
Performance Analysis of Parallel FFT on Large
Multi-GPU Systems

Alan Ayala1, Stan Tomov1, Miroslav Stoyanov2, Azzam Haidar3, and Jack Dongarra1,2,4

1University of Tennessee, Knoxville, TN, USA
2Oak Ridge National Laboratory, Oak Ridge, TN, USA

3Nvidia Corporation, Santa Clara, CA, USA
4University of Manchester, Manchester, UK

Abstract—In this paper we present a performance study of
multidimensional Fast Fourier Transforms (FFT) with GPU
accelerators on modern hybrid architectures, as those expected
for upcoming exascale systems. We assess and leverage features
from traditional implementations of parallel FFTs and provide
an algorithm that encompasses a wide range of their parameters,
and adds novel developments such as FFT grid shrinking and
batched transforms. Next, we create a bandwidth model to
quantify the computational costs and analyze the well-known
communication bottleneck for All-to-All and Point-to-Point MPI
exchanges. Then, using a tuning methodology, we are able to
accelerate the FFT computation and reduce the communication
cost, achieving linear scalability on a large-scale system with
GPU accelerators. Finally, our performance analysis is extended
to show that carefully tuning the algorithm can further accelerate
applications heavily relying on FFTs, such is the case of molecular
dynamics software. Our experiments were performed on Summit
and Spock supercomputers with IBM Power9 cores, over 3000
NVIDIA V-100 GPUs, and AMD MI-100 GPUs.

Index Terms—FFT, Multi-GPU, MPI tuning, Scalability

I. INTRODUCTION

Nowadays, the Fast Fourier Transform (FFT) is widely used

in computational sciences and engineering. Back in 1965, the

first sequential FFT algorithm was introduced by Cooley and

Tukey [1], and its implementation has been evolving to adapt

to novel hardware developments. In essence, the FFT of x, an

m-dimensional vector of size N ≡ N1 × N2 × · · · × Nm, is

denoted by f̂ = FFT (x) and defined as an m-dimensional

vector the same size as x by the following computation:

(1)f̂ =

N1−1∑
n1=0

N2−1∑
n2=0

· · ·
Nm−1∑
nm=0

x̄ · e−2πi
(

k1n1
N1

+
k2n2
N2

···+ kmnm
Nm

)

where x̄ = x(n1, . . . , nm), f̂ ≡ f̂(k1, k2, . . . , km) for

0 ≤ ki ≤ Ni − 1, ∀i ∈ {1, . . . ,m}.

In terms of arithmetic operations, the summation (1) can be

directly computed by a tensor product and this would cost

O(N
∑m

i=1 Ni). The advantage of the FFT is that this cost

can be reduced to O(N log2 N) operations by exploiting the

structure of the tensor.

The Cooley-Tukey FFT algorithm is considered one of the top

ten algorithms of the 20th century, and several single-device

(both vendor and open source) efficient implementations are

available. One of the most widely used libraries for this

purpose is FFTW [2], which has been tuned to optimally

perform in several architectures. Vendor libraries for this

purpose have also been highly optimized, such is the case

of MKL (Intel) [3], ESSL (IBM) [4], rocFFT (AMD) [5]

and cuFFT (NVIDIA) [6]. Novel libraries are also being

developed to further optimize single-device FFTs, among

them: OneAPI for Intel GPUs [7], Vulkan FFT (VkFFT) [8],

KFR [9], and FFTX [10], where the latter is part of the ECP

software community.

A. State-of-the-art: Parallel FFT Libraries

Parallel versions of the FFT algorithm have been developed

for decades in pair with the evolution of distributed com-

puting systems. Parallelism for multi-dimensional FFTs can

be straightforwardly achieved by distributing the sums in (1)

among processors (for each of the m dimensions). Figure

1 shows three different decomposition sequences used in

state-of-the-art parallel libraries to compute a 3-D FFT. Such

decompositions easily extend to higher dimensions [11].

Slabs (1-D decomposition)

Pencils (2-D decomposition)

Bricks (3-D decomposition)

Fig. 1. Algorithmic approaches for parallel 3-D FFT computation.

372

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-9747-3/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPSW55747.2022.00072

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
78

-1
-6

65
4-

97
47

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
SW

55
74

7.
20

22
.0

00
72

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

As shown in Figure 1, we can implement a parallel 3-D FFT

algorithm of size N1 × N2 × N3 by one of the following

methodologies:

• Slabs decomposition: gives the first level of

parallelization, where we distribute data among a

1-D grid of processes, each of them is in charge of

computing a batch of 2-D FFTs of size N1 × N3 and

transferring data to other processes. Therefore, the

algorithm arising from this approach has scalability

limitations to up to N2 processes.

• Pencils decomposition: introduced in [12], allows to

reach the next level of parallelization, by distributing

data among a 2-D grid of processes, each of them is in

charge of computing a batch 1-D FFTs and transferring
the data to other processes. In this case, we need two

communication phases.

• Bricks decomposition: a modified version of the pencils

approach, where intermediate communication to a 3-D

grid of processes is performed during each communi-

cation phase. Therefore, it requires four communication

phases. Although this approach seems costly, it can be

faster than the previous two in some architectures [13].

The transfer phase (also known as remap, reshape or trans-

position) described for each of the implementations options

above, is obtained with a Message Passing Interface (MPI)

distribution. Table I shows the available MPI routines in some

of the most recent developments on parallel FFT libraries;

where the first four libraries support GPU accelerators using

MPI GPU-aware features. Refer to [14] for an extended FFT

benchmark.

