to four processes so that each process has 3 x 3 local large tiles (e.g., Py has 3 x 3 local
tiles as shown on the right hand side of the figure). Second, each process assigns its 3 x 3 local
large tiles to its three GPUs using a 1-D column-wise distribution. Third, again on each process, we
cut an appropriate slice from every GPU tile and assign it to the host. In our implementation of the
Cholesky and QR factorizations, we use an auto-tuning method to determine the size of the slice on
the basis of the performance of computational kernels on CPU cores and GPUs.

4. BASIC IDEA OF OUR DISTRIBUTED RUNTIME SYSTEM

Given a cluster with P nodes, we launch one MPI process per node, each of which executes an
instance of the runtime system. We assume an input matrix is stored in a hybrid tile data layout that
uses two different tile sizes. The tiles are distributed to the host and GPUs across different compute
nodes using the simple multilevel block cyclic data distribution method.

Not only do we distribute data to hosts and GPUs on different nodes statically but also we dis-
tribute tasks to hosts and GPUs statically. We require that the location of a task be the same as
the location of the task’s output. Our task allocation is static, but we schedule tasks dynamically
within a host or GPU in order to reduce synchronization points and to overlap computation with
communication.

Our runtime system follows the dataflow programming model and is essentially data-availability
driven. When a parent task completes, it triggers its child tasks immediately. The runtime system is
able to identify data dependencies between tasks and unroll a DAG dynamically. Note that a DAG
has never been created and stored explicitly in our runtime system. A parallel program starts with
an entry task and finishes with an exit task of the DAG, respectively.

Each runtime system instance is multithreaded. It creates five types of threads: a task generation
thread, a set of CPU compute threads for CPU cores, a set of GPU management threads for GPUs,

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

an internode MPI communication thread, and an intranode CUDA communication thread. The task
generation thread creates tasks (similar to issuing instructions) and drives the execution of a parallel
program. All the task generation threads on all compute nodes execute the same sequential code
independently and create task instances for the program without any communication. They also
execute a distributed task assignment protocol. On the basis of the common knowledge of the static
multilevel distribution, it can decide by itself which task it should execute and where the task’s
children are located. Because a task’s input and output may belong to different nodes, the protocol
also guarantees that a certain node generates the input instance, and another node generates the
output instance in a coordinated manner. The runtime system later links the input and output task
instances together such that the completion of a parent task triggers its child tasks (Section 6 will
introduce the protocol in details).

5. THE IMPLEMENTATION

This section introduces the implementation of the compact runtime system. As shown in Figure 5,
the runtime system consists of seven components:

Task window: a fixed-size task queue that stores all the generated but unfinished tasks.

Ready task queues: lists of ready tasks.

Task generation thread: a single thread that executes a serial program and generates new tasks.
CPU compute threads: there is a CPU compute thread running on a CPU core.

GPU management (or compute) threads: there is a GPU management thread for each GPU.
MPI communication thread: a single thread that transfers data between different nodes.
CUDA communication thread: a single thread that transfers data among the host and multiple
GPUs within the same node using cudaMemcpyAsync.

5.1. Task queues

A task window stores tasks in a single-linked list. Each task consists of the information of a task’s
input and output. The task window also keeps the original sequential order between the tasks of a
serial program. On the basis of each task’s input and output, when a task is finished, the runtime

Z Task-generation thread

)
ot (LCHAHIAOHG 4

Multicore"Host GPU, GPU,
Ready

GPU,
taskﬂ’ﬂlﬂiﬂ tazlis:y D_.[I_D tdfisy D—D—D tazis:y D_'D"D
i
nann

L A 1 J
, GPUDirect V2.0
MPI mbox'[_T—I mbox:| mbox: mbox:

—_— z z MPI thread
HPC Network
Z Compute threads Z CUDA thread

Figure 5. Architecture of the distributed graphics processing unit (GPU) runtime on each node.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

F. SONG AND J. DONGARRA

system scans the list to search for those tasks that are waiting for the output. However, a single
global task list is often long and can result in severe contention between threads.

For a better performance, we use 2-D task lists to realize the task window. As shown in Figure 6,
each tile of a matrix has its own task list. If an input or output of a task is tile [I, J], the runtime
system will add a ‘delegate’ instance of the task to tile [I, J]’s task list to represent the task.

When a matrix is distributed to different compute nodes, we partition the 2-D task lists into
different nodes according to the location of the tiles. That is, if tile [I, J] is allocated to node P, tile
[L, JT’s task list is also assigned to node P.

A ready task queue stores ‘ready-to-go’ tasks whose inputs are all available. The CPU cores share
the same ready task queue, but each GPU has a private ready task queue. If a ready task modifies
a tile that belongs to a host or a GPU, it is added to the host or GPU’s private ready task queue.
Work stealing between host and different GPUs is not implemented in order to avoid unnecessary
data transfers and to increase data reuse. In addition, a ready task in our implementation is simply a
pointer pointing to a task stored in the task window.

5.1.1. Solving data dependencies. A tile’s task list maintains the serial semantic order between
tasks that read or write the tile. Whenever two tasks access the same tile and one of them is write,
the runtime system detects a data dependency and stalls the successor till the predecessor is finished.
Here, we only consider the true dependency read-after-write and use the renaming to avoid the
write-after-read and write-after-write dependencies. Figure 7 shows an example of a task list that is
attached to tile A[i, j], where tasks 1-3 are waiting for the completion of task 0 to proceed.

There are only two operations to access a task list: FIRE and APPEND. After a task completes
and modifies its output tile [i, j], the FIRE operation searches [i, j]’s task list for the tasks that want to
read [i, j]. The runtime system scans the task list from the position of the completed task to the end
of the list to find which tasks are waiting for [i, j]. The scanning process will exit when confronting
the first task that writes to [i, j]. We denote the set of tasks that are located between the completed
task and the exit point as S. If a task is in S and one of its inputs is tile [i, j], the FIRE operation
marks that input as ‘ready’. When all the inputs of a task become ready, the runtime system stores
the task to a ready task queue.

4>D*E*D list of tasks
(S

Lot

— it

o gl

Figure 6. The 2-D task window implementation.

RI: * RI: A[ij] RI:A[i]] RI:* RI:*

R2: * R2: * R2: * R2: A [ij] R2: *

W: Aij] W * W * W W: A [ij]
R R R R _—

Task 0 Task 1 Task 2 Task 3 Task 4

Figure 7. Solving data dependencies for a set of tasks that read or write tile A[i, j].

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

The APPEND operation is performed by the task generation thread. Whenever a new task is
generated, the task generation thread invokes APPEND to add the new task to the task window.

