
PAQR: Pivoting Avoiding QR factorization

Wissam Sid-Lakhdar∗, Sebastien Cayrols∗, Daniel Bielich∗, Ahmad Abdelfattah∗, Piotr Luszczek∗, Mark Gates∗,
Stanimire Tomov∗, Hans Johansen‡, David Williams-Young‡, Timothy Davis†, Jack Dongarra∗§ Hartwig Anzt∗

∗ University of Tennessee, † Texas A&M University, ‡ Lawrence Berkeley National Laboratory, § Oak Ridge National Laboratory

Abstract—The solution of linear least-squares problems is
at the heart of many scientific and engineering applications.
While any method able to minimize the backward error of such
problems is considered numerically stable, the theory states that
the forward error depends on the condition number of the matrix
in the system of equations. On the one hand, the QR factorization
is an efficient method to solve such problems, but the solutions it
produces may have large forward errors when the matrix is rank
deficient. On the other hand, rank-revealing QR (RRQR) is able
to produce smaller forward errors on rank deficient matrices,
but its cost is prohibitive compared to QR due to memory-
inefficient operations. The aim of this paper is to propose PAQR
for the solution of rank-deficient linear least-squares problems
as an alternative solution method. It has the same (or smaller)
cost as QR and is as accurate as QR with column pivoting in
many practical cases. In addition to presenting the algorithm
and its implementations on different hardware architectures, we
compare its accuracy and performance results on a variety of
application-derived problems.

Index Terms—Linear least-squares, QR factorization, QR de-
composition, deficient matrix, rank-deficient, low-rank

I. INTRODUCTION

a) Context: The solution of linear least-squares problems

is at the heart of many scientific and engineering fields [1].

Formally, the problem is defined as:

min
x
||Ax− b||2 (1)

where A is a (large) rectangular m-by-n matrix, b is the right-
hand side, and x is the solution of the system.

While several methods exist [1]–[3] [4, ch.5] to solve such

problems, the QR factorization plays a key role. It corresponds

to the factorization of the matrix A into:

A = QR, (2)

where Q is an m-by-n orthonormal matrix, and R an upper

triangular n-by-n matrix. Given such a decomposition, the

solution x is obtained by multiplying the inverse of Q to b:

y = QT b (3)

then solving the triangular system of equations:

x = R−1y (4)

b) Challenge: The matrices arising in practical scientific

and engineering applications like Quantum Chemistry and

Weighted Least-squares (as studied in Section V-A1) present

multiple challenges. First, the increase in computational power

of modern computers has led to the increase in the size of the

targeted matrices. This challenge has been addressed through

the development of numerical libraries that take advantage

of hardware accelerators, with both shared- and distributed-

memory parallelism [5]–[7].

Second, in practice, matrices are often low-rank [8]. In

essence, some columns of the matrix are redundant, or more

precisely, they can be expressed as linear combinations of

other columns [9]. Moreover, the characterization of rank

deficiency can be blurry because of numerical round-off errors.

This is due to the limited precision of the floating-point

representation of real numbers’ arithmetic. The implication is

that, not a single, but an infinite number of potential solutions

to the least-squares problem may exist. In such cases, although

the QR factorization is a numerically stable operation [10,

p. 384], the calculated solutions can be arbitrarily far from

the true solution. This challenge has been addressed through

the development of more robust methods, such as QR with
column pivoting (QRCP) variants, such as Rank-Revealing
QR (RRQR). Unfortunately, due to the communication and

data movement induced by pivoting, these algorithms are very

expensive in large-scale settings.

c) Contribution: The two challenges mentioned above

lead to rethinking the traditional methods to solve large-scale

rank deficient linear least-squares problems. We propose a new

variant of the QRCP factorization family that we call Pivoting
Avoiding QR factorization (PAQR). The guiding idea behind

PAQR is that linearly dependant columns of the matrix can

be detected and removed on the fly during the factorization

process. This new variant yields accurate solutions without

the expensive cost of column pivoting.

The initial goal of PAQR was to be numerically stable,

more so than QR on challenging problems while remaining

as fast as QR. However, PAQR turns out to be at least as

fast as QR on full-rank problems, but faster than QR on

rank-deficient problems. Moreover, it can be empirically as

accurate as QRCP variants on practical rank-deficient least-

squares problems.

d) Overview: This paper is organized as follows: Sec-

tion II describes the QR factorization and QRCP variants

such as RRQR, as well as the recent randomized variants.

Section III describes the PAQR algorithm together with its

limitations. Section IV describes the sequential, batched GPU,

and distributed-memory implementations of PAQR, focusing

on data layout, computations, and the communication volume.

322

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPS54959.2023.00040

20
23

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 (I
PD

PS
) |

 9
79

-8
-3

50
3-

37
66

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

54
95

9.
20

23
.0

00
40

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

Section V compares the numerical accuracy of PAQR with that

of QR and QRCP variant, together with the performance of

the methods in different computational settings. Section VI

summarizes the work and discusses extensions of this work

that are under consideration.

II. BACKGROUND

a) QR: Algorithm 1 describes the overall flow of a QR

factorization. At each iteration, the algorithm constructs an

orthogonal transformation (Line 3), such as Gram-Schmidt

projection, Givens rotation, or Householder reflection, then

applies it to the trailing matrix. Orthogonalization(Ai:j,k) call

takes the k’th column for orthogonalization, and produces its

orthogonal transformation V1:m,i, the diagonal element Ri,i

and the scaling factor τi. Update(Ai:m,i+1:n, V1:m,i, τi) call

takes the trailing matrix Ai:m,i+1:n, V1:m,i, and τi, and outputs

the updated trailing matrix Ai:m,i+1:n.

Algorithm 1 QR factorization

Input A ∈ R
m×n

Output V ∈ R
m×n, R, τ

1: V,R← [0]
2: for i← 1 . . . n do
3: Vi:m,i, Ri,i, τi ← Orthogonalization(Ai:m,i)
4: R1:i−1,i ← A1:i−1,i

5: Ai:m,i+1:n ← Update(Ai:m,i+1:n, Vi:m,i, τi)
6: end for

This algorithm is a non-blocked variant, as it updates

the trailing matrix with a single column at a time. On the

other hand, a blocked variant updates the trailing matrix with

multiple columns at a time. The latter variant is preferred in

practice, as it takes advantage of Level 3 BLAS routines for

improved performance.

b) QRCP: Other variants of QR factorization exist that

provide different numerical properties. QR with Column Piv-
oting (QRCP) is a family of such variants. It consists of

selecting a column as pivot at every iteration that is likely

different than what is usually selected by QR. Unlike the

QR factorization, some QRCP variants are robust and able to

reveal the true rank of matrices at the cost of communication-

bound operations rendering it much slower than the QR

factorization, which is compute-bound. An important variant

of QRCP is Rank Revealing QR (RRQR) [11]. It selects the

column with the largest norm and permutes it to the leading

position. It decomposes a column-pivoted matrix AΠ ∈ R
m×n

with rank k as

AΠ = QR = Q

[
R11 R12

0 R22

]
, (5)

where Q ∈ R
m×m is orthonormal, R11 ∈ R

k×k is upper

triangular, R12 ∈ R
k×(n−k), and R22 ∈ R

(m−k)×(n−k). This

factorization is said to be rank revealing [12], [13] if it satisfies

the following two conditions:

σmin(R11) ≥ σk(A)

p(k, n)
, σmax(R22) ≤ σk+1(A)p(k, n) (6)

where p(k, n) is a low degree polynomial in k and n and

σi are singular values. The Strong Rank Revealing QR [14]

has the additional property of limiting the magnitude of the

elements of R−1
11 R12 to a given tolerance.