TABLE I
AVAILABLE MPI ROUTINES IN FFT LIBRARIES

Library Communication Type
AlltoAll Point-to-Point

AccFFT [15] MPI Alltoall
MPI Isend / MPI Irecv

MPI Sendrecv

FFTE [16]
MPI Alltoall

-
MPI Alltoallv

fftMPI [17] MPI Alltoallv MPI Send / MPI Irecv

heFFTe [18]
MPI Alltoall MPI Send / MPI Isend
MPI Alltoallv MPI Irecv

Dalcin et al. [11] MPI Alltoallw -
P3DFFT [19] MPI Alltoallv MPI Send / MPI Irecv

Among distributed libraries in the literature, the widely-used

FFTW employs a 1-D decomposition approach, which limits

its scalability to a small number of nodes. P3DFFT [19]

extends FFTW functionalities and supports both 1-D and 2-D

decomposition. The PFFT package [20] is also built on top

of FFTW and extends the functionalities of the previous two

to higher dimensional arrays. On the other hand, libraries

2DECOMP&FFT [21], nb3dFFT [22] and AccFFT [15],

showed good scalability but are no longer maintained. Finally,

some large scale applications have their own built-in FFT

library, such as fftMPI [13] (built-in on LAMMPS [23]) and

SWFFT [24] (built-in on HACC [25]). These libraries are

widely known in the molecular-dynamics and astrophysics

literature. Also, fftMPI and SWFFT are, to our knowledge,

the only libraries supporting bricks decomposition.

In this paper, we are interested on CPU-GPU based computing

systems, i.e., libraries developed to support GPU accelerators.

In this realm, the 1-D decomposition approach introduced in

[26] was one of the first codes for large FFT computation on

GPUs. Its optimization approach is limited to small number

of nodes and focuses on reducing tensor transposition cost

by exploiting infiniband-interconnection using the IBverbs

library, which makes it not portable. Further improvements

to scalability have been presented in FFTE library [16]

which supports pencil and slab decompositions and includes

several optimizations, although with limited features and

limited improvements on communication. Also, FFTE relies

on the commercial PGI compiler, which may limit its usage.

In [15], authors developed AccFFT, a library that seeks to

overlap computation and blocking collective communication

by reducing the PCIe overhead, they provide good (sublinear)

scalability results for large real-to-complex transforms using

NVIDIA K20 GPUs. On the other hand, heFFTe [27], is a

recent open source FFT library, providing optimizations that

achieve linear scalability for large number of cores and GPUs.

Finally, in [28] authors introduced a code for multi-GPU

FFT computation within the context of turbulence simulations.

B. Contributions of this paper

• We study current parallel FFT implementations and lever-

age a wide number of tuning parameters to further

accelerate state-of-the-art FFT libraries. We provide a

novel algorithm with 3-D FFT batched support and grid

shrinking, allowing the use of accelerators from three

major GPU vendors: AMD, Intel and NVIDIA.

• We develop a bandwidth model, and present MPI tuning

techniques to select the best communication scheme.

• We extend the work of [11] to GPU systems, and com-

pare different options of all-to-all communication with

SpectrumMPI and MVAPICH.

C. Paper organization

In Section II, we present challenges of distributed FFTs, and

describe algorithms and architectures to be used in our exper-

iments. We present the two main MPI-exchange approaches

available in state-of-the-art FFT libraries. In Section 3, we

present a model to quantify the communication cost for par-

allel complex-to-complex FFTs, and compare different Point-

to-Point and All-to-All communication options. We then show

the practical bandwidth achieved amongst different settings.

In Section IV we present further experiments on scalability

and the effect that MPI GPU-awareness has on parallel FFT

computation. Finally, Section V concludes our paper.

373

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Parallel 3-D FFT computation on GPUs

1: Input: 3-D arrays of np processors, grids at input and output: Pin, Pout

2: If required by user, remap data to a subcommunicator of lp < np processors
3: Transfer data from Pin to a pencil or slab grid, get number of reshapes needed

4: Set transform type (Forward or Inverse FFT) and number of batches per computation
5: Define processor grids (MPI groups) for each direction

6: for r ← 1, · · · , nbatches do
7: for r ← 1, · · · , nexchanges do
8: Compute local 1-D or 2-D FFTs on the GPUs

9: Pack data in contiguous memory

10: for P on my MPI group do
11: Transfer computed data to neighbor processors

12: end for
13: Unpack data in contiguous memory

14: end for
15: end for
16: Transfer data from the pencil or slab grid to Pout

II. PARALLEL 3-D FFT ON MULTI-GPU SYSTEMS

Parallel FFT algorithms rely on single-device libraries for

their local 1-D or 2-D computation. Therefore, their main job

(and what defines their performance) is how they handle the

required global data transfers. The classical approach is to

keep arrays of data in contiguous memory before and after

local FFTs, and use classical MPI Alltoall or binary (send

and receive) communication. Such approaches are known

as transpose algorithms [29]. Algorithm 1 shows the steps

followed by most state-of-the-art FFT distributions. In italic

blue text, we show two novelties added to heFFTe library [30]

as a software contribution of this paper:

• FFT grid shrinking: useful when the input data is

distributed among a large number of MPI processes;

and, at FFT planning, we identify that the computation

can fit in a smaller grid of MPI processes (controlling

an amount of memory and resources enough for the

computation). Then we remap them pre and post

computation. Note that once involving the network

communication, then the power of the GPU is limited

and the performance is much less than the GPU

theoretical peak. Therefore, the smallest the number of

processes controlling the computing FFT grid, the faster

is the computation.