5.1.2. Task generation thread and APPEND operation. The task generation thread on each node
(or each runtime system) executes a serial program and generates new tasks. After generating a new
task, the generation thread inspects every input and output of the task. If the input (or output) is
allocated to the same node as where the task generation thread resides, the thread creates an input (or
output) task instance. Note that it can generate multiple task instances if a task has multiple inputs.

Given an output task instance that writes to tile [i, j|, APPEND puts the output task instance to
the end of [i, j]’s task list directly. If it is an input task instance that reads tile [i, j], before actually
appending it, APPEND scans the task list from the head to check if there exists a task that writes to
tile [i, j]. If none of the previous tasks writes to [i, j], the status of the input instance is marked as
ready. Otherwise, it is marked as ‘unready’.

5.2. Compute threads

A CPU core can execute either a CPU compute thread or a GPU compute thread. Whenever a CPU
compute thread becomes idle, it picks up a ready task from the host’s ready task queue and executes
it by itself. After finishing the task, the thread invokes the FIRE operation to determine which tasks
are the children of the finished task and moves them to a ready task queue if possible.

Each GPU corresponds to a GPU compute thread. A GPU compute thread is essentially a GPU
management thread, which is running on the host but can start GPU kernels quickly. For conve-
nience, we think of the GPU management thread as a powerful compute thread. If a node has g
GPUs and n CPU cores, our runtime system launches g GPU compute threads to represent (or man-
age) the g GPUs and (n-g-2) CPU compute threads to represent the remaining CPU cores. The
remaining number of cores is not equal to (n-g) because we use one core for MPI communication
and another core for CUDA memcpy.

5.3. Communication threads

There are two types of communications on heterogeneous clusters: communication between nodes
and communication within a node. On each node, we create a thread to perform MPI operations
to transfer data between nodes and another thread to copy memories among the host and different
GPUs on the same node.

The technique of GPUDirect V2.0 can support direct memory copies between GPUs on the same
node. It can also send or receive GPU buffers on different nodes directly if an MPI library has the
special support for GPUDirect. To make our runtime system more portable, we choose to move data
from GPU to host on the source node first, then send it to a destination node. After the destination
node receives the data, it copies the data from its host to one (or more) of its GPUs.

An MPI communication thread is running on a dedicated CPU core. It calls nonblocking MPI
point-to-point operations to send and receive messages. At the beginning, the thread posts an
MPI Irecv operation and an MPI_ Isend operation. Next, it checks if the pending receive or
send operation has finished with busy polling. When an operation is finished, the thread posts a new
operation to replace the finished one so that there are always two operations (one receive and one
send) ongoing at the same time. Figure 8 shows the pseudocode to implement the MPI communi-
cation thread. In the code, wait4send and wait4recv indicate if there exists a pending send
or receive operation. The flag 1s done is a global variable that shows whether the computation is
completed or not.

A CUDA communication thread also uses a dedicated CPU core. If there is no GPU, we do
not create the CUDA communication thread. Each GPU has two mail boxes: out mbox and
in mbox. The messages stored in the out_mbox are intended from the GPU to other devices, and
the messages in the in_mbox are intended from other devices to the GPU. We create two streams
for each GPU: one for outgoing traffic and the other for incoming traffic. Similar to the MPI

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

F. SONG AND J. DONGARRA

waitdsend = waitdrecv = 0;
while(!is_done || waitédsend) {
if (!is_done && !waitdrecv) {
call MPI_Irecv(recv_buf, MPI_ANY_SOURCE, &recv_req);
waitdrecv = 1;
}
if (!waitdsend) {
msg = get_msg(host’s out_mbox);
call MPI_Isend(msg->data, msg->dst_pid, &send_req);
waitdsend = 1;
}
if (waitdsend) {
call MPI_Test (&send_req);
if (success) waitdsend = 0;
}
if (waitdrecv) {
call MPI_Test (&recv_req);
if (success) {
store recv_buf to the host’s local matrix;

wait4recv = 0;

}

Figure 8. Pseudocode of the message passing interface communication thread.

communication thread, the CUDA communication thread tries to start one incoming memory copy
and one outgoing memory copy for each GPU simultaneously. If there are a number of g GPUs,
there will be 2g cudaMemcpyAsync operations happening concurrently, where each GPU owns
two operations. Figure 9 shows the pseudocode to implement the CUDA communication thread.
In the code, wait4send and wait4recv are two bitsets, where the ith bit denotes the status
of the ith GPU.The function select GPU_streams tests in which streams the asynchronous
cudaMemcpy operations have finished.

5.4. Data management

Each of the host and GPUs employs an indirect data structure to store a subset of a matrix. Given a
matrix with p tile rows and ¢ tile columns, the indirect data structure consists of p X g pointers each
pointing to a tile. We store a GPU’s indirect data structure to the host memory, but the pointers in the
GPU’s indirect structure actually point to GPU device memories. With the indirect data structure, a
GPU compute thread can simply look up the data structure and pass correct arguments (i.e., GPU
device pointers) to GPU kernels.

Our runtime system can transfer data from a parent task to its children transparently; however, it
does not know how long the data should persist in the destination device. We provide programmers
with a special function of Release Tile () to free data. Release Tile does not free any
memory but sets up a marker in the task window. The marker tells the runtime system that the tile
will not be needed in the future and it is safe to free the tile whenever possible. When a programmer
writes a sequential program, he or she can add Release Tile () to the program just like calling
the ANSI C function free. The task generation thread keeps track of the expected number of visits

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

waitdsend = waitdrecv = 0; /+ two bitsets =/
while(!is_done || waitdsend || waitdrecv) {
/* for each GPU, try to launch two cudaMemcpies */
for(i = 0; 1 < num_gpus; i++) {
if(!is_bit_set (waitdsend, 1i)) {
msg = get_msg(i-th gpu’s out_mbox);
call cudaMemcpyAsync (msg->dst_dev, msg->src_dev,
out_streams([i]);
set_bit_set (waitdsend, 1i);
}
if(!'is_bit_set (waitdrecv, 1i)) {
msg = get_msg(i-th gpu’s in_mbox);
call cudaMemcpyAsync (msg—>dst_dev, msg—->src_dev,
in_streams([i]);

set_bit_set (waitdrecv, 1i);

}

if (waitédsend) {
select_GPU_streams (out_streams, ret_status);
for(i = 0; 1 < num_gpus; i++) {

if (ret_status[i]) reset_bit_set (waitdsend, 1i);

}

if (waitdrecv) {
select_GPU_streams (in_streams, ret_status);
for(i = 0; i < num_gpus; i++) {

if (ret_status[i]) reset_bit_set (waitdrecv, 1i);

}

Figure 9. Pseudocode of the CUDA communication thread.

for each tile. Meanwhile, the compute threads count the actual number of visits for each tile. The
runtime system will free a tile if: (i) Release Tile has been called to mark the tile; and (ii) the
actual number is equal to the expected number of visits to the tile.

