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Abstract—The sequential task flow (STF) model is the main-
stream approach for interacting with task-based runtime systems,
with StarPU and the Dynamic task discovery (DTD) in PaRSEC
being two implementations of this model. Compared with other
approaches of submitting tasks into a runtime system, STF has
interesting advantages centered around an easy-to-use API, that
allows users to expressed algorithms as a sequence of tasks (much
like in OpenMP), while allowing the runtime to automatically
identify and analyze the task dependencies and scheduling.

In this paper, we focus on the DTD interface in PaRSEC,
highlight some of its lesser known limitations and implemented
two optimization techniques for DTD: support for user level
graph trimming, and a new API for broadcast read-only data
to remote tasks. We then analyze the benefits and limitations of
these optimizations with benchmarks as well as on two common
matrix factorization kernels Cholesky and QR, on two different
systems Shaheen II from KAUST and Fugaku from RIKEN. We
point out some potential for further improvements, and provided
valuable insights into the strength and weakness of STF model.
hoping to guide the future developments of task-based runtime
systems.

Index Terms—Dynamic Runtime Systems, High Performance
Computing, Numerical Linear Algebra

I. INTRODUCTION

As current High performance computing (HPC) systems

reach exascale, the number and complexity of nodes (equipped

with GPU or other types of accelerators) makes programming

and optimal performance with the MPI+X model more diffi-

cult. Here MPI+X refers to directly calling MPI for internode

communication and on a given node, we can deploy Pthreads,

OpenMP, or CUDA/HIP for accelerators. Task-based runtime

systems have been developed to manage the challenge of

programming at this scale. In this programming model, the

runtime is in charge of scheduling the computational tasks on

parallel computing resources, as well as the communication

between nodes. The user needs to decompose the algorithm

into tasks with explicitly specified data dependencies among

them, forming a Direct Acyclic Graph (DAG). This program-

ming paradigm was adopted in recent years by many different

systems, among them StarPU [1], Legion [2] and PaRSEC [3].

Even within task-based runtime systems, various methods exist

to express the algorithm as a task-graph, and subsequently to

analyze and schedule the resulting DAG onto HPC systems.

PaRSEC PTG interface [4] provides a domain specific

language (DSL) to describe the algorithm by specifying the

individual tasks and the data dependencies between those

tasks. Given this compact representation of the graph, each

node can process the tasks that will be executed on that node.

Additionally, nodes can react to the data received from remote

nodes without the overhead of building the global knowledge

during execution. The STF model provides an easy-to-use

API for algorithm formulation for StarPU and PaRSEC DTD

interface [5]. A single thread of execution is responsible for

inserting the tasks following the sequential execution order

of the algorithm. The data usage information is provided

(either READ, WRITE, or READ-WRITE) so that internally-

independent tasks can be scheduled in parallel. Dependent

tasks will follow the correct read-after-write orders. Data usage

across nodes will trigger the corresponding data transfers and

have them inserted in to the scheduling flow.

Such an interface is easy to use, but the granularity of

the tasks needs to be sufficiently high to overlap with the

dependency analysis, and this was demonstrated in [5], [6].

This analysis overhead increases equally with the problem

size on all the processes. This means that the STF model

will face significant scalability issues especially in the exascale

era, where the number of compute nodes can be in the range

of hundreds of thousands. Still, when making the transition

to programming using a task-based runtime system, the STF

model is a very attractive target for the new adopters and they

can obtain comparable performance to the more commonly

used MPI+X model when running on smaller scale [7].

Also unlike in PaRSEC PTG model where parallelism

is unleashed eagerly, and can lead to erroneous scheduling

decisions: certain control flows are needed to enforce task

execution priority. STF models will usually have a parameter

specifying the size of the window into the global graph of

tasks. It is included with the primary goal of limiting the

memory usage resulting from graph exploration. The main

thread will keep inserting tasks up-to the window size, then

join the computation threads for task execution. When the

number of tasks decreases below a prescribed threshold the

main thread would go back to the task insertion mode. This

window size is a tunable parameter and has the side benefit of

acting similarly to the lookahead technique that is common

in matrix factorization implementations. It allows the task

execution to follow the critical path of the algorithms, ensuring

optimal scheduling for the user.