• Batched 2-D and 3-D transforms on distributed systems

with GPU accelerators, c.f., Fig. 13, where we show

considerable speedups using a batched FFT algorithm.

Another approach consists in transferring data in a non-

contiguous fashion, this methodology was recently studied

in [11], where authors showed good speed-ups compared to

Algorithm 1 from P3DFFT and FFTW. For this, a generalized

all-to-all (MPI Alltoallw) scatter/gather is employed on a

predefined sub-array datatype and the for loop of Algorithm

Algorithm 2 FFT with non-contiguous data exchange

1: Create MPI sub-array datatype

2: for r ← 1, · · · , nexchanges do
3: Compute local 1-D or 2-D FFTs on the GPUs

4: for P on my sub-communicator do
5: Transfer data using MPI Alltoallw
6: end for
7: end for

1 is replaced by a single call to local FFTs and a direct call

to MPI Alltoallw as shown in Algorithm 2.

The sub-array datatype used in Algorithm 2 is in

general discontiguous, and it can be created using

MPI Type Create Subarray [31]. This approach is very

elegant and can be coded in a few hundred lines [11], while

standard FFT libraries require a few thousands; and although

it eliminates the need for any local remappings (a.k.a. packing

and unpacking), it might not always be beneficial for GPU

based libraries, given that these steps account for less than

10% of runtime [15], [18], c.f., Fig. 6 and 7.

In Figure 2, we show an experiment using 24 V-100 GPUs

on 4 Summit nodes to compute 4 forward and 4 backward

3-D FFTs, being communication for this problem over 90%

of runtime. The x-axis corresponds to each of the calls of the

given MPI routine. We observe that Algorithm 2 is not always

beneficial for GPU-based implementations, even discounting

the roughly 10% of runtime saved from avoiding data packing

and unpacking. While the work in [11] for CPU-based FFTs

showed performance comparable to FFTW and P3DFFT. The

lack of optimizations of MPI Alltoallw is a critical factor

making this approach not as efficient when using GPU arrays.

This was expected since MPI Alltoallw is far less optimized

compared to MPI Alltoall(v). For example, MPICH has four

different implementations of MPI Alltoall, which are selected

374

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40

2

3
4
5
6
7
89

0.1

2

3
4
5
6

All2All
All2Allv
All2Allw

Call Number

Ti
m

e
[s

]
Warmup Forward Backward Forward Backward Forward Backward Forward Backward

Fig. 2. Comparison of the communication runtime for different GPU-aware All-to-All MPI implementations using heFFTe and MPI AlltoAll(v) (from
SpectrumMPI), and MPI AlltoAllw† (from MVAPICH), in the computation a complex-to-complex 3-D FFT of size 5123. In total, there are 40 calls to MPI.

0 20 40 60 80 100 120

5
10μ
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5

Send + Irecv
Isend + Irecv

Call Number

Ti
m

e
[s

]

Warmup Forward Backward Forward Backward Forward Backward Forward Backward

Fig. 3. Comparison of the communication runtime for different GPU-aware Point-to-Point MPI implementations using heFFTe and (blocking and non-blocking)
SpectrumMPI routines to compute a complex-to-complex 3-D FFT of size 5123. The x-axis shows the call count for each MPI routine.

according to the array size; while its MPI Alltoallw, is sim-

ply composed of a non-blocking MPI Isend and MPI Irecv

algorithm for any array size. And for the case of GPU-

arrays, we encounter the issue that for some MPI distributions,

such as SpectrumMPI, MPI Alltoallw is not even GPU-aware

[32], and the network capabilities, such as NVLINKs, are not

efficiently used.

Analogously to the All-to-All case, Fig. 3 shows the com-

munication cost for the computation of a 3-D FFT on 24

V-100 GPUs using MPI (I)send and Irecv routines. We note

that there is not much difference when using blocking and

non-blocking approaches. Similarly to the AlltoAllw approach

of Algorithm 2, in [33], authors used derived data-types

to perform transpose-free transforms of 3-D arrays, through

customized MPI Isend and MPI Irecv routines, where they

observed that the transpose-free FFT is, in most cases, just

marginally superior than the one with transpose. Finally, some

authors have developed methodologies to further accelerate

MPI frameworks within distributed FFT by asynchronous

communication to overlap communication and computation,

c.f., [28], [34], [35].

†Note that the latest version of SpectrumMPI (10.4.1-2021) does not
provide a GPU-aware MPI AlltoAllw routine.

A. Supercomputers for our experiments

The experimental part of this paper was obtained using

Summit supercomputer, which has 4,608 nodes, each

consisting of 2 IBM POWER9 CPUs and 6 NVIDIA V-100

GPUs. These 6 GPU accelerators provide a theoretical

double-precision capability of approximately 40 TFLOP/s.

Within the same node, processors have two NVIDIA NVLink

interconnects, each having a peak bandwidth of 25 GB/s (in

each direction), hence V-100 and P9 can communicate at a

peak of 50 GB/s (100 GB/s bi-directional). Summit nodes

are interconnected in a non-blocking fat tree topology via a

dual-rail EDR InfiniBand network that provides a practical

bandwidth of about 23.5 GB/s. We also used Spock, which is

a small system located at the Oak Ridge National Laboratory,

and is composed of 36 nodes, with 4 MI-100 AMD GPUs

per node. Spock is a precursor of the upcoming Frontier

machine, expected to have exascale performance.