6. THE DISTRIBUTED TASK PROTOCOL

Many runtime systems (one runtime system per node) execute the same program and generate the
same set of tasks so that a task may be duplicated by each node. We design a protocol to guarantee
that a task is executed by one and only one processing unit (CPU or GPU), and all the runtime
systems make a uniform decision regarding which consumer task to fire and how to make sure the
consumer task is fired only once.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

F. SONG AND J. DONGARRA

Given a task with kq inputs, all the runtime systems across the cluster will, in total generate k1
input task instances. The k; input instances are partitioned (i.e., nonoverlapping) to different nodes
based on the static data distribution. An input instance works as a delegate for the task’s specific
input. When a runtime system fires an input instance, the instance can provide information of what
task is waiting for the data and where the task is.

We define that the first output of a task is the main output, and the rest of it are minor outputs.
The output task instances are the tasks for which data will be modified. Therefore, we use the
task instance that represents the main output to do the real computation, while using the other task
instances that represent inputs and minor outputs to keep track of data dependencies.

6.1. Protocol to create new tasks

We create eight types of task instances using the following rules. The rational behind the rules is
that when all runtime systems look at the same input or output, they make an unanimous decision
merely on the basis of a predefined static distribution without any communication. Note that the
following cases of 1, 2—4, and 5-8 correspond to the main output, inputs, and minor outputs of a
task, respectively.

1. Owner. Each runtime system looks at a new task’s main output. If the main output is assigned
to a host or GPU on node; as decided by a static data distribution, only node;’s runtime system
will create an owner task instance. An owner instance stores the complete information of the
task (e.g., input, output, and the ready status of each input).

2. Native input. Each runtime system looks at an input of a new task. If the input and the task’s
main output are assigned to the same host or GPU (e.g., on node;), only the runtime system
on node; will create a native input task instance. The native input instance stores a pointer
pointing to the task’s owner instance.

3. Intranode alien input. Each runtime system looks at an input of a new task. If the input and
the task’s main output belong to the same node (e.g., on node;) but different devices, only the
runtime system on node; will create an intranode alien input task instance. The intranode alien
input instance also stores a pointer pointing to the task’s owner instance.

4. Internode alien input. Each runtime system looks at an input of a new task. If the input and
the task’s main output belong to different nodes, and the input is assigned to node;, only the
runtime system on node; creates an internode alien input task instance. The internode alien
input instance stores the location of the task’s main output.

5. Native minor output. All runtime systems examine each minor output of a new task. If the
minor output and the task’s main output belong to the host or the same GPU on node;, the
runtime system on node; will create a native minor output task instance. The task’s owner
instance stores a pointer pointing to the new minor output instance.

6. Sink minor output. If the minor output and the main output belong to different devices regard-
less of nodes, and suppose the minor output is assigned to node j, the runtime system on node ;
will create a sink minor output task instance.

7. Intra-node source minor output. If the minor output and the main output belong to different
devices but on the same node, suppose the main output is assigned to node; , the runtime system
on node; will create an intranode source minor output task instance. The intranode source
minor output stores a pointer pointing to its corresponding sink instance.

8. Internode source minor output. If the minor output and the main output belong to different
nodes, and suppose the main output is assigned to node;, the runtime system on node; will
create an internode source minor output task instance. The internode source minor output
stores the location of its corresponding sink instance.

Because the location of an owner task instance is where a computation should occur, the runtime
systems are designed to link a task’s input instances, minor output instances, and its owner instance
together so that the availability of an input can trigger an owner. The link information is either a
direct pointer or the location of the owner instance.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

6.2. Protocol to fire tasks

Different task instances are stored in the task window of each runtime system. After an owner task
instance is executed, the runtime system starts to fire task instances in the task window. While
traversing tasks in the task window, the runtime system applies different operations to different types
of tasks based on the following rules:

1. Owner. When confronting an owner instance, the runtime system stops scanning the task list.

2. Native input. A native input task instance stores a pointer pointing to its owner instance.
When confronting a native input instance, the runtime system changes the status of the pointed
owner’s input to ready immediately.

3. Intranode alien input. An intranode alien input task instance stores a pointer pointing to
its owner instance too. The runtime system first copies data from the source device to the
destination device, then changes the pointed owner’s input status to ready.

4. Internode alien input. When visiting an internode alien input instance, the runtime system adds
a message to its MPI out_mbox, which will result in an MPI_send communication.

5. Native minor output. The runtime system stops scanning the task list when confronting a native
minor output instance. The native minor output instance is pointed to by its owner instance.
After an owner task instance is finished, the runtime system continues to fire tasks for the
native minor output instance after firing tasks for the main output.

6. Sink minor output. The runtime system stops scanning the task list when confronting a sink
minor output task instance. After data is transferred from its corresponding source minor out-
put instance to the sink instance, the runtime system where the sink instance is located will
fire tasks for the sink instance.

7. Intranode source minor output. The intranode source minor output instance has a pointer
pointing to its sink minor output instance. When visiting an intranode source minor output,
the runtime system first copies data from the source device to the destination device, then fire
tasks that follow the pointed sink instance.

8. Internode source minor output. When visiting an internode source minor output, the runtime
system adds a message to its MPI out mbox, which will result in an MPI message from the
source minor output instance to its corresponding sink instance.

A distinctive feature of our protocol is that all the runtime systems can follow the same rules
to generate tasks and solve data dependencies in an embarrassingly parallel manner without any
communication (except for the actual data transfers). We believe the same principle can be applied
to other distributed computing problems with minor changes.

7. EVALUATION

We evaluate the performance of our framework in four environments: distributed GPU-based clus-
ters, clusters without GPUs, shared-memory multiGPUs (i.e., a node with CPUs and multiple
GPUs), and shared-memory multicore systems (i.e., a node with multicore CPUs only). We also
evaluate its efficiency with respect to idle time, communication time and discuss the effect of virtual
tile sizes.

We conducted experiments with the Cholesky and QR factorization (in double precision) on
the heterogeneous Keeneland system [18] at the Oak Ridge National Laboratory. For each exper-
iment, we chose the fastest performance measured from a series of five runs. The Keeneland
system has 120 nodes and is connected by a Qlogic QDR InfiniBand network. Each node on the
system runs CentOS 5.5 and has two Intel Xeon X5660 2.8 GHz 6-core processors, and three
Nvidia Fermi 1.15 GHz M2070 GPUs. The host on each node has 24 GB of main memory, and
each GPU has 6 GB of device memory. There is a link of full PCI Express bandwidth to every
GPU on the system. All the nodes have CUDA 4.0, Intel Compilers 12.0, Intel MKL 10.3.5, and
OpenMPI 1.5.1 installed.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

F. SONG AND J. DONGARRA

7.1. Scalability evaluation

We perform weak scalability experiments to measure the capability of our program to solve poten-
tially larger problems if there are more computing resources. Note that in the following experiments,
we refer to our framework as ‘Distri. GPUSs’.