Given the benefits of the STF model, we would like to

push the limits of STF model to achieve better scalability

and performance, while balancing the ease of use of the

model. Previous works have tested similar ideas on Cholesky

factorization [8] [9], but we would argue that the dependency

graph is relatively simple in the previous studies. As a result,
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we also implemented and evaluated trimming and broadcast’s

impact on QR factorization, which has a tighter dependency

graph.

The contributions from this work are:

• Create the sender/receiver key internally to PaRSEC DTD

so that user can trim the DAG during task insertion.

• Adopt a two-stage approach for data broadcast operation

for the PaRSEC DTD interface.

• Evaluated empirically the changes in writing the algo-

rithms in order to trim the DAG, and the usability of

such an interface for more complicated algorithms.

• Evaluated the impacts of graph trimming and broadcast

operation on performances of Cholesky and QR factor-

izations on two HPC systems at scale.

The rest of the paper is organized as follows: Section II

introduces the related work. Section III outlines the original

design of PaRSEC and PaRSEC DTD interface, and the

new implementation to enable graph trimming and broadcast

operation. Section IV details the changes to the Cholesky

and QR factorization algorithm to have graph trimming and

broadcast enabled (and empirical evaluation of the difficulty of

user trimming). Section V we analyzed the impact of broadcast

on data propagation benchmark, then trimming and broadcast

on the factorization algorithms. In section VI we conclude the

paper and points out some future work directions.

II. RELATED WORK

A. Dynamic Runtime Systems

To adapt to the rapidly changing and heterogeneous HPC

systems while being able to maintain performance portabil-

ity, task-based dynamic runtimes have been introduced to

act as a middle layer on top of multi-threading and MPI

communications to schedule fine-grained computational tasks

onto the underlying hardware resources. They execute tasks

in an asynchronous fashion and break out from the overly

constraining bulk-synchronous programming model. They tar-

get shared and distributed-memory systems, possibly equipped

with GPU accelerators. They reduce process idle time during

the execution of imbalanced workloads [10]. They implement

various scheduling heuristics to reduce remote and expensive

data movement, while favoring data locality. As a result,

users programming in this model can separate the problem

formulation and performance tuning, and be able to achieve

performance portability across machines. In particular, PaR-

SEC DTD, StarPU and OpenMP [11] provide a convenient

task-insertion API or pragma that abstracts the hardware

complexity. The user is still in charge of ensuring sequential

numerical correctness of the task-based code before these

runtimes proceed with the scheduling onto parallel resources.

This separation of concerns has enabled wide adoption of

these runtimes in the community. These runtimes build the

DAG dynamically and unroll it as computational progress

occurs. PaRSEC PTG adopts a different approach where the

task graph unrolling is done via a high-level description of

data dependencies between tasks. There are numerous other

runtimes (HPX [12], Charm++ [13], etc.) that employ asyn-

chronous many-tasking executions. In this paper, we focus on

PaRSEC DTD as a case of STF model, which shares a lot of

the common infrastructures with PaRSEC PTG interface.

B. Numerical Linear Algebra

As a foundational components of many HPC applications

and machine learning operations, optimal numerical linear

algebra routines are key to efficient system utilization. Nu-

merous libraries provide dense linear algebra routines. Since

its initial release nearly 30 years ago, LAPACK [14] has

become the de facto standard library for dense linear algebra

on a single node. It leverages vendor-optimized BLAS for

node-level performance, including shared-memory parallelism.

ScaLAPACK [15] built upon LAPACK by extending its rou-

tines to distributed computing, relying on both the Parallel

BLAS (PBLAS) and explicit distributed-memory parallelism.