For the remainder of this paper, unless explicitly stated

otherwise, QRCP refers to as the whole family of column

pivoting variants.

c) Approximate blocked RRQR: Another variant [15] is

both blocked and approximately rank-revealing. The main idea

is to apply QRCP only on panels instead of the entire matrix.

The loss of rank-revealing property stems from limiting the

choice of pivots to columns only within a panel. Thus it

trades the robustness for increased efficiency coming from

Level 3 BLAS routines in the updates of the trailing matrix.

Inside a panel, the rejected columns are identified as a linear

combination of the previous columns and are pivoted to the

end of the matrix. After computing an initial R11 factor this

way, RRQR is then applied to the set of rejected columns

in order to obtain the final R11. The remaining columns are

factored using QR for the construction of R22.

d) Communication-avoiding algorithms: The classic QR

factorization is well-known to be communication sub-

optimal in distributed-memory environments. To remedy this,

Communication-Avoiding (CA) variant of the QR factorization

was developed [16] called CAQR. The idea was to split the

panel into blocks of rows, compute a QR factorization on each

block (local to a given process), then use a reduction tree

(global to all processes) to compute the final R of the panel.

The CA approach was later extended to the RRQR algorithm

to create the CARRQR algorithm [17]. The problem of RRQR

is its sequential nature as at each step: the column with

the largest norm of the trailing matrix has to be moved

to the leading position. The proposed solution is to use a

tournament pivoting strategy to find the best k pivots at once.

The tournament pivoting is a reduction-tree operation, where

at each tree node, a matrix of 2k columns is factorized using

RRQR and only the largest k pivots are passed to the parent.

Once the pivots are moved to the leading position, the classical

iteration of the blocked QR factorization is used.

The communication-avoiding research is independent to

the work in this paper, as CAQR could benefit to all QR

factorization variants, including PAQR proposed in this paper.

e) Randomized algorithms: In recent years, the line of

research using randomized methods in linear algebra has

gained momentum as a scalable alternative to the classical

approaches [8], [18]–[20]. The general idea is to project the

matrix of interest on a random sub-space sized according to

the rank of the input matrix, and then apply the expensive

algorithms such as QRCP on the projection, which is a

much smaller matrix. Such approaches benefit from strong

theoretical guarantees such as high probability of capturing

the true rank of a matrix. The performance is comparable to

that of QR, and even better in the case of truncated randomized

QRCP.

Randomized algorithms are complimentary to the work of

this paper as they require the rank of the matrix as an input

323

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

while the work in this paper relies on a threshold tolerance to

be provided by the user instead.

III. PROPOSED ALGORITHM

Two main metrics exist for evaluating the numerical accu-

racy of algorithms that deal with linear systems of equations

and linear least-squares problems: forward and backward
error. The forward error is defined as [21]:

eforward =
‖x− x̂‖p
‖x̂‖p (7)

where x̂ is the true solution and x is the computed solution,

for a given p-norm. The backward error is defined as [22]:

ebackward =
‖Ax− b‖p

‖A‖p‖x‖p + ‖b‖p . (8)

Even though the residual from the numerically stable al-

gorithms is bound by the backward error, the forward error

remains bound by the backward error magnified by the 2-norm

condition number κ2 of the input matrix [9]:

κ2(A) = ‖A‖2‖A†‖2 =
σmax

σmin
(9)

where ‖ · ‖2 represents the 2-norm, A† is the pseudoinverse,

and σmax and σmin are the largest and smallest singular values

of A, respectively.

In finite-precision arithmetic, machine precision ε indicates

the attainable accuracy and unit round-off error [10]. Matrix

A is considered numerically rank-deficient if:

κp(A) > ε−1 (10)

for a p-norm condition number.

The most accurate (but expensive) way to solve a rank-

deficient least-squares problem is to compute the SVD of A
and truncate the smallest singular values, so as to avoid the

conditioning issue in Equation (10). However, a more common

way to solve such problems is to use RRQR. Given the existing

error bounds [12] linking the singular values of a matrix with

the R matrix returned by RRQR, an early stopping criterion

exists allowing to terminate the factorization prematurely once

the remaining singular values of the trailing matrix are known

to degrade the conditioning of R. However, the cost of column

pivoting induced by this method makes it impractical at scale.

The intuition behind PAQR comes from the observation

that a reduction of the condition number of a rank-deficient

matrix can be achieved by detecting and removing columns

on the fly if they contribute to the numerical deficiency of

the matrix. It is done during the standard QR factorization

without any pivoting. These skipped columns are linearly

dependent to the already processed columns on the left. They

do not contribute to the linearly independent columns whose

count represents the matrix rank. This technique was applied

in the development of a sparse rank-revealing QR by Davis

in [23]. In PAQR, we follow the convention to define a

column as rejected when it is identified as a linear combination

of the previous columns [15]. As the decision for skipping

the columns is made on-the-fly, PAQR is responsive to the

numerical properties of matrix elements that change over the

course of the algorithm’s steps, which is superior to the passive

approach of the classic QR factorization.

PAQR is a member of the QRCP family that follows the pro-

posed rejection pivoting strategy, which differs from the local

[15] and pairwise [24] pivoting strategies. The main difference

between PAQR and the other existing QRCP variants (such as

RRQR) is that PAQR completely avoids any kind of pivoting,

and thus, does not incur any additional data movement. While

QRCP variants focus on choosing columns as pivots, PAQR

instead focuses on flagging columns as rejected. Note that,

in its current development, PAQR does not guarantee the

same properties given by RRQR’s Equation (6). Indeed, post-

processing (such as in [15]) may be needed on the R matrix in

order to reveal the true rank of the matrix. This study however

is outside the scope of this paper.

A. Algorithm details

PAQR is given in Algorithm 2. While its building blocks are

the same as those of QR, it differs in three ways. First, at each

iteration, PAQR computes a deficiency criterion (Line 5) (cf.

Section III-B) to decide whether to flag the current column of

A as rejected (Line 6). In which case, the algorithm proceeds

immediately to the next iteration. Second, once columns are

flagged as rejected, subsequent operations need to account for

them. This is done by updating the indices of the trailing

matrix (Lines 9 and 10) using the index k instead of the

original loop index i. k is increased only when a column

is estimated to be linearly independent from previous ones

(Line 11). Consequently, the size of the output matrices V
and R will be smaller (Line 14–15).