B. Software stack for our experiments

In Table II, we present the software stack used to obtain the

experimental results of this paper. Note that these are some of

the latest available versions. For the case of MPI distribution,

we use IBM SpectrumMPI, which is the default on Summit su-

percomputer. However, we also show results with MVAPICH-

GDR for analyzing Algorithm 2, since MPI Alltoallw is not

375

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

CUDA-aware in the 10.4 version of SpectrumMPI. Refer to

[36] for experiments showing the impact of switching MPI

distributions, OpenMPI and MVAPICH, in FFT computation

on Summit-like systems. [32].

TABLE II
SOFTWARE VERSIONS USED FOR THE EXPERIMENTS IN THIS PAPER.

Software name Version
CUDA 11.0.3
CMake 3.20.2
FFTW3 3.3.9

GNU compilers 9.1.0
heFFTe 2.1

MVAPICH-GDR 2.3.6
Spectrum MPI 10.4.1

III. MULTI-GPU PERFORMANCE ANALYSIS

There are several models that have been developed to measure

the cost of MPI communication (known to be a bottleneck) of

a parallel 3-D FFT of size N using Π processes and n nodes;

and since such models are architecture dependent, there is no

a single one that can accurately hold for all supercomputers.

Amongst the most relevant models:

• In [15], authors propose to use O
(

N
σ(P)

)
, where σ(P)

is the bisection bandwidth of the network.

• In [33], authors use regression to find γ such that the

communication cost is O(n−γ). This was developed for

a Cray XC40 system (Shaheen II).

• In [37], authors propose a theoretical lower-bound for

the communication cost on 3-D FFT computations

towards exascale computing systems, assuming a 3-D

torus topology (which is found in supercomputers

targeting exascale such as Fugaku at Riken-Japan). The

communication time is given as Ω
(

N
P 5/6 ·B

)
, where

B is the network bandwidth.

In this paper, we focus on complex-to-complex FFTs envis-

aging Summit and Frontier like systems, where intra-node

communication is much faster than inter-node communication

(due to fast GPU interconnections). Hence, we develop a

simple model that can help us estimate the average bandwidth

during a 3-D FFT computation on a given number of nodes.

For this, we refer the reader to Fig. 1, where for the slabs-

decomposition, a single data transfer is required amongst

processes distributed on the y axis. Since every process holds

N/Π data and communicates 1/Π of it to its (Π−1) neighbors,

then the communication costs is‡(assuming double-complex

datatype, i.e., 16 bytes):

Tslabs = (Π− 1)

(
L+

16N

B ·Π2

)
, (2)

‡Refer to [38] for a similar for 3-D real-to-complex model designed for
Intel Xeon Phi Clusters.

where L is the latency, and B the bandwidth (average-wise).

Analogously, observing Fig. 1, for the pencil-decomposition,

we have that Π is split over a 2-D grid of processes, Π :=
P × Q, with P processes along the x-axis and y processes

along the y axis. Then, the communication cost for the two

transfers is:

(3)
Tpencils = (P − 1)

(
L+

16N

B · P ·Π
)
+

(Q− 1)

(
L+

16N

B ·Q ·Π
)

Once we measure the communication runtime, using equations

(2) and (3), we can estimate the average bandwidth as:

(4)Bslabs =
16N

Π2

(
Tslabs

Π− 1
− L

)

(5)Bpencils =

16N

(
P − 1

P
+

Q− 1

Q

)

Π · (Tpencils − L · (P +Q− 2))

Using equations (4) and (5), in Fig. 4 we present the average

bandwidth obtained for a strong scalability experiment from

1 to 128 nodes (6 V-100 GPUs per node, 1 GPU per MPI

process). The processor grids employed are showed in Table

III. We observe that network saturation causes an exponential

decrease in the average bandwidth achieved by each process,

for both All-to-All and Point-to-Point approaches, which even-

tually cause a breakdown of the linear strong-scaling. This

phenomenon is common for most state-of-the-art parallel FFT

libraries, c.f., [14].

TABLE III
GRID SEQUENCE FOR SCALABILITY EXPERIMENT

GPUs Grid sequencea
6 (1, 2, 3) (2, 1, 3) (2, 3, 1) (1, 2, 3)

12 (2, 2, 3) (1, 3, 4) (3, 1, 4) (3, 4, 1) (2, 2, 3)
24 (2, 3, 4) (1, 4, 6) (4, 1, 6) (4, 6, 1) (2, 3, 4)
48 (3, 4, 4) (1, 6, 8) (6, 1, 8) (6, 8, 1) (3, 4, 4)
96 (4, 4, 6) (1, 8, 12) (8, 1, 12) (8, 12, 1) (4, 4, 6)
192 (4, 6, 8) (1, 12, 16) (12, 1, 16) (12, 16, 1) (4, 6, 8)
384 (6, 8, 8) (1, 16, 24) (16, 1, 24) (16, 24, 1) (6, 8, 8)
768 (8, 8, 12) (1, 24, 32) (24, 1, 32) (24, 32, 1) (8, 8, 12)

1536 (16, 8, 12) (1, 32, 48) (32, 1, 48) (32, 48, 1) (16, 8, 12)
3072 (16, 12, 16) (1, 48, 64) (48, 1, 64) (48, 64, 1) (16, 12, 16)

a The blue grids correspond to input and output 3-D grids, which come
before and after, respectively, the FFT grids.