Some attempts have been made to adapt the ScaLAPACK

library for accelerators, but these efforts have shown the need

for a new framework. More recently, the DPLASMA [16]

and Chameleon libraries [17] both build a task dependency

graph and launch tasks as their dependencies are fulfilled. This

eliminates the artificial synchronizations inherent in ScaLA-

PACK’s design, and allows for overlap of communication and

computation. DPLASMA relies on PaRSEC PTG or DTD

to specify and schedule tasks, while Chameleon can use

either StarPU or PaRSEC runtime. And they both support

GPU-based task executions. SLATE [18] is a recent effort to

implement the linear algebra routines in the distributed settings

with the goal of replacing ScaLAPACK. It uses modern C++

framework and MPI+OpenMP model, with support for modern

accelerated architectures.

In this paper, we showcase two linear algebra algorithms to

motivate the need for graph trimming and broadcast features

that we added within the DTD interface. Although it is

different for each specific application, these two dense solvers

are representative to illustrate the user level changes and the

impacts from these additional features.

III. USER GRAPH TRIMMING AND BROADCAST

OPERATION

A. DTD Model

PaRSEC as a task-based runtime supports multiple inter-

faces, the PTG interface requires the users to specify the

body of the tasks, and the dependencies between tasks via

the Job Data Flow (JDF) DSL. On the other hand, DTD inter-

face allows users to write sequential-looking code, including

conditionals, for-loops, and code blocks to insert tasks using

PaRSEC’s API without using a custom DSL. Both methods

of task graph definition share the same runtime scheduler,

data representation, and communication engine. There are

three main concepts that enable expression of a task graph

in PaRSEC using DTD: a task, dependency, and data item.

A task is any kind of computation that will not block due to

communication, data items are regions of main memory used

by the computations that will be accessed or modified, and,
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finally, dependencies are the ordering relationships between

tasks in the graph. To insert a task with any of PaRSEC’s API

options, users must indicate the data and the mode of operation

that will be performed on that data by the task (either read,

write or read-write). Dependencies between tasks are created

based on the operation-type on the data: a task performing

a write before a task performing a read on the same data

will create a read-after-write (RAW) dependency between the

writing task and reading task, such that the reading task will

only execute after the writing task is completed. The properly

sequenced expression guarantees the correct ordering of tasks

regardless of the parallel execution and any data concurrency

interaction.

In distributed memory systems all the participating pro-

cesses need to have a consistent view of the DAG for DTD

to maintain the correct sequential order of tasks and requiring

the whole DAG to be discovered by all the processes is one

solution. This means that many tasks that are not related to a

given node will still need to be inserted and inspected, creating

a growing overhead as more nodes are involved. With this

kind of implementation guaranteeing the insertion of the entire

graph, it allows for creating a unique key and thus a consistent

naming of each task on all the nodes without involving extra

communication. This approach allows for simple message

matching across nodes, based on this naming scheme and its

unique keys. This is a sufficient solution, but is a stronger

requirement than what is needed for the STF model.

B. PaRSEC DTD Tasks and Communications Tracking

PaRSEC communication engine is exposed to the rest of

the runtime only through a well-defined interface. The DSLs

encapsulate the information of a communication via an ob-

ject called remote deps (the circle in Figure 1) for remote

dependencies that is passed into the engine. This abstraction

allows PaRSEC to adopt different underlying libraries (right

now it uses MPI two-sided) for communication. When we are

inserting the tasks, DTD keeps track of the remote parent task

or the received remote deps object in a local hash table with

the unique key for a given task. Since each task in the entire

DAG has a unique key, the communicated data represented in

the remote deps can be matched with the remote task object

and continue the task graph execution.

C. Graph Trimming

This unique key generated independently on each node is

the link between the task management level and the underlying

communication engine. The correct message carrying the data

will be provided as the input data to the corresponding task via

the key generated independently on each node. By observing

that for each send-receive pair of exchanging data between

two participating nodes, they only need to keep track of

the order of the previous communication instances between

the two, then they can correctly generate the next key for

the point-to-point transfer between the two. So to remove

this artificially stronger requirement of inserting all tasks

and labeling them uniquely, thus permitting user level graph

trimming, each node keeps internal arrays that will track the

sends and receives with respect to other ranks instead. With

this approach, users can trim the task graph at the user-level

transparently, reducing the overhead of the runtime scheduling

and improving performance (an example of the arrays is shown

in Figure 1). This change does not affect the existing code that

inserts all tasks on each node, since the irrelevant tasks that

get trimmed will never have the data IDs assigned to them

and thus will not affect the correct ID assignment for retained

tasks.