Algorithm 2 PAQR factorization

Input A ∈ R
m×n

Output V,R, τ, δ

1: V,R← [0]
2: k ← 1
3: for i = 1 . . .min{m,n} do
4: Vk:m,k, Rk,k, τk ← generate reflector(Ak:m,i)
5: if ith column of A is rejected then
6: δi ← TRUE(1) � skip the current column

7: else
8: δi ← FALSE(0) � include the current column

9: R1:k−1,k ← A1:k−1,i

10: Ak:m,i+1:n ← apply reflector(Ak:m,i+1:n, Vk:m,k, τk)

11: k ← k + 1
12: end if
13: end for
14: V ← V1:m,1:k−1

15: R← R1:k−1,1:k−1

Figure 1 shows an example of the result of the execution

of PAQR with the second and fourth columns skipped due to

the failure of the rank deficiency criterion.

324

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

The left matrix in Figure 1 represents the V and R matrices

returned by PAQR based on the original columns of A. In

most modern implementations, the QR factorization is done

in-place, which means that the output V and R overwrite the

original input A. The array of zeros and ones represent the

δ vector returned by PAQR. This vector stores the flagged

(rejected) columns of A.

The right matrix in Figure 1 represents a compressed

(whether explicitly or implicitly) representation of V and R,

where only the linearly independent columns are kept.

Fig. 1. Example of execution of PAQR factorization. Columns in grey are
flagged as rejected.

B. Deficiency criteria

The decision of flagging a column of A to be ignored

is a critical component of PAQR. The most criteria from

the literature are costly, as they relate the singular values

of the matrix. Hence, we present three alternatives. The first

criterion [1, ch. 2 page 89] is the base one while the second

and third ones are novel in that they are column-oriented. The

first criterion needs a potentially costly a-priori estimate of the

largest singular value of the matrix while the other two do not.

They rely on the observation that the QR factorization applies

on the trailing matrix a series of well-chosen orthogonal

projections, relative to the previously factorized columns of A.

Thus, when we construct the associated Householder reflector

of a sub-column, its norm represents the projection of the

corresponding original column of A on the space orthogonal

to the sub-space spanning the previously linearly independent

columns of A. If a vector is a linear combination of a set

of other vectors, it should be included in the space spanned

by these vectors. In practice, however, this condition can, and

should, be relaxed, due to the existence of round-off errors

with the limited precision arithmetic representation of the

matrix elements.

The first deficiency criterion, the most costly one, requires

the computation of the 2-norm of A:

|Rk,k| < α ∗ ‖A‖2. (11)

Here |Rk,k| is the norm of the Householder vector constructed

at iteration k (and stored on the kth diagonal of R), ‖A‖2 is

the 2-norm of A, equivalent to the largest singular value of

A (σ1). The critical parameter α is chosen a priori as an

input to the algorithm. Its value can be adjusted according to

the numerical arithmetic precision (e.g. α ≡ ε). Given that

the computation of this quantity can be expensive, a possible

alternative to Equation (11) is the following:

|Rk,k| < α× max
1≤j≤n

‖A:,j‖. (12)

As the column with the largest 2-norm of a matrix A is in

general a good approximation of the largest singular value

σ1 [15].

We propose the second deficiency criterion that is simpler:

|Rk,k| < α× ‖A:,k‖ (13)

where A:,k is the kth column of A. The cost induced by this

criterion corresponds to computing the norm of each column

of A which is performed only once (at the beginning of the

factorization). This is not the case for QRCP in which the norm

is computed at each iteration to guarantee the best column is

pivoted to the leading position. The idea for this deficiency

criterion is that, once the previous Householder reflections

have been applied, if the norm of the new constructed House-

holder reflection is small relative to its initial value, it is a

linear combination of the previous k − 1 reflections and is

thus rejected.

The third deficiency criterion we propose takes into account

how the QR factorization operates: at iteration k, the kth

column of A was the target of updates from only the columns

on the left. Computing the largest singular values spanning

the initial k columns of A is infeasible, so we propose the

following criterion only in conjunction with the approximation

mentioned above:

|Rk,k| < α× max
1≤j≤k

‖A:,j‖. (14)

C. Known Limitations

Although in practical applications PAQR is able to reduce

the rank-deficiency of a matrix enough to drastically improve

the forward error of a rank-deficient least-squares system, it

can be sensitive to the input column order. Because PAQR

does not pivot this can affect the number of columns kept in

R11. However, the columns of R11 still contain the span of

A, and it remains correct to reject the columns in R22 as they

are flagged as linear combinations of the factorized columns

in R11.

We now present in Equation (15) a synthetic corner case

on which PAQR does not detect and remove any columns

but for which the forward error still grows beyond control

of our proposed criteria. We call these Cliff matrices, due to

the pattern of their singular value spectrum: mostly constant

singular values drop sharply off a numerical “cliff” for the

smallest ones. We define them formally as:

Cliff(m,n, α)i,j =

⎧⎪⎪⎨
⎪⎪⎩

√
1−(max(m,n)×α)2

j−1 if i < j

max(m,n)× α if i = j

0 if i > j

. (15)

A practical example of this matrix corresponds to the matrix

Gks (see Section V for application matrices).

325

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

Given the uniqueness of the QR decomposition of a matrix

(up to the signs of the diagonal elements of R), the product

of any orthonormal matrix by this Cliff matrix will generate

a QR factorization whose R factors are the Cliff matrices. By

construction, the norm of each column of a Cliff matrix is 1.

Moreover, deficiency criteria (13) and (11) are both violated

at every iteration of PAQR. This means that no column will

be flagged as rejected, and that the PAQR factorization will

be equivalent to the QR factorization. Unfortunately, from the

experimental point of view, the forward error grows with n
(the number of columns of a Cliff matrix) relative to the

least-squares solution. The accumulation of errors in the com-

puted solution by either QR or PAQR produces NaNs (Not-

a-Number). Excluding such edge cases, PAQR delivers stable

results with high numerical accuracy in practical application

cases, as we show in Section V.

IV. IMPLEMENTATIONS

We propose several implementations of PAQR, each of

which targeting a different computer architecture: sequential

implementation, designed for LAPACK [24] (Section IV-A),

batched GPU implementation, designed for MAGMA (Sec-

tion IV-B), and distributed-memory implementation, designed

for ScaLAPACK [6] (Section IV-C). Note that in the remaining

part of the paper, we use Householder orthogonalization as our

method of choice for constructing reflectors.

A. LAPACK Implementation (sequential)

A current prerequisite of PAQR (compared to QR) is the

computation of the column norms of A. Our future work can

benefit from randomized SVD or iterative methods to quickly

approximate the 2-norm of A costing O(n2) operations. As of

now however, we consider the computation of the 2-norm of

each column of A regardless of the selected α.

Modern linear algebra libraries rely on blocking strategies

to optimize their performance. While memory-bound Level

1 BLAS (scalar-based) and Level 2 BLAS (vector-based)

operations occur within limited size blocks (e.g., panels), the

majority of the operations is described through and carried

out by highly efficient computation-bound Level 3 BLAS

operations which are matrix-based.