In Table III, the black grids correspond to FFT grids; for

example, at 128 nodes, we have Π = 768, P = 24 and

Q = 32. The blue grids correspond to brick shaped input

and output grids, we include these grids in our experiments

since in general this is the type of input from real-world

376

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Average bandwidth per process during the computation of a complex-
to-complex 3-D FFT of size 5123 using heFFTe with 6 V-100 GPUs
per Summit node and switching the GPU-awareness feature for the MPI
communication.

simulations, such as those from molecular dynamics. The 3-

D brick shaped grids are usually obtained using a heuristics

approach known as minimum-surface splitting, which aims to

achieve load-balancing. To our knowledge, the only libraries

allowing general input/output grids are fftMPI, heFFTe and

SWFFT.

IV. EXPERIMENTS ON SCALABILITY AND TUNING

For the experiments of this section we employ the software

described in Table II, and we report the average runtime of 8

FFTs (4 forward and 4 backward), which are preceded by 2

FFTs to warm up the accelerators.

A. Choosing between Pencils and Slabs decompositions

Choosing between pencils or slabs is critical and can result in

a considerable speedup, here is where the model developed in

Section III becomes very helpful. We first need to evaluate the

network capabilities on the underlying computer and a phase

diagram [36] can be created identifying which approach could

be the fastest for a given FFT size. In our case, we rely on

equations (4) and (5) to decide between pencils and slabs.

We set an inter-node bandwidth of 23.5 GB/s and a latency

of 1μs, which can be achieved in practice on Summit. This,

in our experience, together with a phase diagram, gives the

best chance to better predict the fastest algorithmic setting.

Another approach that seems to work in practice is the use

of regression, c.f., [33], where authors assess the performance

of different settings and use regression for prediction. Next,

using the grid sizes from Table III, we predict that the slabs

decomposition should be faster than the pencil approach when

using less than 64 nodes. We experimentally verify this, c.f.,

Figs. 8 and 9. Next, in Figure 5, we plot a strong scaling

curve and label the regions with the fastest setting. Note that

the fastest runtimes were achieved using SpectrumMPI with

GPU-aware capability.

Fig. 5. Best setting regions for the computation of a 3-D complex-to-complex
FFT of size 5123 on increasing number of nodes, using 6 V-100 GPUs per
node and 1 MPI per GPU.

B. Choosing between Point-to-Point or All-to-All transfers

In Fig. 6, we show a runtime breakdown for the kernels

involved on the computation of a 3-D complex-to-complex

FFT of size 5123 using an All-to-All approach on 24 GPUs

(4 nodes); we observe that when using MPI Alltoall (which

requires padding) we get higher variability and higher run-

time compared to MPI Alltoallv. Overall, amongst all of

our experiments in Summit we observed that, in general,

the cost associated with padding overcomes the benefits of

using MPI Alltoall on GPU systems. However, if we take a

deeper look into the time for each single call, refer to Fig

2, we observe that for the data transfers associated to the

FFT computation (intermediate grids) the difference between

MPI Alltoall and MPI Alltoallv is negligible; and the large

runtime gap arises from the transfers associated to the brick-

to-pencils reshape (3D input to pencils) and (pencils to 3D

output) which typically require much more padding. There-

fore, if the input and output are given in pencils or slabs

shape, then MPI Alltoall might be the best choice, due to

the built-in optimizations it has amongst all different MPI

distributions. On the other hand, in Fig. 7 we show a runtime

breakdown when using a Point-to-Point approach instead, with

non-blocking (left) and blocking (right) routines. We observe

that the communication time (sum of MPI send/recv/waitany)

is slightly faster than the All-to-All approach for this number

of nodes; however, the total runtime for the 3-D FFT is pretty

much the same (≈0.09s) for both approaches and for larger

number of nodes the All-to-All turns out to be the fastest

option (see Figs. 8 and 9); this is agreement to what has been

reported on state-of-the-art GPU-based libraries [14], and a

known phenomenon in the FFT community [15], [33], [39].

Next, note that in Figs. 6 and 7 the batch of 1-D FFTs

computed with cuFFT have different timings when using

contiguous and non-contiguous (strided) data. In Fig. 10, we

take a deeper look into each of the calls to cuFFT and

observe a spike when the FFT input is strided, and the

377

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

all2all packing unpacking fft-1d scale
5

10μ
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2

Ti
m

e
[s

]
Using contiguous datan ag g

all2allv packing unpacking fft-1d scale
5

10μ
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1

Ti
m

e
[s

] Using strided datas a

Fig. 6. Runtime breakdown for a 3-D FFT of size 5123 using 24 V-100 GPUs with All-to-All communication and pencils approach. On the left, we use
MPI Alltoall for the communication and CUFFT to compute the batch of 1-D FFTs using contiguous data (transposed approach). On the right, we use
MPI Alltoallv and non-contiguous (strided) data.

isend
irecv

fft-1d
waitany

scale
packing

unpacking

self_packing

self_unpacking

100n

1μ

10μ

100μ

0.001

0.01

0.1

Ti
m

e
[s

]

Using contiguous datag o

send
irecv

fft-1d
waitany

scale
packing

unpacking

self_packing

self_unpacking

100n

1μ

10μ

100μ

0.001

0.01

Ti
m

e
[s

]

Using strided datan edededededd

Fig. 7. Runtime breakdown for a 3-D FFT of size 5123 using 24 V-100 GPUs with Point-to-Point communication and pencils approach. On the left, we use
MPI Isend and MPI Irecv for the communication and CUFFT to compute the batch of 1-D FFTs using contiguous data (transposed approach). On the right,
we use MPI Send and MPI Irecv on non-contiguous (strided) data.