Rank 1Rank 0 Rank 2

1
2

3

1
2

3

1
2

3

Send ID: {0:0, 1:1, 2:0}          {0:0, 1:0, 2:1}             {0:0, 1:0, 2:0}
Recv ID: {0:0, 1:0, 2:0}          {0:1, 1:0, 2:0}             {0:0, 1:1, 2:0}

1:1
0:1

Fig. 1: Top: original DTD, each task has a unique key

Bottom: send/recv level key. Grey square represents local

task, white square represents remote task. Circle represents the

remote deps structure. In the new scheme, data flow ID is a

combination of sender rank and sequence number to uniquely

label each data transfer. As long as both the sender and the

receiver has the dependent tasks inserted, the data ID will

be assigned correctly for the two sides to match the data

transferred.

D. Broadcast Operation

Collective operations are a critical part of message delivery

optimization, especially for large-scale distributed systems.

In a typical MPI-based program, collective operations are

done via a predefined communicator, and as a result all

the callers know the participant ranks. In a sequential task

insertion interface like PaRSEC DTD, tasks are inserted se-

quentially and the group of nodes/processes/ranks participating

in a collective operation are not known beforehand. Previous

work [9] implemented implicit broadcast, assuming all the

participants are discovered when the data is ready to be

send (i.e. the broadcast will cover all the descendant ranks

or most of the ranks). The benefit of this approach is that

it is transparent to the application writer, your original STF

code will benefit without any changes. But the assumption that

the task discovery progresses faster than the kernel execution

turns out to be a strong one, and risks the possibility of

lacking ability to identify collective operations and falling

back to doing point-to-point communication. We propose an

explicit broadcast API, whereby with the knowledge of the
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algorithm writer, the root of a broadcast call can specify all

the participating ranks (the dependent tasks that will use the

data), and the participants don’t need to know each other. This

is the same kind of information that is needed when the user

trims the task graph with remote read tasks not knowing each

other but will have the same writer task in the root inserted.

Also, with an explicit collective API, many similar collective

calls can be implemented (reduction/allreduce, gather/allgather

etc).

PaRSEC PTG and DTD models share the same underlying

communication engine, and a version of broadcast has already

been implemented for PTG. It is built on top of the MPI point-

to-point operations. Since for PTG, the entire graph’s infor-

mation is represented locally, a descendant can replay the task

schedule as the root in order to rediscover the participant ranks

and the propagation path, thus can continue the data broadcast

downstream. There are two different typologies supported,

namely: chain and binomial trees. The mechanism to check

for direct descendants is based on a bit array representing

participant ranks and, as a result, the route will be fixed given

a topology and a set of participant ranks.

Since both DSL variants share the same communication

engine, the idea then is to adopt a two-stage approach (Fig-

ure 2) and reuse many of the same implementations. In this

scheme, we first prepare a message containing a global ID,

local data keys (the P2P keys between the root and each

children) and participating ranks as the first step. This is

the propagation of the metadata information representing the

broadcast. In the PTG case, we can query the parameterized

graph information to obtain this knowledge, but in the STF

model, the parent needs to inform the descendants of the global

knowledge coming from the root. This metadata is matched

via the point-to-point data keys between the root and each

of the descendants. For an intermediate node, once it has

received the metadata, it can act as the root to continue the

propagation of metadata. The actual data broadcast will use

the global ID to progress as an independent second step. This

is possible because after the first step completes and the global

ID is known, the communication engine can match the data

received using this ID. By populating the metadata received

into the outgoing message, DTD broadcast can reuse PaRSEC

collective implementation to continue message propagation

using the selected topology.

IV. EVALUATION OF THE PROGRAMMING MODEL WITH

CHOLESKY AND QR FACTORIZATION

Algorithm 1: Pseudo-code of Cholesky Factorization.