Inside a panel, special attention must be paid to the compu-

tation of Householder vectors, as the LAPACK implementation

applies a post-processing in case the computed norm of the

Householder vector is smaller than a machine precision thresh-

old. For this reason, the PAQR deficiency criterion is checked

before the potential application of this post-processing, as

the computation of the Householder norm may be artificially

inflated by an appropriate adaptive scaling factor.

Moreover, in the presence of previously rejected columns,

the number of effective Householder vectors computed and

stored is smaller than the current number of columns of A in

the panel. Hence, every new Householder vector would need

to be stored at a different location in memory than its origin.

Traditionally, the computation of the Householder vectors re-

quires the loading of a sub-column (of A) in registers, scaling,

then storing at the original location in memory (representing

V). In our implementation, we avoid an unnecessary copy

of this vector to its final destination by storing the result

of its scaling at its final correct location right away. This is

achieved by merging the xSCAL and xCOPY operations into

a xSCALCOPY routine, all Level 1 BLAS.

Outside of a panel, the Householder vectors are stored

contiguously in memory, and hence the efficient xLARFT and

xLARFB routines can still be used to build the blocking factor,

the T matrix, and update the trailing matrix, respectively.

The potentially smaller number of Householder vectors to be

applied should be the major source of speedup of PAQR over

QR.

While the V matrix can be packed on the fly using the

above-mentioned optimization, the R matrix is sparse. Indeed,

the rejected columns are flagged but remain present inside the

R matrix. Hence, two strategies may be applied to use this

sparse R matrix for the least-squares solution phase. The first

one is to compact R, either during the factorization, or as a

post-treatment. The drawback, however, is the extra memory

traffic of potentially the whole R matrix, even in the presence

of a single rejected column. An extreme example is when the

second column of A is rejected. The second strategy is to

keep R sparse, but develop a tailored xTRSM routine that can

accommodate this sparsity pattern.

Figure 1 shows a representation of R resulting from the

PAQR factorization using the first (right) and the second

strategy (left).

B. MAGMA Implementation (batched GPU mode)

For GPU accelerators, we developed a kernel to operate

on a large set of relatively small matrices in parallel, which

is often called a batch setting. The kernel takes as input an

array of pointers that belong to independent matrices of the

same size. Each matrix A ∈ R
m×n is assumed to satisfy m ≥

n. The corresponding output is RVm×n̂ such that n̂ ≤ n.

Each RV matrix is condensed such that the n̂ columns are

adjacent to each other and aligned to the left of the matrix.

The input matrices must be of the same size, but can have

different degrees of rank deficiency. An additional output is

δ, the array of flags of each matrix that point to the column

indices that have been rejected during the factorization.

The batch PAQR implementation uses one kernel to perform

the whole factorization. Each matrix is assigned to one thread-

block. The main advantage of this approach is the optimal

memory traffic, since each matrix is read and written exactly

once. The implementation applies to small matrices that fit in

the GPU’s shared memory. While the register file provides

a faster data access, the shared memory is more flexible,

and is our choice for the kernel design. Since detecting rank

deficiency occurs at run time, it is non-trivial to maintain

constant compile-time indexing of the register file, which is

necessary to avoid register spilling. The kernel implements

Algorithm 2 in an unblocked manner, which means that the

application of the Householder reflectors are performed one

column at a time, thus eliminating the need for constructing

326

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

the T factor. The kernel works with any number of threads in

the range [n:m].

There are two main bottlenecks of the design. The first one

is computing the norm of the current column. The second is

the matrix-vector multiply (vTA) during the application of the

elementary Householder reflector (I−τvvT)A, which requires

a reduction across the columns of A. At each iteration, the

norm of the current column is computed using a standard tree

reduction in the shared memory of the GPU. If the computed

norm is less than a given threshold (defined by the user through

the kernel interface), the whole iteration is skipped and the

corresponding flag is set. Otherwise, the kernel proceeds with

the application of the Householder reflector to the trailing

submatrix. The update step begins with the computation of the

vTA product, for which threads re-organize themselves evenly

across the remaining columns of A, and an equivalent number

of independent tree reductions are executed all in parallel in

shared memory. The output of the product is scaled with τ and

stored in a shared memory vector Y , which is used to compute

the remaining rank-1 update (A = A−v×Y). As an example,

if 64 threads are used to factorize a 128 × 8 matrix, the first

iteration begins with a tree reduction using all 64 threads to

compute the norm of 128-element vector. The 64 threads are

then reorganized into 7 groups of 9 threads, with one thread

remaining idle, to compute the vTA product. In this case, 7
independent tree reductions are performed, each one using 9
threads to reduce a 128-element vector. Out of each group,

one thread writes the corresponding element of Y . The rank-1

update is performed using one thread per row. If there are more

rows than threads, a round-robin scheme is used. The kernel

interface exposes two important tuning parameters to the user.

The first is α, the parameter used in the deficiency criteria,

which controls the numerical behavior, and also affects the

performance, of the batch PAQR kernel. The second is the

number of threads used in the factorization, which controls

the occupancy and the performance of the kernel as well.

C. ScaLAPACK Implementation (distributed-memory mode)

ScaLAPACK has a similar structure to LAPACK, in the

sense that the high-level routines resemble a sequential imple-

mentation, while internally they rely on lower-level libraries

to seamlessly handle inter-process communication.

A first major difference of this distributed-memory imple-

mentation, compared to the sequential or shared-memory one,

is that A is distributed over the MPI processes following a

2D-block-cyclic scheme as shown in Figure 2. Given the char-

acteristics of PAQR (some Householder vectors may contain

more rows than would have otherwise been the case in QR),

the communication pattern of the factorization might differ.

Indeed, some processes may be involved in the communication

and computation relative to a panel while these processes

would not have been involved otherwise. However, this differ-

ence does not increase the overall volume of communication

and/or computation.

A second major difference is that the block of Householder

vectors computed within each panel is broadcast from the set

of panel processes to the set of processes updating the trailing

matrix. While the number of vectors to be communicated is de-

terministic in QR (corresponding to the size of the panel) this

number is dynamic in PAQR, as it depends on the number of

rejected columns, and should be communicated together with

the Householder vectors. While the reduction in computation

is the major source of speedup of PAQR over QR in a shared-

memory environment, the reduction in communication volume

of the Householder vectors is an important additional source

of speedup in the distributed-memory setting.

Figure 2 depicts a representation of R and V at the end of

a PAQR factorization.

Fig. 2. PAQR on a 2D-block cyclic matrix in distributed-memory environ-
ment. The dark colors correspond to R. The light colors correspond to V .
Every color (blue, red, green, yellow) correspond to a different process in the
grid. The dashed area corresponds to rejected columns in R. The grey areas
correspond to unused space freed-up by PAQR.

V. EXPERIMENTS

This section presents the experiments comparing PAQR with

QR and QRCP.