Fig. 8. Comparison of the performance of All-to-All MPI communication with and without GPU-aware MPI in the computation of a 3-D FFT of size 5123

using 6 V-100 GPUs per node, and 1 MPI per GPU. On the left we show the communication cost, and on the right the total time.

Fig. 9. Comparison of the performance of Point-to-Point MPI communication with and without GPU-aware MPI in the computation of a 3-D FFT of size
5123 using 6 V-100 GPUs per node, and 1 MPI per GPU. On the left we show the communication cost, and on the right the total time.

378

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25

10μ

2

5

100μ

2

5

0.001

Strided data
Contiguous data

Call Number

Ti
m

e
fo

r C
U

FF
T

[s
] Warmup Forward Backward Forward Backward Forward Backward Forward Backward

Fig. 10. Time for the computation of a batch of 1-D complex-to-complex FFTs of size 512 using CUFFT within a 3-D FFT computation.

0 5 10 15 20 25 30 35

3

4

5
6
7
8
9

0.01

2

Non GPU-aware MPI
GPU-aware MPI

Call Number

Ti
m

e
fo

r A
ll-

to
-A

llv
 [s

] Warmup Forward Backward Forward Backward Forward Backward Forward Backward

Fig. 11. Comparison of MPI Alltoallv performance with and without GPU-aware MPI.

difference is considerable. Indeed, this also happens when

using FFTW and rocFFT. Therefore, one may opt to always

use contiguous input for the 1-D or 2-D local FFTs; however,

this increases the packing/unpacking costs which can be orders

of magnitude larger than the cuFFT cost (≈15μs). Amongst

all of our experiments, the strided data version with AlltoAllv

communication gave the best runtime for large number of

nodes (≥ 64) with GPU accelerators.

C. Scalability and the Effect of GPU-aware MPI

Parallel FFT libraries with GPU support such as heFFTe [18]

and AccFFT [15] have shown good linear scaling for large

number of GPUs (≈ 6, 000). And to extend this scaling to

exascale systems, we may need a combination of Point-to-

Point and All-to-All approaches (fftMPI already provides this

feature for CPU arrays). In this context, Figs. 8 and 9 show

that for up to 768 GPUs, All-to-All approaches scale quite

well, while the Point-to-Point approaches fail when using

GPU-aware MPI. If the GPU awareness is disabled, they

keep scaling; however, in this case the data movement is

performed as follows: device → host → host → device. In

some cases, this is beneficial; and indeed, for small number

of nodes the Point-to-Point approach is the fastest. However,

for large number of nodes (which interests us for scalability

purposes) disabling the GPU-aware feature can increase the

communication cost in ≈30%, c.f., Fig. 11, where we show a

runtime comparison at 16 nodes when switching between these

options. The flag -no-gpu-aware from heFFTe helps to

easily perform such experiments and the results are consistent

for the different node counts studied in this paper.

D. FFT Optimization Effect on Real-world Simulations

Several large-scale simulation software rely on the computa-

tion of 3-D FFTs for essential tasks, amongst the most widely-

used:

• LAMMPS [23] uses 3-D real and complex transforms

for its KSPACE package, which computes long-range

Coulombic interactions.

• HACC [25] relies on 3-D FFTs for N-Body simulations

in astrophysics applications.

• WarpX [40] uses 3-D FFTs for energy computation on

particle simulations. This software, in particular, uses

MPI Alltoallw with derived data types for global re-

distributions, and as shown in Section II, it can highly

benefit from MPI GPU-aware optimizations.

• Within the machine learning community, there is an

increasing interest in algorithms for fast, scalable and

portable real and complex FFTs, for applications such

as pattern recognition [41].

Fig. 12. Breakdown for the LAMMPS Rhodopsin experiment. Using 32
nodes, 6 V-100 GPUs per node, and 1 MPI per GPU.

379

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 13. Batched computation of a 3-D FFT of size 643 on NVIDIA (left) and AMD (right) GPUs, setting 1 MPI per GPU. We observe speedups of over 2×
with respect to the not batched version. At publication date, authors were not allowed to use more than four Spock nodes (being a prototype supercomputer),
this is the reason why the plot was not further scaled.

In Figure 12, we show the runtime breakdown for a standard

LAMMPS benchmark, using 32 nodes and a fixed 5123

FFT grid. We observe that the runtime for the KSPACE

computation is reduced around 40% when switching from its

default fftMPI (with pencils approach) to heFFTe, for which

we select the best parameter settings guided by Fig. 5. For

fftMPI, we used its cuFFT enabled version, recently added to

LAMMPS library [42].