1 for k = 0 to NT − 1 /∗ Panel Factorization (PF) ∗/
2 POTRF(CRW

kk )
3 for m = k + 1 to NT − 1
4 TRSM(CR

kk , CRW
mk )

5 for m = k + 1 to NT − 1
6 SYRK(CR

mk , CRW
mm )

7 for m = k + 2 to NT − 1 /∗ Trailing Submatrix Update ∗/
8 for n = k + 1 to m− 1
9 GEMM(CR

mk , CR
nk , CRW

mn )

0

21

3

A: G_ID+ Keys + 
Ranks

 B: Actual data

1. propagate with bcast keys and 
ranks for the descendants

2. Propagate actual data with G_ID, 
independent from step 1

3. On completion of receiving 
metadata via 

 P2P local key, populate message 
with G_ID and metadata to match 

with propagation of actual data 
from step 2

4. Continue the steps for 
downstream ranks

Fig. 2: Two-step broadcast with meta-data transfer as the first,

and data payload transfer as the second. They propagate as

two separate flows but data reception call can only be matched

when the meta-data is received and global ID is known. (The

number is the rank location of the task)

0

3 4

0 21

3 354

0 021

3 354

1

4 5

0

3

3

0

0

1 2 0 1 2

0

54

354

1

1

3

1 2 0 1 2

54

54

2

02

0 21

21

POTRF

TRSM

SYRK

GEMM

GEQRT

TSQRT

UNMQR

TSMQR

Fig. 3: The four different kernels from Cholesky and QR

respectively. Both runs on a 2X3 compute grid with 2-D block

cyclic distribution. For QR, a super-tiling of 2 is used on the

grid row to reduce cross node P2P communication.

Cholesky and QR factorizations are classic linear algebra

algorithms that are widely used for solving linear systems of

the form Ax = b with A having special numerical properties

benefiting special algorithmic choices. For square matrix, their

corresponding floating point operation (FLOP) counts are
n3

3 and 4n3

3 . Their corresponding tile-based algorithms are

listed in Algorithm 1 and 2, respectively. They both use four

computational kernels that are successively applied on the

trailing sub-matrix at each step, as illustrated in Figure 3 for

matrices of 6 × 6 tiles at iteration k = 2. In practice, the

implementation of these kernels relies on a BLAS library,

such as MKL on Intel’s x86 CPUs or SSL2 on Fujitsu A64FX

CPUs.

Algorithm 2: Pseudo-code of QR Factorization.

1 for k = 0 to NT − 1
2 GEQRT(CRW

kk , TW
kk )

3 for n = k + 1 to NT − 1
4 UNMQR(CR

kk , TR
kk , CRW

kn )
5 for m = k + 1 to MT − 1
6 TSQRT(CRW

kk , CRW
mk , TW

mk)
7 for n = k + 1 to NT − 1
8 /∗ Trailing Submatrix Update ∗/

9 TSMQR(CRW
kn , CR

mk , TR
mk , CRW

mn )
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A. Modifications to the user code

STF model provides a simple-to-use programming interface,

but as demonstrated before and later in this study, the task

graph overhead will significantly increase as we increase the

problem size because the number of tasks is proportional to the

problem size when the tile size remains fixed. As a result, the

graph trimming is a required step to include in order to achieve

good performance at large system and problem scales. Based

on the tiled algorithm of Cholesky and QR, here we describe

how to both trim the task graphs and to incorporate explicit

broadcast operations into the algorithms.

To ensure the correctness of the algorithm, the sender side

needs to insert all the remote descendant tasks and on the

receiver side, the remote data provider task needs to be inserted

as well. For the Cholesky factorization without broadcast, this

means that all TRSM tasks need to be inserted on the POTRF

task node, and each of the nodes in the current panel need to

insert the remote POTRF task in order to receive input data. On

the receiving nodes, this means that other remote TRSM tasks

can be trimmed (Figure 4, Left). Similarly, for the connections

between TRSM and GEMM, each TRSM needs to insert all

the GEMMs that are in the same row, as well as the GEMM

tasks in the reflective column. On the receiver side, all the

GEMM tasks will need to insert the two TRSM tasks from the

given row/column. With an explicit API call to a user-level

broadcast added, the expression of the program is changed.