A. Experimental Setting

1) Matrices: Three sets of matrices were used: (a) Test

matrices; (b) Weighted least-squares (WLS) matrices; and (c)
Quantum many-body matrices.

a) Test matrices: The first set of matrices summarized in

Table I were used [17] for the validation of Communication
Avoiding Rank Revealing QR (CARRQR). The Rand and

Vandermonde matrices were added, while the Gks, H-C, Scale
and Kahan matrices were omitted.

b) Weighted least-squares (WLS) matrices: The second

set of matrices consists of Vandermonde-like matrices that

can be used for interpolating 3D polynomials from scattered

data using an application of the weighted least-squares (WLS)

algorithm [31]. These WLS interpolation matrices are derived

from finite-volume discretizations on irregular meshes, where

m cells, each with n geometric moments, are used to calculate

“stencils” X that determine polynomial coefficients:

W AX ≈W I (16)

327

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TEST MATRICES USED IN SECTION V

No. Matrix Description
1 Rand rand function in MATLAB generating random matrices.
2 Vandermonde vander function in MATLAB generating Vandermonde matrices.
3 Baart Discretization of the 1st kind Fredholm integral equation [25].
4 Break-1 Break 1 distribution, matrix with prescribed singular values [26].
5 Break-9 Break 9 distribution, matrix with prescribed singular values [26].
6 Deriv2 Computation of second derivative [25].
7 Devil The devil’s stairs, a matrix with gaps in its singular values [27].
8 Exponential Exponential Distribution, σ1 = 1, σi = σi − 1

(i = 2, ..., n), α = 10− 1/11 [26].
9 Foxgood Severely ill-posed test problem [25].

10 Gks An upper-triangular matrix whose j-th diagonal element is
1/
√
j and whose i, j element is −1/√j, for j > i [28], [29].

11 Gravity 1D gravity surveying problem [25].
12 H-C Matrix with prescribed singular values,

see description in [30].
13 Heat Inverse heat equation [25].
14 Phillips Phillips’ famous test problem [25].
15 Random Random matrix A = 2× rand(n)− 1 [29].
16 Scale Scaled random matrix, a random matrix whose i-th row

is scaled by the factor θi/θ [29]. We choose θ = 10·.
17 Shaw 1D image restoration model [25].
18 Spikes Test problem with a “spiky” solution [25].

19 Stewart Matrix A = UΣV T + 0.1σ50× rand(n) [27].
20 Ursell Integral equation with no square integrable solution [25].
21 Wing Test problem with a discontinuous solution [25].
22 Kahan Kahan matrix.

for I being the identity matrix. Note that this is a least-

squares system with multiple solutions X ∈ R
n×n for multiple

right-hand sides with W ∈ R
m×m being a diagonal weight

matrix. The weight matrix is designed to decay rapidly to

emphasize closer values over distant ones in the interpolation,

which can create very small row scaling. This results in least-

squares systems that can have very poor conditioning, due

to small weights and cells being arbitrarily small or close

together, which can create matrix entries beyond the limits

of floating point precision: O(γm), for any γ > 0. γ are “m-

th order” volume moments, meaning if the smallest dimension

is γ, there could be two rows that differ by as little as γm.

If there exist insufficient or co-linear cells, this may also

prevent determination of some of the coefficients, making

the interpolation matrix A rank-deficient. Finally, to maintain

uniform matrix size for the entire batch, missing interpolation

data are replaced with zero-padded rows, which may occur in

any part of the matrix.

c) Quantum many-body matrices: The third set of ma-

trices comes from quantum many-body problems. Fundamen-

tally, solution of these problems for molecular systems requires

manipulation of a high-dimensional tensor which describes the

interactions between electrons: the Coulomb tensor, gpq,rs,

p, q, r, s ∈ [0, n). Despite its large dimension, which grows

as O(N2
A) with system size (NA), the Coulomb tensor is

inherently low-rank, and can be straightforwardly shown that

it admits a matrix rank which grows as O(NA) with system

size when expressed in an atom-centered basis. This low-

rank character has sparked research efforts dedicated to the

construction and manipulation of data-sparse representations

of the Coulomb tensor. Projection, grid, and local orbital

methods have the benefit of exhibiting a relatively low com-

munication overhead but do not produce the most compact

representations. Matrix factorizations generally produce much

more compact representations, but are accompanied by a

much higher computational complexity and communication

requirements which often complicate their usage on massively

parallel architectures. Here, we examine the application of

PAQR to produce low-rank representations of a representative

set of Coulomb tensors generated from a range of molecular

systems.

The Coulomb tensor has a natural matrization in R
n2×n2

by combining adjacent indices gpq,rs → gi,j , i, j ∈ [0, N)
with N = n2. We have applied our methodology to three

molecular test cases, all calculations were carried out within

the NWChemEx program using either the 6-31G [32], [33] or

6-31G(d) [34] atom-centered Gaussian basis sets. These cases

are: a Uracil trimer (36 atoms, N = 57, 600 within 6-31G),

5-mer (60 atoms, N = 160, 000 within 6-31G), and the Beta

Carotene molecule (96 atoms, N = 506, 944 within 6-31G(d)).

B. Experimental results

1) Accuracy: Table II summarizes the numerical accuracy

tests of PAQR compared to that of QR and QRCP. These

results are obtained with our MATLAB implementation of

PAQR using the set of Test matrices Table I. The QR and

QRCP implementations are the MATLAB’s own version of

the corresponding algorithms and were invoked as [q,r] =
qr(A) and [q,r,p] = qr(A), respectively. All matrices are of

size 1000×1000. For each matrix A, random solution vectors

x̂ are generated. The corresponding right-hand sides b are

computed as b = Ax. This ensures the existence of a valid

solution to the system of equations Ax = b. The triangular

solve routine (xTRSM) is used on the R factors returned by

the three variants. While QR returns a full R factor, PAQR

and QRCP return a truncated R factor, that is supposed to

only capture the (approximate) rank.

The forward and backward errors are already defined in

Equation (7) and Equation (8), respectively. The orthogonality
error corresponds to:

||AT (Ax− b)||2
||A||22

. (17)

This metric is more suited to least-squares problems compared

to the backward error which is more appropriate for systems

of linear equations.

Among the 22 test matrices, seven are full-rank (Rand,
Break-1, Break-9, Deriv2, Phillips, Random, Stewart), while

the others exhibit varying degrees of rank deficiency.

From our preliminary tests, we notice that all the deficiency

criteria presented in Section III-B give similar numerical

results except for the GKS matrix. Therefore, in the remaining

of the paper we use the deficiency criterion from Equation (13)

and, unless otherwise mentioned, we set α = m× ε, where m
is the row-space dimension of the matrix.

All of the following PAQR results use the first deficiency

criteria (Equation (14)) for its robustness, as the other criteria

are only approximations.

First, all methods on all matrices have a backward error of

the order of (or smaller than) the machine precision ε. This

328

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ACCURACY RESULTS COMPARING PAQR WITH QR AND RRQR BASED ON FORWARD, BACKWARD, AND ORTHOGONALITY ERRORS ON THE SET OF TEST

MATRICES. FOR DOUBLE PRECISION ARITHMETIC, ERROR SHOULD BE AROUND 10−16 .