Applications listed above often require not one but many

transforms per iteration, and typically the size of the FFTs

are small. Therefore, we have implemented Algorithm 1 in

heFFTe [30] to support batched 2-D and 3-D transforms. In

Fig. 13, we take a 3-D FFT of size 643 (found in several

application benchmarks) and show over 2× speedups, when

comparing the cost of a single 3-D transform within a batch,

to an isolated not batched computation. These speedups come

from the overlap of communication and computation. The

more transforms per MPI unit generates more overlap with

network exchanges. If needed, we can also use the grid

shrinking feature from Algorithm 1 to use less processors

and increase the number of flops. When the problem size

increases, e.g., 5123 (as in previous experiments), the

advantage of batching in GPU-based systems is considerably

reduced since computation cost becomes negligible compared

to the communication cost. Finally, the heFFTe batched

implementation of this paper is, to our knowledge, the only

one that supports AMD, Intel§ and NVIDIA GPUs, and the

speedups obtained from its usage can be extremely helpful

for FFTs on higher dimensions and to ensure scalability on

the upcoming exascale supercomputers.

§In this work, we were not able to include results from Intel GPUs due to
permission and supercomputer access limitations at publication date.

V. CONCLUSIONS

In this paper we studied the performance of distributed FFTs

on systems with GPU accelerators. We introduced a new

portable algorithm that pushes the boundaries of the existing

FFT software ecosystem, covering a wide range of methodolo-

gies from state-of-the-art libraries, and adding novel features

such as FFT grid shrinking and batched 2-D and 3-D trans-

forms. Where the latter showed speedups over 2× on systems

with AMD and NVIDIA GPU accelerators. We compared

the pencils and slabs decompositions, the most common ones

for parallel FFTs, and measured their theoretical performance

by developing a bandwidth model, which can be used for

selecting the fastest decomposition on a given hardware. We

showed that a careful tuning of the algorithm yields to linear

scalability and presented a case study using 3072 GPUs. We

also studied when an Alltoall, Alltoallv or AlltoAllw approach

could be beneficial according to network capabilities; as well

as the cases where a Point-to-Point exchange would be the best

choice. Finally, we showed how application software targeting

exascale can benefit from the contributions of this paper.

REFERENCES

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, pp.
297–301, 1965.

[2] M. Frigo and S. G. Johnson, “The Design and Implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005,
special issue on “Program Generation, Optimization, and Platform
Adaptation”.

[3] “Intel Math Kernel Library.” [Online]. Available:
https://software.intel.com/mkl/features/fft

[4] S. Filippone, “The IBM parallel engineering and scientific subrou-
tine library,” in Applied Parallel Computing Computations in Physics,
Chemistry and Engineering Science, J. Dongarra, K. Madsen, and
J. Waśniewski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 199–206.

[5] “rocFFT library,” 2021. [Online]. Available:
https://github.com/ROCmSoftwarePlatform/rocFFT

380

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

[6] “cuFFT library,” 2021, Available at http://docs.nvidia.com/cuda/cufft.

[7] Intel, “Intel OneAPI Library.” [Online]. Available:
https://software.intel.com/oneapi/fft.html

[8] “Vulkan FFT library,” 2021. [Online]. Available:
https://github.com/DTolm/VkFFT

[9] “KFR library,” 2021. [Online]. Available: https://github.com/kfrlib/kfr

[10] F. Franchetti, D. Spampinato, A. Kulkarni, D. T. Popovici, T. M. Low,
M. Franusich, A. Canning, P. McCorquodale, B. Van Straalen, and
P. Colella, “FFTX and SpectralPack: A First Look,” IEEE International
Conference on High Performance Computing, Data, and Analytics,
2018.

[11] L. Dalcin, M. Mortensen, and D. E. Keyes, “Fast parallel multidimen-
sional FFT using advanced MPI,” Journal of Parallel and Distributed
Computing, vol. 128, pp. 137–150, 2019.

[12] C. H. Q. Ding, R. D. Ferraro, and D. B. Gennery, “A Portable 3D FFT
Package for Distributed-Memory Parallel Architectures,” in PPSC, 1995.

[13] S. Plimpton, A. Kohlmeyer, P. Coffman, and P. Blood, “fftMPI, a library
for performing 2D and 3D FFTs in parallel,” Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States), Tech. Rep., 2018.

[14] A. Ayala, S. Tomov, P. Luszczek, G. Ragghianti, S. Cayrols, and
J. Dongarra, “Interim Report on Benchmarking FFT Libraries on High
Performance Systems,” University of Tennessee, ICL Tech Report ICL-
UT-21-03, 2021-07 2021.

[15] A. Gholami, J. Hill, D. Malhotra, and G. Biros, “AccFFT: A library for
distributed-memory FFT on CPU and GPU architectures,” CoRR, vol.
abs/1506.07933, 2015.

[16] D. Takahashi, “FFTE: A fast Fourier transform package,”
http://www.ffte.jp/, 2005.

[17] “fftMPI: Parallel 2D and 3D complex FFTs,” 2021, Available at
https://fftmpi.sandia.gov.

[18] A. Ayala, S. Tomov, A. Haidar, and J. Dongarra, “heFFTe: Highly
Efficient FFT for Exascale,” in ICCS 2020. Lecture Notes in Computer
Science, 2020.

[19] D. Pekurovsky, “P3DFFT: A Framework for Parallel Computations of
Fourier Transforms in Three Dimensions,” SIAM Journal on Scientific
Computing, vol. 34, no. 4, pp. C192–C209, 2012.

[20] M. Pippig, “PFFT: An extension of FFTW to massively parallel archi-
tectures,” SIAM J. Sci. Comput., vol. 35, 2013.