The destination ranks are iterated to create the metadata, and,

as a result, the broadcast operation itself (yellow tasks in

Figure 4, Right) can serve as the connection between the

sender task and receiver tasks and we don’t need to insert

the tasks on the other side of the communication exchange,

thus simplifying the trimming code.

For the QR algorithm, it has a tighter set of data depen-

dencies between the tasks, where each row has data depen-

dency on the previous row. As a result, for a trailing task

TSMQR, we need to discover the TSQRT on that row as

well as the UNMQR task or the previous rows’ TSMQR

task in order to correctly obtain the input data. In the case

of 2-dimensional block cyclic data distribution with P × Q
number of nodes (usually with super-tiling on P to reduce

row level communication frequency), we only need to insert

(P + Q)/(P × Q) number of the original TSMQR tasks.

For broadcast operations, the opportunities are limited in the

QR algorithm, as the row-by-row updates naturally translate

to point-to-point operations. The only possible broadcasts

are the propagation of panel data across a given row of

Q processes, either for GEQRT to UNMQR, or TSQRT to

TSMQR (Figure 5).

B. Qualitative analysis

The major appealing factor for the STF model is that it is

easy to use. Indeed, one can simply write the two algorithms

following the pseudo-code with PaRSEC DTD and it will

work out-of-the-box. The issue is that in order to obtain good

performance and to avoid the overhead of traversing the entire

task graph, the user needs to include many conditionals in the

Rank 4Rank 1Rank 4 Rank 1

Fig. 4: Left, trimmed task graph without broadcast call; Right,

explicit broadcast call to propagate POTRF data. Color scheme

and data distribution follows that from Figure 3. Lighter red

and purple represent remote tasks, yellow represents broadcast

task. Data dependency between TRSM and GEMM omitted.

4
4

021
021

1
1 2

1 2 0 1 2
4
4

2

54
354

1
1

1
1

3
1 2 0 1 2

54
54

Fig. 5: Since only the TSMQR tasks are of order O(N3), we

can insert all the other tasks in all the nodes while inserting

TSMQR only on ranks that are in the same row or column of

the current panel tasks. Left is for tasks inserted on rank 1,

while right figure is for tasks on rank 4

user code to evaluate whether we should insert a given task.

Here, I will argue that this modification at the user level is not

insignificant, rendering the STF model complicated to use (in

some ways similar to the SPMD model). This is in contrast

to previously brought up suggestions that this modification

is easy and can be hidden. For data users, it can insert all

the relevant remote tasks that will produce this data. For the

data writer tasks, the algorithm writer needs to be aware of

the users of output data tasks, and will need to insert those

reader tasks correspondingly. In the case of Cholesky and QR

factorizations, it is tractable, but when the algorithm becomes

more complicated instead of trivially nested for-loops, we can

imagine that trimming can produce very error prone codes.

This goes back to some of the difficulties in writing algo-

rithms using PaRSEC PTG. One is that you need to write in

a domain specific language, but more importantly, the user

needs to think of the algorithm in terms of the DAG and

to specify the data dependencies between the tasks explicitly.

This includes all the data’ input and data’ output links of each

of the tasks. But to trim the graph correctly, the algorithm

writer is essentially expressing the same information as with

PaRSEC PTG. As a result, I view the trimming optimization as

trying to express the same information on these two interfaces,

and they only differ as to when and where the users supply

additional information about the relationships between tasks.
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V. PERFORMANCE RESULTS AND ANALYSIS

We implemented the features presented above in PaRSEC

based on the branch from Nov, 2020. All the results presented

in this paper use the IEEE 754 double precision variants

DPOTRF and DGEQRF for Cholesky and QR, respectively.

We run our experiments on two systems:

• Shaheen II, a Cray XC40 supercomputer with 6,174

nodes composed of two-socket 16-core Intel Haswell

(AVX2) processor and 128GB of main memory, using

the Cray Aries network interconnect. We use Cray MPI

and Intel programming environment (MKL).

• Fugaku system, a Fujitsu ARM (SVE) system with

A64FX nodes composed of four 12-core core memory

groups (CMGs) and 32GB of main memory, connected

through the TofuD interconnect. We use Fujitsu MPI and

SSL2 library.