Matrix κ2(A) Forward error Backward error Orthogonality error Rncol rank(R)
QR PAQR QRCP QR PAQR QRCP QR PAQR QRCP PAQR PAQR SVD

Random∗ 10+03 10−14 10−13 10−14 10−16 10−15 10−16 10−14 10−14 10−14 1000 1000 1000
Rand∗ 10+04 10−13 10−12 10−12 10−16 10−15 10−16 10−15 10−16 10−15 1000 1000 1000
Deriv2 10+06 10−09 10−08 10−10 10−15 10−14 10−16 10−15 10−15 10−14 1000 1000 1000
Stewart∗ 10+06 10−11 10−10 10−11 10−16 10−16 10−16 10−15 10−15 10−15 1000 1000 1000
Phillips 10+10 10−07 10−06 10−06 10−16 10−15 10−16 10−15 10−15 10−14 1000 1000 1000
Break-1∗ 10+11 10−05 10−04 10−05 10−16 10−15 10−16 10−14 10−14 10−14 1000 1000 1000
Break-9∗ 10+11 10−05 10−04 10−04 10−16 10−15 10−16 10−14 10−14 10−14 1000 1000 1000
Ursell 10+13 10−03 10−03 10−01 10−16 10−15 10−15 10−15 10−14 10−15 1000 999 999
H-C∗ 10+13 10−04 10−03 10−01 10−16 10−15 10−14 10−15 10−16 10−14 1000 999 999
Scale∗ 10+17 10−12 10+00 10+00 10−16 10−16 10−14 10−14 10−14 10−14 914 794 802
Kahan 10+17 10+01 10−02 10−02 10−16 10−14 10−16 10−14 10−14 10−15 999 999 999
Baart 10+19 10+02 10+01 10+01 10−17 10−15 10−14 10−14 10−15 10−14 163 16 13
Devil∗ 10+19 10+01 10+00 10+00 10−16 10−15 10−14 10−14 10−14 10−14 469 421 440
Exponential∗ 10+19 10+02 10+00 10+00 10−17 10−15 10−14 10−14 10−15 10−14 152 136 140
Foxgood 10+21 10+03 10+00 10+00 10−17 10−16 10−14 10−13 10−14 10−11 71 31 30
Gks 10+21 10+280 10+280 10−02 10−19 10−19 10−15 10+262 10+262 10−15 1000 999 999
Gravity 10+20 10+03 10+00 10+00 10−18 10−16 10−15 10−14 10−14 10−12 152 44 45
Shaw 10+20 10+03 10+00 10+00 10−18 10−17 10−16 10−13 10−15 10−12 77 19 20
Spikes 10+20 10+03 10+02 10+01 10−18 10−14 10−14 10−14 10−14 10−14 56 31 31
Wing 10+21 10+05 10+01 10+01 10−20 10−16 10−15 10−13 10−14 10−12 32 8 8
Vandermonde 10+22 10+70 10+00 10+00 10−18 10−15 10−15 10+54 10−15 10−11 103 42 43
Heat 10+232 10+215 10+00 10+00 10−230 10−15 10−14 10−15 10−15 10−13 987 588 588

means that all methods correctly minimize the least-squares

error of the system.

Second, on the set of full-rank matrices, all methods have

similar forward errors. We note a slight discrepancy of no more

than an order of magnitude worse for PAQR. This is attributed

to the fact that our MATLAB PAQR implementation differs

from the MATLAB QR and QRCP implementations.

Third, the key result of this paper, on the set of rank-

deficient matrices, PAQR exhibits a much more stable be-

haviour than QR and similar behavior to QRCP in terms of

forward error. For instance, we can observe stark differences

between PAQR and QR on the Vandermonde and heat matri-

ces.

Fourth, as expected, PAQR does not remove any column

from R when A is full-rank. More importantly, when A is

rank-deficient, the number of retained (non-flagged) columns

remains greater than the rank of A. For instance, in the case of

the heat matrix, PAQR only flags 13 columns, while the true

rank of the matrix is 588. Nevertheless, the removal of these

few columns is still enough to lead to an accurate solution

(forward error of 1.01 compared to 1.40× 10+215 with QR).

Among these matrices, we want to discuss two that are of

interest: Gks and Scale. The Gks matrix is an example of

the pathological case presented in Section III-C. The rank

of this matrix is 999 and its spectrum reveals that the first

n − 1 singular values range from 26.1 and 0.041 while the

smallest singular value is equal to 6.6 × 10−20. In that case,

as expected PAQR is not able to detect the single column that

QRCP permutes at the end and then is removed before the

call to TRSM. Note that when using the criterion one (more

strict), PAQR gives similar results to QRCP. The Scale matrix

is a perfect illustration that in some cases QRCP can fail to

reveal the rank. Here, the spectrum does not have a gap and

so the numerical rank 802 is more sensitive to small roundoff

errors and approximations. Therefore, the truncation based on

the diagonal elements of R causes both PAQR and QRCP to

fail, whereas the classical QR factorization does not.

2) PAQR’s Efficiency:
a) LAPACK Implementation: We now compare the per-

formance of PAQR with QR and QRCP in the LAPACK

implementation. Given that this implementation is sequential,

we want to highlight the importance of the location of the

rejected columns in the matrix. To this end, we generate

random matrices of size 10, 000× 10, 000 with the following

characteristics: Afull, full-rank; Abeg , where the first 5000
columns are set to zero; Amid, where the middle 5000 columns

are set to zero; Aend, where the last 5000 columns are set to

zero.

Table III summarizes the runtimes on one core of a DGX

A100 [35] server. We use 1 AMD EPYC 7742 CPU core;

MKL 2019.0.3 library as the Level i BLAS mplementation;

and GCC 7.3.0 compiler. As expected, the runtime of PAQR

is similar to that of QR on the full-rank matrix. Moreover,

on the rank-deficient matrices, and on matrices of same size

and same amount of rejected columns, the performance of

PAQR improves with more rejected columns appearing at the

beginning of the matrix.

b) Batch PAQR factorization on GPUs: We tested the

GPU-based batch PAQR factorization on two sets of the set

of WLS matrices. Since the current kernel design caches the

entire matrix in the shared memory of the GPU, we show

only two matrix sizes which satisfy this condition. For each

set, 1000 matrices of the same size, but different ranks, were

tested. Table IV shows the performance of the batched PAQR

329

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

TABLE III
LAPACK PERFORMANCE. IMPACT OF THE LOCATION OF REJECTED

COLUMNS ON PAQR FACTORIZATION PERFORMANCE.

Method Time (seconds)
Afull Abeg Amid Aend

QR 138
PAQR 138 129 89 43
QRCP 163 211 209 211

factorization on an NVIDIA Tesla A100 GPU and on the AMD

Instinct MI100 GPU. The results correspond to experiments

conducted in double precision. We use cuBLAS and hipBLAS

as the reference implementations for a standard batch QR

factorization. The performance of these two libraries does not

take advantage of any rank deficiency in the matrices, so their

performance is oblivious to this property. We show the timings

of a regular QR kernel of our design qr gpu for full rank

matrices that are randomly generated, and then the paqr gpu

kernel timing on the WLS set of matrices. The paqr gpu kernel

is superior to the reference kernels in every test case.