7.1.1. On clusters with both CPUs and graphics processing units. First, we did experiments on
the Keeneland system using all 12 CPU cores and all 3 GPUs on each node. Figure 10 shows how
the performance of our distributed GPU framework scales as we increase the number of nodes and
the matrix size simultaneously. Although there are 120 nodes on Keeneland, its batch scheduler only
allows a job to use a maximum of 110 nodes. We vary the number of nodes from 1 to 100. As the
number of nodes is increased by k, we increase the matrix size by Vk. The single-node experiments
take as input a matrix of size 34,560.

Figure 10(a) and (b) displays the total number of TeraFlops to solve the Cholesky factorization
and the QR factorization, respectively. To show the possible maximum performance (i.e., upper
bound) of our programs, we also display the performance of DGEMM and DSSRFB that are the
dominant computational kernels of Cholesky factorization and QR factorization, respectively. We
calculate the upper bounds by the following formula: Kernel UB = KernelPerfcp, X Neores +
KernelPerfy 5, X Ngpus. To show the benefits of using GPUs, we also present the performance of
the Intel MKL 10.3.5 ScaLAPACK library that uses CPUs only. In Figure 10(a), the overall perfor-
mance of our distributed GPU Cholesky factorization reaches 75 TFlops on 100 nodes, while MKL
ScalLAPACK reaches 6.3 TFlops. In Figure 10(b), the overall performance of our distributed GPU
QR factorization reaches 40 TFlops on 100 nodes, while MKL ScaLAPACK reaches 9.2 TFlops.

Figure 10(c) and (d) shows the view of ‘performance per node’ for the same experiments as
displayed in Figure 10(a) and (b). That is, TFlops-Per-Node = Overall TFlops g1 5 given number of

NumberNodes
120 o | =-DssAFB UB
70
100 |~ DGEMM UB - ~~Distri. GPUs
@ ~¢-Distri. GPUs & mkl_scalapack 10.3
& 80-"~mki_scalapack10-3 - 50 = —f
: 60 / 40 / =
8 40 %0 */
5" 2 A
= 10 &~
0 =t __;sd?" & i 0 rgﬁg*&“ s
1 2 4 8 16 32 64 100 1 2 4 8 16 32 64 100
Number of Nodes
(a) Choleskyfactorization (b)QRfactorization
1.2
1.2
10 <==DSSRFB UB
o B 1.0~ Distri. GPUs
S o8 os mkl_scalapack 10.3
z e e Y i
gL o6 0.6
o« “=2~DGEMM UB
§ 04— ~-Distri. GPUs 04 - ST
F oo mkl_scalapack 10.3 02
0.0 0.0
1 2 4 8 16 32 64 100 1 2 4 8 16 32 64 100
Number of Nodes
(c) Choleskyfactorization (d) QRfactorization

Figure 10. Weak scalability on distributed graphics processing units (GPUs). (a) and (b) show the overall

performance, while (c) and (d) show the performance per node for the Cholesky and QR factorizations

(in double precision), respectively. Every experiment uses all 12 CPU cores and 3 GPUs on each node. UB
denotes ‘upper bound’.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

nodes. Ideally, the performance per node is a constant number in a weak scalability experiment. As
shown in Figure 10(c), our distributed GPU Cholesky factorization does not lose any performance
from 1 node to 100 nodes. In Figure 10(d), our distributed GPU QR factorization scales well from 4
nodes to 100 nodes. The performance per node on four nodes decreases by 0.03 TFlops (from 0.44
TFlops to 0.41 TFlops) because the tile QR factorization on a 2 x 2 process grid incurs much more
messages than that on a process grid with P, = 1.

7.1.2. On clusters without graphics processing units. We use the following experiments to test
whether our framework can still provide high performance if the system is a conventional cluster
with multicore CPUs only. We use the 12 CPU cores on each node to do experiments. Because
there is no GPU involved, our runtime system on each node automatically use 11 cores for the real
computation and 1 core for the MPI communication.

We compare our Cholesky and QR factorization programs with the Intel MKL 10.3.5 ScalL.A-
PACK library. We have tried both one-process-per-node and one-process-per-core configurations for
the ScaLAPACK experiments. Experiments showed that one-process-per-node (i.e., each process is
multithreaded) was slower than one-process-per-core. One of the reasons may be that the underlying
multithreaded BLAS library in ScaLAPACK has not been tuned or optimized for the new multicore
architectures. In the following ScaLAPACK experiments, we use one process per core and choose
the best process grid.

We conducted weak scalability experiments with the Cholesky and QR factorizations, where
the input size increases by V2 whenever we double the number of nodes. The input size to a
single-node experiment is equal to 34,560. In Figure 11(a), the overall performance of the ScalLA-
PACK Cholesky factorization is slower than our Cholesky factorization by 43% on 100 nodes. In
Figure 11(b), our QR factorization program and the ScalLAPACK QR factorization have compara-
ble overall performance. Figure 11(c) and (d) depicts the performance per node. In Figure 11(c),
our Cholesky factorization is scalable from 2 to 100 nodes. Its curve has a dip from one to two
nodes because the runtime system on each node uses a dedicated core to do MPI communication

12 10
L =Z=Distri 1=
10 /===Distri. GPUs 8 ¢D'lf|t”' GiPUSk
& ~*~mki scalapack mkl scalapac
o
= 6 ;
F =)
— 6
[7 4 /
e 4
° 2 - i wt&/g/i
1 2 4 8 16 32 64 100 1 2 4 8 16 32 64 100
Number of Nodes
(a) Cholesky factorization (b) QR factorization
0.12
0.14 o
o 012 1 0.10 T g
3 0.10 I~ 0.08
=z) ’-\—J\
5 008 ~\ 0.06
% 0.6 " % 0.04 =EDistri. GPUs
g 004 ¢D':It”' GlPUsk 7 | ==mkl scalapack
E 002 mkl scalapac 0.02
0.00 0.00
1 2 4 8 16 32 64 100 1 2 4 8 16 32 64 100
Number of Nodes
(c) Cholesky factorization (d) QR factorization

Figure 11. Weak scalability on clusters with CPUs only. Every experiment uses only the 12 CPU cores from
each node.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

F. SONG AND J. DONGARRA

900
800 :
700 M
® ;
g 600 =
& 500
@ 400
2 300 !
S Lo =#=Distri. GPUs
StarPU 0.9.1
100 +—;
Ll
o N
O O O O O O O O O O o
© ¥ NN O 0O © ¥ N O O O
D O NN © F O A - O O I~
M © O N 1 0O -~ I © O
- - = N AN N
Matrix Size (N)

Figure 12. Cholesky factorization (in double precision) on a shared-memory system with 12 CPU cores and
3 Fermi graphics processing units.