A. Broadcast benchmark performance

F
ugaku

S
haheen II

16 64

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

Number of Nodes

T
im

e 
(s

)

dtd_bcast dtd_p2p ptg_bcast 560 960 1500

Fig. 6: Benchmark of a broadcast operation for sending a

square tile of double floating points. We tested on two set of

nodes, and varying the message data size. For comparison,

we have the default DTD P2P, the proposed DTD broadcast

and finally the broadcast utilized in PTG (the two shared the

same mechanism).

We measure the message transfer time of one broadcast

operation and compare it with using the default DTD point to

point (P2P) to evaluate the benefit from doing the broadcast.

We vary the number of nodes, as well as the size of the data

we are sending to match with the square tile from Cholesky

and QR. The two machines have different networks: Shaheen

II uses Cray Aries Interconnect with Dragonfly topology with

bandwidth of around 10 GB/s. Fugaku uses TofuD intercon-

nect from Fujitsu with bandwidth of around 40 GB/s.

The results are shown in Figure 6. On Fugaku machine, the

result followed our expectations. The broadcast can propagate

the data equally or faster than P2P with the root sending the

data to each of the descendant. Also, as the message sizes

increased, so to did the entire data transfer times.

On Shaheen II, the point-to-point version could finish faster

than the collective version for all message sizes. The reason

for this is not known, but our hypothesis is that the difference

in network topology alleviated the bottleneck of the P2P

from the root node. In real applications, the situation can be

complicated and the network state can change. For example,

the computation threads can create memory contention and

reduce network performance [19]. When employing broadcast,

the operation can share the network usage across the nodes.

Relying on a single root node for data transfers can potentially

saturate a single node’s outflow bandwidth.

B. Experiment performances

As the baseline to compare our achieved performance,

we also ran the ScaLAPACK version of Cholesky and QR

factorizations provided by the math libraries on the respective

system (MKL from Intel on Shaheen II and SSL2 from

Fujitsu on Fugaku). ScaLAPACK is a widely used library

that provides distributed versions of common linear algebra

operations and its optimized versions are provided by vendors.

Based on the previous descriptions, we implemented differ-

ent versions of Cholesky, with graph trimming, broadcast oper-

ation, or a combination of both. We compared the performance

of the different flavors of these algorithms with the original

DTD as well as PTG implementations from DPLASMA. For

the QR factorization, we have the trimmed-only version as

well as trimming with broadcast version (since the broadcast-

only version shows no improvement, it is not shown here).

We obtained results for matrices varying in size from 100K

to 600K, using two different tile sizes. Finally, we show the

scalability of the implementations by running on 256 and 512

nodes.

1) Shaheen II results: The results from Shaheen II for

the Cholesky and QR factorizations are shown in Figure 7

for 256 and 512 nodes. The black lines represent the results

from ScaLAPACK with one MPI rank per core, block size of

64. We tested two different tile sizes, affecting the number

of available tasks as well as the degree of parallelism. It

should be first noted that overall, the performance from the

runtime system-based implementations were better than the

ones from ScaLAPACK, especially for the Cholesky factor-

ization. Performance on a single node for DPOTRF is around

860 GFLOP/s, meaning that assuming the perfect scaling, we

would have reached 220 TFLOP/s with 256 nodes. Conversely,

in terms of the maximum performance achieved, the Cholesky

factorization could reach a higher efficiency than QR. This was

likely due to a larger degree of parallelism. ScaLAPACK QR

performs very well as the problem size increases. Note that

since QR has four times the FLOP of Cholesky, the actual

execution time is longer for QR factorization.

Additionally, for the tile-based algorithms, the tile size

needs to be tuned to obtain better performance. Optimal tile

size was dependent on the interface we used and the balance

between computation, communication, and runtime overheads.