The following results are obtained for the 27 × 20 and

125 × 56 matrices, respectively. On the A100 GPU, the

speedups against cuBLAS increase from 2.7× (resp. 2.2×) for

qr gpu to 2.9× (resp. 2.3×) for paqr gpu. Note that varying

timings for paqr gpu could be observed based on the pattern

of rank deficiency, but it should never be slower than qr gpu.

On the MI100 GPU, the speedups against hipBLAS increase

from 7.8× (resp. 1.3×) for qr gpu to 8.7× (resp. 1.4×) for

paqr gpu. In order to justify the significant speedups against

the vendor libraries for the full rank case, we profiled cuBLAS

and hipBLAS for the aforementioned experiments. cuBLAS

launches one kernel to perform the whole QR factorization,

which is similar to our batch qr gpu code. However, it uses

only 63 thread-blocks for 1000 matrices of size 27×20, and

125 thread-blocks for 1000 matrices of size 125×56. Using

fewer thread-blocks indicates that one thread-block processes

multiple matrices, which affects the kernel’s overall occupancy

on the GPU. hipBLAS launches several kernels to perform

the factorization, which causes serious overhead in terms

of unnecessary global memory traffic. We also observe a

significant drop in the performance gain for the set of 125×56
matrices on the MI100 GPU. We believe this is mainly due to

the relatively small shared memory on the MI100 (64KB),

compared to the A100 (192KB). paqr gpu requires about

57KB for the larger matrix set, which means that each compute

unit in the MI100 GPU can host only one matrix at a time. On

the A100, assuming that the CUDA runtime takes the correct

scheduling decision, three matrices can be factorized on the

same multiprocessor simultaneously.

c) ScaLAPACK Implementation: We now compare the

performance of PAQR with QR and QRCP in the ScaLAPACK

implementation for the set of Quantum many-body matrices.

Table V shows factorization timings gathered on the Oak

Ridge National Laboratory Summit Supercomputer [36]. We

use 42 Power9 CPU cores per node, and do not rely on

the GPUs, as ScaLAPACK cannot take advantage of them;

TABLE IV
PERFORMANCE OF THE BATCH PAQR IN DOUBLE PRECISION ON THE

A100 GPU USING CUDA-11.6, AND ON THE MI100 GPU USING

ROCM-5.0. RESULTS ARE SHOWN FOR TWO DIFFERENT SIZES OF THE

WLS SET OF MATRICES. THE Ref. ENTRY REFERS TO CUBLAS OR

HIPBLAS.

Size Ref. (μs) qr gpu (μs) paqr gpu (μs)

A100
27×20 294.13 109.33 (2.7×) 100.46 (2.9×)

125×56 6215.2 2852.4 (2.2×) 2692.2 (2.3×)

MI100
27×20 1508.7 194.31 (7.8×) 174.21 (8.7×)

125×56 11057.85 8561.13 (1.3×) 8039.02 (1.4×)

TABLE V
TIME TO FACTORIZATION RESULTS GATHERED ON SUMMIT FOR QR,

QRCP, AND PAQR. BLANK CELLS CORRESPOND TO RUNS THAT DO NOT

FIT IN MEMORY. ∗ CORRESPONDS TO IRRELEVANT RUNS. − CORRESPONDS

TO SKIPPED RUNS. ε CORRESPONDS TO DOUBLE-PRECISION.

#Nodes Method Matrix size

57 600 160 000
Time(s) #Def cols Time(s) #Def cols

1 PAQR ε 160 45180
PAQR 10−8 117 52073
QR 336
RRQR 4042

2 PAQR ε 109 45217
PAQR 10−8 75 52073
QR 243
RRQR 2087

4 PAQR ε 54 44792 563 135583
PAQR 10−8 41 52073 454 150673
QR 100 1779
RRQR 1050 *

8 PAQR ε 38 44300 411 134036
PAQR 10−8 30 52073 220 150673
QR 63 919
RRQR 556 *

16 PAQR ε 31 43996 191 133930
PAQR 10−8 25 52073 136 150673
QR 44 498
RRQR 304 *

32 PAQR ε 23 43644 138 133005
PAQR 10−8 20 52073 96 150673
QR 32 355
RRQR 174 2086

64 PAQR ε - 78 132636
PAQR 10−8 - 62 150673
QR - 162
RRQR - 1103

ESSL 6.3.0 library as the Level 3 BLAS implementation;

IBM Spectrum 10.4.0.3 as the MPI library; and GCC 9.1.0

compiler. The QR and QRCP implementation used are the

ScaLAPACK’s PDGEQRF and PDGEQPF routines. PAQR

was implemented based on the PDGEQRF routine. Different

matrix sizes (m = n = 57, 600 and m = n = 160, 000)

and varying number of nodes of Summit (1 to 64) were used.

Whenever a data point is missing in Table V, this is due to

either: (i) the run exceeded the maximum job allocation time

(too expensive to compute in a reasonable amount of time); (ii)

330

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

or the problem size did not warrant the use of that many nodes.

For PAQR, two rejection criteria thresholds were used: 1e−8

and ε = 2.22e−16 (64bit arithmetic machine-precision), under

the assumption that, the larger the threshold, the lower the

rank of the approximation obtained. Section V-A1 discusses

that the true rank of such matrices scales asymptotically as the

square root of their size. The column “Def cols” in Table V

shows the number of rejected columns detected by PAQR for

a given input tolerance.

In every case, PAQR removes a significant number of

columns from the factorization. For the problem size of

57, 600, PAQR can achieve an overall speedup greater than

3x compared to traditional QR. When we compare the time

to factorization of PAQR to that of QRCP, on one node,

PAQR is almost 40x faster. This is a significant speedup where

for this problem: PAQR removes 52, 073 rejected columns.

For the problem size of 160, 000, we see PAQR can achieve

similar results. PAQR on 32 nodes is over 20x faster than

QRCP and almost 3.5x faster than QR. For this case, the

deficiency criteria is defined as 10−8 and PAQR removes

150, 673 columns which corresponds to 94% of the number

of columns of the input matrix.

Finally, we performed the PAQR factorization of the third

problem from the Quantum many-body matrix set (Beta

Carotene) of size 506, 944 on 128 nodes of the Summit

supercomputer. The runtime was 1155 seconds. PAQR was

able to flag and remove 393, 805 columns. This achievement

of PAQR would not be possible to obtain with QRCP in any

reasonable amount of time.

VI. CONCLUSION

This paper presented PAQR, an algorithm for the factor-

ization of rank-deficient matrices arising from linear least-

squares problems. We showed our method is well suited for

large-scale problems. Indeed, PAQR is faster than QR and

appears to be as numerically stable as QRCP. This technique

can be implemented using different criteria to flag potentially

rejected columns in rank-deficient matrices. These criteria are

adaptable as they can be conveniently adjusted according to the

type of arithmetic precision used and the type of application

originating the matrix elements.