(i.e., one twelfth less computing power). Similar to the Cholesky factorization, in Figure 11(d), our
QR factorization again scales well from 2 to 100 nodes. Because of its good scalability, our program
eventually outperforms the Intel MKL ScaLAPACK QR factorization by 5% when the number of
nodes is greater than 32. Note that we only use 11 out of 12 cores on each node to do the actual
computation when more than one node is used.

7.1.3. On shared-memory multigraphics processing units. To evaluate the performance of our
framework on a shared-memory system with multicore CPUs and multiple GPUs, we compare our
Cholesky factorization with StarPU 0.9.1 [20] on a single node of the Keeneland system.

StarPU uses a dynamic scheduling runtime system to assign tasks to CPUs and GPUs to keep load
balancing and reduce data transfers. The StarPU implementation of Cholesky factorization uses the
same computational kernels as ours, which calls subroutines from the Intel MKL 10.3.5, CUBLAS
4.0, and MAGMA 1.0 libraries. With the help from the StarPU developers, we ported the StarPU
Cholesky factorization to Keeneland and also tuned its performance thoroughly.

Figure 12 shows the overall performance of our framework and StarPU 0.9.1 to solve Cholesky
factorizations. All the StarPU experiments use nine CPU cores and three GPUs to do the real com-
putation, and use the remaining three cores to manage the GPUs. By contrast, our implementation
uses eight CPU cores and three GPUs to do the real computation because we also use an additional
core to support CUDA communications. The performance data shows that our framework can rise to
high performance more quickly than the StarPU program. When the matrix size is relatively small,
our framework is much faster than StarPU (i.e., 250% times faster when N < 7680 and 100% faster
when N < 12, 480). When the matrix size is sufficiently large (i.e., N = 26, 880), StarPU starts to
be close to our framework.

7.1.4. On shared-memory multicore systems. The fourth scenario is to apply our framework to
shared-memory systems with CPUs only. In the following experiments, we compare our frame-
work with two linear algebra libraries for multicore architectures: Intel MKL 10.3.5 and PLASMA
24.1[11].

We performed weak scalability experiments on a single node of the Keeneland system without
using GPUs, where we increase the matrix size as we increase the number of cores. The matrix
size is equal to (2000 - NumberCores). The PLASMA experiments have used a tuned block
size, a static scheduler, and an optimized numactrl policy. Figure 13(a) and (b) presents the
overall performance of Cholesky factorization and QR factorization, respectively. For Cholesky fac-
torization, our program has a performance comparable with Intel MKL and is slightly better than
PLASMA. For QR factorization, our program is slower than Intel MKL by 10%, but it still faster
than PLASMA. The performance slowdown is partly because the dgemm kernel called by the Intel

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

180 180
160 .—Theoretical peak 160 -==Theoretical peak
=¢=Intel MKL 10.3 =o=|ntel MKL 10.3
«» 140 el 140 —
S 120 Distri. GPUs & 120 _._Dlstrl. GPUs
2—5 100 “B=PLASMA 2.4.1 = 100 PLASMA 2.4.1 -‘.
= 80 80 L&
& 60 60
3 4 40
20 1 g 20 - o
0= 0
1234567 89101112 1234567 89101112
Number of Cores
(a) Choleskyfactorization (b) QRfactorization
14 14
12 - 12
9 " :g—u-w—w-n.“_ e P ; X
3 T LR == ===t 10 i g
s 8.4 8 pe=E R
o
a 6 ==Theoretical peak 6 ==Theoretical peak
O 4 |=%=Intel MKL 10.3 4 {=*=Intel MKL 10.3
5] Distri. GPUs Distri. GPUs
2 "9~PLASMA 2.4 1 2 [@=PLASMA 2.4.1
0 0

1234567 8 9101112 123 456 7 8 9101112
Number of Cores
(c) Choleskyfactorization (d) QRfactorization

Figure 13. Weak scalability on a multicore system with 12 cores.

MKL QR factorization is faster than the dssrfb kernel called by our tile QR factorization by 8%
on the Keeneland machine.

Figure 13(c) and (d) shows the performance-per-core data for the same experiments as displayed
in Figure 13(a) and (b) (i.e., Gflops per core = %). From the performance of Gflops per
core, we observe that PLASMA always provides the best performance when it uses one or two cores.
This is because PLASMA uses a static scheduler that considers both load balancing and data locality
while not incurring any runtime overhead. As the number of cores increases, the performance of
both MKL and our factorizations starts to drop gradually. The slowdown of our factorizations may
be caused by our runtime system’s dynamic scheduling policy that allows each thread to always
pick up the first task in the ready queue but ignores the data reuse between tasks. Our ongoing work
is to add data affinity to the runtime system to improve data reuse on each thread.

7.1.5. On Nvidia Kepler graphics processing units. We also do the same experiment on a hetero-
geneous GPU cluster with the relatively newer Nvidia Kepler K20 GPUs. On the K20 GPU-based
cluster, each node runs a SUSE Linux OS and has one AMD Opteron 16-core Interlagos CPU pro-
cessor and a single Nvidia Kepler GK110 GPU. Figure 14 shows the performance of our distributed
Cholesky factorization. We vary the number of nodes from 1 to 32. As the number of nodes is
increased by k, we increase the matrix size by Vk. The single-node experiment takes as input a
matrix of size 26,880. We set the size of GPU tiles to be 1920 for the Kepler GPUs. As shown in
Figure 14(a), our program can deliver 720 Gflops on a single node and 20.9 Tflops on 32 nodes.
Figure 14(b) shows good scalability of our program on Kepler GPUs in terms of performance
per node.

7.2. Efficiency analysis

This subsection presents more details on where the total execution time goes and how efficient
our distributed GPU framework is. We experimented with our heterogeneous Cholesky and QR
factorizations on the Keeneland system using all 12 CPU cores and 3 GPUs on each node.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

F. SONG AND J. DONGARRA

45000 1400
40000 {ar = = = = = &
=2=DGEMM UB 1200 % N N N N -
«» 35000 @
& =®=Distributed GPUs g 1000
S 30000 z
S 5000 5 800 2
= A ’ 2 v —
T‘g 20000 » 600 =
5 o
g 15000 S 400 . ““"DGEMM UB
10000 -~ o =®=Distributed GPUs
200
5000 -, ¥t
o ‘Fsg“:/ o
1 2 4 8 16 32 1 2 4 8 16 32
Number of Nodes Number of Nodes
(a) Overall Performance. (b) Performance per Node.