[21] N. Li and S. Laizet, “2DECOMP&FFT - A Highly Scalable 2D
Decomposition Library and FFT Interface,” Cray User Group 2010
conference, 2010.

[22] J. H. Göbbert, H. Iliev, C. Ansorge, and H. Pitsch, “Overlapping of
Communication and Computation in nb3dfft for 3D Fast Fourier Trans-
formations,” in High-Performance Scientific Computing, E. Di Napoli,
M.-A. Hermanns, H. Iliev, A. Lintermann, and A. Peyser, Eds. Cham:
Springer International Publishing, 2017, pp. 151–159.

[23] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. Michael Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G.
Moore, T. D. Nguyen, R. Shan, M. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton, “LAMMPS - A flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales,”
Computer Physics Communications, p. 108171, 2021.

[24] D. Richards, O. Aziz, J. Cook, H. Finkel et al., “Quantitative Perfor-
mance Assessment of Proxy Apps and Parents,” Lawrence Livermore
National Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2018.

[25] J. Emberson, N. Frontiere, S. Habib, K. Heitmann, A. Pope, and
E. Rangel, “Arrival of First Summit Nodes: HACC Testing on Phase
I System,” Exascale Computing Project (ECP), Tech. Rep. MS ECP-
ADSE01-40/ExaSky, 2018.

[26] A. Nukada, K. Sato, and S. Matsuoka, “Scalable multi-GPU 3-D FFT
for TSUBAME 2.0 supercomputer,” High Performance Computing,
Networking, Storage and Analysis, 2012.

[27] S. Tomov, A. Haidar, A. Ayala, D. Schultz, and J. Dongarra, “Design
and Implementation for FFT-ECP on Distributed Accelerated Systems,”
Innovative Computing Laboratory, University of Tennessee, ECP WBS
2.3.3.09 Milestone Report FFT-ECP ST-MS-10-1410, April 2019, revi-
sion 04-2019.

[28] K. Ravikumar, D. Appelhans, and P. K. Yeung, “GPU Acceleration
of Extreme Scale Pseudo-Spectral Simulations of Turbulence Using
Asynchronism,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’19.
New York, NY, USA: Association for Computing Machinery, 2019.

[29] I. T. Foster and P. H. Worley, “Parallel Algorithms for the Spectral
Transform Method,” SIAM J. Sci. Comput., vol. 18, no. 3, p. 806–837,
1997.

[30] “heFFTe library,” 2021, Available at https://bitbucket.org/icl/heffte.

[31] T. Hoefler and S. A. Gottlieb, “Parallel Zero-Copy Algorithms for Fast
Fourier Transform and Conjugate Gradient Using MPI Datatypes,” in
EuroMPI, 2010.

[32] “Release notes on IBM SpectrumMPI 10.4,” 2021, Available at
https://www.ibm.com/docs/en/smpi/10.4?topic=release-notes.

[33] A. G. Chatterjee, M. K. Verma, A. Kumar, R. Samtaney, B. Hadri, and
R. Khurram, “Scaling of a Fast Fourier Transform and a pseudo-spectral
fluid solver up to 196608 cores,” J. Parallel Distributed Comput., vol.
113, pp. 77–91, 2018.

[34] H. Shaiek, S. Tomov, A. Ayala, A. Haidar, and J. Dongarra, “GPUDi-
rect MPI Communications and Optimizations to Accelerate FFTs on
Exascale Systems,” ICL, Extended Abstract icl-ut-19-06, 2019-09 2019.

[35] A. Ayala, X. Luo, S. Tomov, H. Shaiek, A. Haidar, G. Bosilca, and
J. Dongarra, “Impacts of Multi-GPU MPI Collective Communications
on Large FFT Computation,” in 2019 IEEE/ACM Workshop on Exascale
MPI (ExaMPI), 2019.

[36] A. Ayala, S. Tomov, M. Stoyanov, and J. Dongarra, “Scalability issues in
FFT computation,” in Parallel Computing Technologies, V. Malyshkin,
Ed. Cham: Springer International Publishing, 2021, pp. 279–287.

[37] K. Czechowski, C. McClanahan, C. Battaglino, K. Iyer, P.-K. Yeung,
and R. Vuduc, “On the communication complexity of 3D FFTs and its
implications for exascale,” Proceedings of the International Conference
on Supercomputing, 2012.

[38] D. Takahashi, “Implementation of Parallel 3-D Real FFT with 2-
D decomposition on Intel Xeon Phi Clusters,,” in 13th International
conference on parallel processing and applied mathematics., 2019.

[39] A. Ayala, S. Tomov, M. Stoyanov, A. Haidar, and J. Dongarra, “Accel-
erating Multi-Process Communication for Parallel 3-D FFT,” in 2021
Workshop on Exascale MPI (ExaMPI), 2021, pp. 46–53.

[40] D. Grote, J.-L. Vay, A. Friedman, and S. Lund, “Warp Software,” 2021.
[Online]. Available: https://sites.google.com/a/lbl.gov/warp/home

[41] N. Monnier, D. Ghali, and S. X. Liu, “FFT and machine learning
application on major chord recognition,” in 2021 Twelfth International
Conference on Ubiquitous and Future Networks (ICUFN), 2021, pp.
426–429.

[42] “LAMMPS library,” 2021. [Online]. Available:
https://github.com/lammps/lammps

381

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:13:13 UTC from IEEE Xplore. Restrictions apply.