For most cases, a tile size of 560 outpreformed those of

960. However, for the QR implementation this is dependent

on the problem size. As the matrix sizes increase, using

tile size 560 we observe performance degradation instead of
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Fig. 7: Performance on Shaheen II. From left to right: Cholesky 256, 512 nodes; QR 256, 512 nodes
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Fig. 8: Performance on Fugaku. From left to right: Cholesky 256, 512 nodes; QR 256, 512 nodes

stabilization, while a larger tile size of 960 shows performance

improvements. We suspect this results from the overhead of

task insertion and management. This would explain why the

trimmed version of QR is faster than the base DTD version

when tile size was 560, with the reduction of task analysis

overhead.

The two user-level features, that we added, provided various

degree of performance improvements. As the number of tasks

is cubic with the number of tiles, we could have had 5-

fold reduction in the number of tasks when the tile size was

960 instead of 560. As a result, the graph trimming is not

providing as much of an impact as with the case of tile size

560 (trimming can reduce the number of inspected tasks by

an order of magnitude). Adding broadcast for the Cholesky

factorization provided a good performance gain in the case of

tile size 560. However, the most gain came from combining

the two (even more so than the PTG version of Cholesky

implementation).

These two features also changed the optimal tile size for

Cholesky from 960 to 560. A tile size of 560 is adequate for

obtaining solid performance from Intel’s MKL. We noted that

the larger tile size was, the more likely it was to compensate

for the higher overhead from base DTD overheads.

The interesting thing is that in Figure 6, the P2P is faster

than broadcast but results from Figure 7 showed improved

performance for Cholesky factorization. Other authors indi-

cated [19] that computation can reduce network bandwidth due

to memory contention, we think that the actual P2P bandwidth

during Cholesky factorization is less than the benchmark

measurement. The network degradation could be remedied

by spreading the message propagation across the participating

nodes via broadcast.

2) Fugaku results: Similarly, the results from Fugaku are

in Figure 8 for 256 and 512 nodes. We generally observed

the same trends as in the result from Shaheen II, with good

scalability on both 256 and 512 nodes. On one node of

Fugaku, we could obtain DPOTRF results of around 1700

GFLOP/s, meaning the result from 256 nodes would have

had a ceiling of 435 TFLOP/s. The single node base is lower

than other SSL2 results due to an issue calling SSL2 math

library from multiple threads, and we had to disable the sector

cache optimization to complete the runs. One difference is that

the base DTD Cholesky was performing much worse relative

to the ones from Shaheen II. And correspondingly, a much

smaller effect was observed from just adding broadcast. With

48 cores instead of 32 from Shaheen II, insertion efficiency

might have had a larger factor in order to saturate all the cores.

And the trimming in this case provided a larger degree of
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relieve to this bottleneck. With the two features combined, we

actually obtained significantly better result for the Cholesky

implementation in comparison with the PTG version from 512

nodes.

For the QR implementation, the broadcast-only version

showed a minimum improvement effect, since the dependen-

cies are tighter than for the Cholesky one. Although trimming

can provide a small performance boost, we still need to

increase the tile size to further reduce the overhead, this in

turn diminishes the effect of trimming. In summary, further

profiling is needed to understand the exact reason for the

performance drop and where the limiting factors were coming

from for DTD version.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced two new features to PaR-

SEC DTD interface, namely user level graph trimming and

broadcast operations. We demonstrated the user level changes

implemented to these two features with Cholesky and QR

factorization. Our experience indicates that, although it is a

straightforward task to trim the graph when the algorithm is

simple, it can be complicated when the user needs to know

the exact dependencies among the tasks, leading to messy

and error-prone user codes. We also show that with these two

added features, we can significantly improve the performance

of Cholesky, while providing modest improvement for QR.

From both the usability and performance standpoint, we have

shown that the STF interface still has abundant opportunities

for improvement, but will likely limit the usability of the

original interface and create difficult to maintain and debug

user code.

There are several opportunities for performance improve-

ments at the implementation level. Including dynamic se-

lection of collective topology, metadata caching and some

PaRSEC internal implementation optimizations. Exploring the

reason for QR performance drop is beyond the scope of this

paper, requiring profiling analysis to understand the bottleneck

in those cases and the likely overheads still in the runtime

implementation. Additionally, further investigation is required

to better understand the applicability of STF interface to a

wider range of scientific applications.
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