Figure 14. Weak scalability on a cluster with newer Nvidia Kepler K20 graphics processing units (GPUs).
(a) and (b) show the overall and per-node performance of Cholesky factorizations (in double precision),
respectively.

Table I. Breakdown of the total execution time of the Cholesky and QR factorizations on Keeneland.

Time (s)

Total—Computation (%)

Nodes Matrix size Total Computation Communication Task generation Total

Cholesky 1 34,560 19.6 18.3 — 0.02 6.6
2 46,080 22.6 20.1 1.9 0.04 11.1

4 69,120 372 34.8 5.7 0.08 6.5

8 92,160 43.7 39.8 8.4 0.08 8.9

16 138,240 74.4 68.7 15.6 0.08 7.7

32 184,320 90.7 80.8 26.6 1.0 10.9

64 276,480 152.6 138.6 48 2.8 9.2

QR 1 32,256 102.7 102.4 — 0.01 0.3
2 43,008 120.2 119.9 3.7 0.4 0.2

4 64,512 2182 217.2 76.3 0.14 0.5

8 86,016 260.5 259.3 101.2 0.6 0.5

16 129,024 432.1 420.2 166.2 1.9 2.8

32 172,032 5164 503.2 218.6 2.1 2.6

64 258,048 871.4 820.3 361 6.8 59

Table I shows the total wall clock execution time to solve the factorizations, the computation
time taken by the process that resides on the critical path, the MPI communication time, and the
time taken to generate new tasks. In addition, we calculate the percentage of the noncomputation
time (i.e., W) to understand the efficiency of our runtime system. Ideally the noncom-
putation time should be zero so that there is no idle time and no runtime system overhead. From
Table I, we can see that our noncomputation time is less than 10% in most cases and the runtime

system executes efficiently.

7.2.1. Effect of communication hiding. If we add the computation and the communication time
together in Table I, their sum is much greater than the total execution time. This implies that a lot of
communication time has been hidden by computations. For instance, in QR factorization, the com-
munication time on 64 nodes takes 41.4% of the total execution time. However, the noncomputation
time is only 5.9% of the total time. Therefore, at least 86% (%}‘;’0‘9%) of the communication time
has been hidden by the computations.

Our runtime system is able to hide the communication time significantly because it has a dedicated
communication thread to do communications and a number of compute threads to do computations.
In addition, the heterogeneous tile algorithms exhibit a high degree of parallelism such that every
compute thread is busy computing while the communication thread is transferring newly available
data input and triggering new ready tasks continuously.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

>

w

Tflops

oON B O 0O

1 2 3 4 6 8 12 24
Virtual Tile Size (v)

Figure 15. Effect of different virtual tile sizes. An experiment with the QR factorization that takes an input
of 86,016 x 86,016 using 32 hybrid CPU-GPU nodes.

7.2.2. Effect of virtual tiles. In the implementation of our QR factorization, we stack up v con-
tiguous square tiles in the same column to form a virtual tile. A virtual tile is always allocated to
the same host or GPU. Along each column from top to bottom, there is a data transfer for every
two adjacent virtual tiles. Given a number of n square tiles in a tile column, the number of mes-
sages will decrease from n — 1 to 2 — 1 if a virtual tile has v tiles. The virtual tile size v plays an
important role in the program performance. When v becomes smaller, it will result in more com-
munications. When v becomes larger, the load across different processes will become less balanced
but the communication cost will be reduced. So we have adjusted the virtual tile size to attain the
best performance.

We conducted experiments with the QR factorization on the heterogeneous Keeneland system to
show the effect of the virtual tile size. In the experiments, we solve a matrix of size 86,016 on a
4 x 8 process grid using different tile sizes. Each tile is of 896 x 896, and a virtual tile is composed
of v tiles. We can see that in Figure 15, a single tile has the worst performance because of its high
communication cost. When v is increased to 2, 3, or 4, the performance becomes better because
the communication cost along each column has reduced by 1/2, 2/3, and 3/4, respectively. When
v is greater than 4, the performance drops again because of the increased load imbalance between
processes. In our weak scalability experiments with the QR factorization, we use v = 3 for a good
performance.

8. RELATED WORK

There are a number of runtime systems developed to support multiple GPU devices on a shared-
memory system. StarPU develops a dynamic scheduling runtime system to execute a sequential
code on the host CPUs and GPUs in parallel [20] and has been applied to the Cholesky, QR, and LU
factorizations [22—24]. StarPU relies on a virtual shared memory to handle data transfers and reduce
communications. Eigenmann et al. [25] proposed a new technique called computation splitting and
used the pipelining technique to translate OpenMP programs to run on a host system attached with
multiple GPUs. The generated pipelined code can automatically support computations with out-of-
GPU datasets. SuperMatrix is another runtime system that supports shared-memory systems with
multiple GPUs [26]. It uses several software cache schemes to maintain the coherence between the
host RAM and the GPU memories to minimize communication. While SuperMatrix requires that
GPUs take most of the computations, our framework can utilize all CPU cores and all GPUs on both
shared-memory and distributed-memory systems.

StarSs is a programming model that uses directives to annotate a sequential source code to exe-
cute on various architectures such as SMP, CUDA, and Cell [27]. A programmer is responsible for
specifying which piece of code should be executed on a GPU. Its runtime then executes the anno-
tated code in parallel on the host and GPUs. It is possible to use the hybrid MPI/SMPSs approach
to support clusters with multicore CPUs [28].

There is also research work that supports parallel computations on distributed GPUs. Fatica uses
CUDA to accelerate the LINPACK Benchmark [29] on heterogeneous clusters by modifying the

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

F. SONG AND J. DONGARRA

original source code slightly. The revised code intercepts every DTRSM or DGEMM call and splits
it into two calls to execute on both CPUs and GPUs, respectively. The calls to CPUs relies on
setting OMP_NUM_THREADS to utilizes all CPU cores on the host. Differently, our distributed GPU
framework allows every CPU core to execute tasks independently. Also, we use one MPI process
per node, instead of one MPI process per GPU. In Fatica’s experiments, both systems merely have
a single GPU on each node.

Fogue et al. ported the PLAPACK library to GPU-accelerated clusters [30]. They require that
CPUs compute the diagonal block factorizations, while GPUs compute all the remaining operations.
They also store all data in GPU memories to reduce communication. In our method, we distribute a
matrix across the host and GPUs and can utilize all CPU cores and all GPUs. Note that it is possible
that the computational power of a host may be greater than that of a GPU such that the host needs
to compute most of the work.

Charm++ is an object-oriented message-driven parallel language that uses a dynamic load bal-
ancing runtime system to map objects to processors dynamically [31]. It has been extended with a
GPU manager to support clusters with GPUs [32]. Recently, a more generic Charm++ framework
called G-Charm was designed to enable efficient execution of message-driven parallel applications
on hybrid systems [33]. By contrast, we use a simpler domain-specific static data distribution method
to minimize communication and achieve high performance.

Many researchers have already used static data distribution strategies on heterogeneous
distributed-memory systems. Dongarra et al. designed an algorithm to map a set of uniform tiles to
a 1-D collection of heterogeneous processors [34]. Robert et al. proposed a heuristic 2-D block data
allocation to extend ScalLAPACK to work on heterogeneous clusters [35]. Lastovetsky ef al. devel-
oped static distribution strategies that take into account both processor heterogeneity and memory
heterogeneity [36] and recently added GPU support for ‘highly heterogeneous’ clusters [37]. Our
work targets clusters of nodes that consist of the same type of CPUs and same type of GPUs, and
uses a simple multi-level 2-D block cyclic distribution method.

9. CONCLUSION

As the trend of adding multiple GPUs to each node to deliver high performance continues, it is
important to start to design new parallel software on the heterogeneous architectures. In consider-
ation of the increasing number of cores per CPU, the new software should also be able to support
computations on both CPU cores and GPUs. We present a new framework to solve dense matrix
problems on large-scale GPU-based clusters.

To attain high performance, we focus our framework design on minimizing communication,
maximizing the degree of task parallelism, accommodating the processor heterogeneity, hiding com-
munication, and keeping load balance. Our framework essentially consists of a static multilevel
data distribution method, a class of heterogeneous tile algorithms, a decentralized runtime system,
and a distributed task assignment protocol. The runtime system is multithreaded and comprises
a set of CPU compute threads, a set of GPU compute threads, a task generation thread, an MPI
communication thread, and a CUDA communication thread.

Our experiments with the Cholesky and QR factorizations on the heterogeneous Keeneland sys-
tem demonstrate efficient scalability in all four different scenarios: clusters with and without GPUs,
and shared-memory systems with and without GPUs. Our future work along this line is to apply the
approach to sparse matrix problems, two-sided matrix factorizations, data-intensive applications,
and computational fluid dynamics.

REFERENCES

1. Song F, Dongarra J. A scalable framework for heterogeneous GPU-based clusters. Proceedings of the twenty-fourth
annual acm symposium on parallelism in algorithms and architectures, SPAA 12, ACM, New York, NY, USA, 2012;
91-100. (Available from: http://doi.acm.org/10.1145/2312005.2312025), [Accessed on 09 December 2014].

2. Nickolls J, Dally WJ. The GPU computing era. [EEE Micro 2010; 30:56-69. DOI: 10.1109/MM.2010.41.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://doi.acm.org/10.1145/2312005.2312025

10.

11.

12.

13.

14.

15.
16.

17.
18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

SCALABLE LINEAR ALGEBRA SOLVERS ON CPU-GPU SYSTEMS

. Huang S, Xiao S, Feng W. On the energy efficiency of graphics processing units for scientific comput-

ing. leee International Symposium on Parallel Distributed Processing (ipdps), Rome, Italy, 2009; 1-8. DOI:
10.1109/1PDPS.2009.5160980.

. Hong S, Kim H. An integrated GPU power and performance model. SIGARCH Comput. Archit. News 2010; 38:

280-289. DOI: 10.1145/1816038.1815998. ISSN 0163-5964.

. Nickolls J, Buck I, Garland M, Skadron K. Scalable parallel programming with CUDA. Queue 2008; 6:40-53. DOI:

10.1145/1365490.1365500.

. Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, Keutzer K, Patterson DA, Plishker WL, Shalf J, Williams

SW, Yelick KA. The landscape of parallel computing research: a view from Berkeley. Technical Report UCB/EECS—
2006—183, EECS Department, University of California: Berkeley, 2006.

. Buttari A, Dongarra J, Kurzak J, Langou J, Luszczek P, Tomov S. The impact of multicore on math software.

Proceedings of the Sth International Conference on applied Parallel Computing: State of the Art in Scientific
Computing, PARA’06, Springer—Verlag, 2007; 1-10.

. Buttari A, Langou J, Kurzak J, Dongarra J. A class of parallel tiled linear algebra algorithms for multicore

architectures. Parallel Computing 2009; 35(1):38-53.

. Agullo E, Hadri B, Ltaief H, Dongarrra J. Comparative study of one-sided factorizations with multiple software pack-

ages on multi-core hardware. Sc’09, ACM, Portland, Oregon, 2009; 20:1-20:12. DOI: 10.1145/1654059.1654080.
Anderson E, Bai Z, Bischof C, Blackford L, Demmel J, Dongarra J, Croz JD, Greenbaum A, Hammarling S,
McKenney A, Sorensen D. LAPACK users’ guide. SIAM: Philadelphia, PA, 1992.

Agullo E, Dongarra J, Hadri B, Kurzak J, Langou J, Langou J, Ltaief H, Luszczek P, YarKhan A. PLASMA Users’
Guide. Technical Report ICL, UTK, 2014.

Blackford LS, Choi J, Cleary A, D’ Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling S, Henry G, Petitet A,
Stanley K, Walker D, Whaley R. ScaLAPACK users’ guide. SIAM: Philadelphia, PA, 1997.

Song F, YarKhan A, Dongarra J. Dynamic task scheduling for linear algebra algorithms on distributed-memory
multicore systems. Proceedings of the conference on high performance computing networking, storage and analysis,
SC’09, ACM, New York, NY, USA, 2009; 19:1-19:11. DOI: 10. 1145/1654059.1654079.

Song F. Static and dynamic scheduling for effective use of multicore systems, 2009. (Available from: http://trace.
tennessee.edu/utk_graddiss/634). PhD diss., University of Tennessee, [Accessed on 09 December 2014].

NVIDIA. CUDA Toolkit 5.5 CUBLAS Library, 2013.

Humphrey JR, Price DK, Spagnoli KE, Paolini AL, Kelmelis EJ. CULA: hybrid GPU accelerated linear algebra
routines. Spie Defense and Security Symposium (dss), Orland, Florida, 2010.

Tomov S, Nath R, Du P, Dongarra J. MAGMA users’ guide. Technical Report ICL, UTK, 2014.

Vetter JS, Glassbrook R, Dongarra J, Schwan K, Loftis B, McNally S, Meredith J, Rogers J, Roth P, Spafford
K, Yalamanchili S. Keeneland: bringing heterogeneous GPU computing to the computational science community.
Computing in Science Engineering 2011; 13(5):90-95.

. Kung HT. Memory requirements for balanced computer architectures. Proceedings of the 13th Annual International

Symposium on Computer Architecture, ISCA ’86, IEEE Computer Society Press, Tokyo, Japan, 1986; 49-54. DOI:
10.1145/17356.17362.

Augonnet C, Thibault S, Namyst R, Wacrenier P-A. StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures. Concurr. Comput. : Pract. Exper., Special Issue: Euro-Par 2009 2011; 23:187-198. DOI:
10.1002/cpe.1631.

Song F, Tomov S, Dongarra J. Enabling and scaling matrix computations on heterogeneous multi-core and multi-
GPU systems. Proceedings of the International Conference on Supercomputing, ICS *12, ACM, Venice, Italy, 2012;
1-11. DOL: 10.1145/1995896.1995898.

Agullo E, Augonnet C, Dongarra J, Ltaief H, Namyst R, Roman J, Thibault S, Tomov S. Dynamically scheduled
Cholesky factorization on multicore architectures with GPU accelerators. Symposium on Application Accelerators in
High Performance Computing (SAAHPC), Knoxville, USA, 2010; 1-2.

Agullo E, Augonnet C, Dongarra J, Faverge M, Ltaief H, Thibault S, Tomov S. QR factorization on a multicore node
enhanced with multiple GPU accelerators. Ipdps 2011, Alaska, USA, 2011; 932-943.

Agullo E, Augonnet C, Dongarra J, Faverge M, Langou J, Ltaief H, Tomov S. LU factorization for accelerator-based
systems. Technical Report ICL-UT-10-05, Innovative Computing Laboratory, University of Tennessee, 2010.

Sabne A, Sakdhnagool P, Eigenmann R. Scaling large-data computations on multi-GPU accelerators. Proceedings
of the 27th International acm Conference on International Conference on Supercomputing, ICS 13, ACM, Eugene,
Oregon, 2013; 443-454. DOL: 10.1145/2464996.2465023.

Quintana-Orti G, Igual FD, Quintana-Orti ES, vande Geijn RA. Solving dense linear systems on platforms
with multiple hardware accelerators. Proceedings of the 14th acm Sigplan Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP *09, ACM, Raleigh, NC, 2009; 121-130. DOI: doi:http://doi.acm.org/10.
1145/1504176.1504196.

Ayguadé E, Badia RM, Igual FD, Labarta J, Mayo R, Quintana-Orti ES. An extension of the StarSs programming
model for platforms with multiple GPUs. Proceedings of the 15th International Euro-Par Conference on Parallel
Processing, Euro-Par *09, Springer—Verlag, Delft, Netherlands, 2009; 851-862. DOI: 10.1007/978-3-642-03869-
3_79.

Marjanovi¢ V, Labarta J, Ayguadé E, Valero M. Overlapping communication and computation by using a hybrid
MPI/SMPSs approach. Proceedings of the 24th acm International Conference on Supercomputing, ICS *10, ACM,
Tsukuba, Japan, 2010; 5-16. DOI: 10.1145/1810085.1810091.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

DOI: 10.1002/cpe

http://trace.tennessee.edu/utk_graddiss/634
http://trace.tennessee.edu/utk_graddiss/634

29.

30.

31.

32.

33.

34.

35.

36.

37.

F. SONG AND J. DONGARRA

Dongarra JJ, Luszczek P, Petitet A. The LINPACK Benchmark: past, present, and future. Concurrency and
Computation: Practice and Experience 2003; 15:803-820.

FoguZ M, Igual FD, Quintana-ort ES, Geijn RVD. Retargeting PLAPACK to Clusters with Hardware Accelerators.
FLAME Working Note 42, 2010.

Kale L, Krishnan S. Charm++: parallel programming with message-driven objects. In Parallel Programming Using
c++, Wilson GV, Lu Paul (eds). MIT Press, 1996; 175-213.

Jetley P, Wesolowski L, Gioachin F, Kalé LV, Quinn TR. Scaling hierarchical N-body simulations on GPU clusters.
Proceedings of the 2010 acm/ieee International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’10, IEEE Computer Society, New Orleans, Louisiana, 2010; 1-11. DOI: 10.1109/SC.2010.49.
Vasudevan R, Vadhiyar SS, Kalé LV. G-Charm: an adaptive runtime system for message-driven parallel applica-
tions on hybrid systems. Proceedings of the 27th International acm Conference on International Conference on
Supercomputing, 1ICS *13, ACM, 2013; 349-358. DOI: 10.1145/2464996.2465444.

Boulet P, Dongarra J, Robert Y, Vivien F. Static tiling for heterogeneous computing platforms. Parallel Computing
1999; 25(5):547-568.

Beaumont O, Boudet V, Petitet A, Rastello F, Robert Y. A proposal for a heterogeneous cluster ScaLAPACK (dense
linear solvers). IEEE Transactions on Computers 2001; 50:1052—-1070. DOI: 10.1109/12.956091.

Lastovetsky A, Reddy R. Data distribution for dense factorization on computers with memory heterogeneity. Parallel
Computing 2007; 33:757-779. DOI: 2007.06.001.

Zhong Z, Rychkov V, Lastovetsky A. Data partitioning on heterogeneous multicore and multi-GPU systems using
functional performance models of data-parallel applications. Cluster Computing (cluster), 2012 IEEE International
Conference on, Beijing, China, 2012; 191-199. DOI: 10.1109/CLUSTER.2012.34.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

DOI: 10.1002/cpe

	A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
	SUMMARY
	INTRODUCTION
	MOTIVATIONS FOR SEVERAL DESIGN CHOICES
	Reasons to use a static data distribution
	Reasons to create large tasks on graphics processing units

	HETEROGENEOUS TILE ALGORITHMS
	An example of heterogeneous tile Cholesky factorization
	A simple multilevel block cyclic data distribution

	BASIC IDEA OF OUR DISTRIBUTED RUNTIME SYSTEM
	THE IMPLEMENTATION
	Task queues
	Solving data dependencies
	Task generation thread and APPEND operation

	Compute threads
	Communication threads
	Data management

	THE DISTRIBUTED TASK PROTOCOL
	Protocol to create new tasks
	Protocol to fire tasks

	EVALUATION
	Scalability evaluation
	On clusters with both CPUs and graphics processing units
	On clusters without graphics processing units
	On shared-memory multigraphics processing units
	On shared-memory multicore systems
	On Nvidia Kepler graphics processing units

	Efficiency analysis
	Effect of communication hiding
	Effect of virtual tiles

	RELATED WORK
	CONCLUSION
	REFERENCES