Preliminary tests have revealed the efficiency of the pro-

posed algorithm and its robustness vis-à-vis a variety of practi-

cal use cases. Indeed, PAQR was implemented in three modes:

sequential, GPU, and distributed-memory. It was applied on

a variety of matrices of ranging sizes and arising in various

application fields. Further examination of the behaviour of the

algorithm will strengthen these results.

REFERENCES

[1] A. Björck, Numerical Methods for Least Squares Problems. SIAM
Philadelphia, 1996.

[2] C. Lawson and R. Hanson, Solving Least Squares Problems. Englewood
Cliffs, NJ: Prentice-Hall, 1974.

[3] H. Avron, P. Maymounkov, and S. Toledo, “Blendenpik: Supercharging
LAPACK’s least-squares solver,” SIAM Journal on Scientific Computing,
vol. 32, no. 3, pp. 1217–1236, 2010. [Online]. Available:
http://dx.doi.org/10.1137/090767911

[4] G. H. Golub and C. F. V. Loan, Matrix Computations, 4th ed. Baltimore,
MD, USA: The Johns Hopkins University Press, 2013.

[5] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler,
A. Heinecke, H.-J. Bungartz, and H. Lederer, “The ELPA library:
scalable parallel eigenvalue solutions for electronic structure theory and
computational science,” Journal of Physics: Condensed Matter, vol. 26,
p. 213201, 2014.

[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide.
Philadelphia, PA: SIAM, 1997, http://www.netlib.org/scalapack/slug/.

[7] J. Poulson, B. Marker, R. van de Geijn, J. Hammond, and N. Romero,
“Elemental: A new framework for distributed memory dense matrix
computations,” ACM Trans. Math. Software, vol. 39, 2013.

[8] J. Xiao, M. Gu, and J. Langou, “Fast parallel randomized QR with col-
umn pivoting algorithms for reliable low-rank matrix approximations,” in
24th IEEE International Conference on High Performance Computing,
Data, and Analytics (HIPC), Jaipur, India. IEEE, dec 2017, best Paper
Award.

[9] J. Todd, “On condition numbers,” Programmation en Mathématiques
Numériques, vol. 7, no. 165, pp. 141–159, 1966, Éditions Centre Nat.
Recherche Sci., Paris, 1968.

[10] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2002.

[11] T. F. Chan, “Rank-revealing QR factorizations,” Linear Algebra and its
Applications, vol. 88/89, pp. 67–82, 1987.

[12] S. Chandrasekaran and I. Ipsen, “On rank-revealing QR factorizations,”
SIAM Journal on Matrix Analysis and Applications, vol. 15, 1994.

[13] Y. P. Hong and C.-T. Pan, “Rank-revealing QR factorizations and
the singular value decomposition,” Mathematics of Computation,
vol. 58, no. 197, pp. 213–232, 1992. [Online]. Available:
http://www.jstor.org/stable/2153029

[14] M. Gu and S. Eisenstat, “Efficient algorithms for computing a strong
rank-revealing QR factorization,” SIAMX, vol. 17, no. 4, pp. pp. 848–
869, 1996.

[15] C. Bischof and G. Quintana-Orti, “Computing rank-revealing QR fac-
torizations of dense matrices,” ACM Trans. Math. Soft., vol. 24, no. 2,
pp. 226–253, 1998.

[16] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-
optimal parallel and sequential QR and LU factorizations,” SIAM
Journal on Scientific Computing, vol. 34, no. 1, pp. A206–A239, 2012.
[Online]. Available: https://doi.org/10.1137/080731992

[17] J. W. Demmel, L. Grigori, M. Gu, and H. Xiang, “Communication
avoiding rank revealing QR factorization with column pivoting,” SIAM
Journal on Matrix Analysis and Applications, vol. 36, no. 1, pp. 55–89,
2015. [Online]. Available: https://doi.org/10.1137/13092157X

[18] P.-G. Martinsson, G. Quintana OrtÍ, N. Heavner, and R. van de
Geijn, “Householder QR factorization with randomization for
column pivoting (HQRRP),” SIAM Journal on Scientific Computing,
vol. 39, no. 2, pp. C96–C115, 2017. [Online]. Available:
https://doi.org/10.1137/16M1081270

[19] J. A. Duersch and M. Gu, “Randomized QR with column pivoting,”
SIAM Journal on Scientific Computing, vol. 39, no. 4, pp. C263–C291,
2017. [Online]. Available: https://doi.org/10.1137/15M1044680

[20] ——, “Randomized projection for rank-revealing matrix factorizations
and low-rank approximations,” SIAM Review, vol. 62, no. 3, pp. 661–
682, 2020. [Online]. Available: https://doi.org/10.1137/20M1335571

[21] W. Hayes and K. R. Jackson, “A survey of shadowing methods for
numerical solutions of ordinary differential equations,” Appl. Numer.
Math., vol. 53, p. 299–321, 2005.

[22] R. M. Corless and N. Fillion, A Graduate Introduction to Numerical
Methods from the Viewpoint of Backward Error Analysis. Springer,
2013.

[23] T. A. Davis, “Algorithm 915, suitesparseqr: Multifrontal
multithreaded rank-revealing sparse qr factorization,” ACM Trans.
Math. Softw., vol. 38, no. 1, dec 2011. [Online]. Available:
https://doi.org/10.1145/2049662.2049670

[24] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. D. J. Dongarra, J. D.
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK Users’ Guide, 3rd ed. Philadelphia, Pennsylvania, USA:
SIAM, 1999.

331

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

[25] P. C. Hansen, “Regularization tools version 4.0 for Matlab 7.3,”
Numerical Algorithms, vol. 46, no. 2, pp. 189–194, Oct 2007. [Online].
Available: https://doi.org/10.1007/s11075-007-9136-9

[26] C. H. Bischof, “A parallel QR factorization algorithm with
controlled local pivoting,” SIAM Journal on Scientific and Statistical
Computing, vol. 12, no. 1, pp. 36–57, 1991. [Online]. Available:
https://doi.org/10.1137/0912002

[27] G. W. Stewart, “The QLP approximation to the singular
value decomposition,” SIAM Journal on Scientific Computing,
vol. 20, no. 4, pp. 1336–1348, 1999. [Online]. Available:
https://doi.org/10.1137/S1064827597319519

[28] G. Golub, V. Klema, and G. W. Stewart, “Rank degeneracy and least
squares problems,” Stanford University, Tech. Rep., 1976.

[29] M. Gu and S. C. Eisenstat, “Efficient algorithms for computing a
strong rank-revealing QR factorization,” SIAM Journal on Scientific
Computing, vol. 17, no. 4, pp. 848–869, 1996. [Online]. Available:
https://doi.org/10.1137/0917055

[30] D. A. Huckaby and T. F. Chan, “Stewart’s pivoted QLP
decomposition for low-rank matrices,” Numerical Linear Algebra
with Applications, vol. 12, no. 2-3, pp. 153–159, 2005. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.404

[31] D. Devendran, D. Graves, H. Johansen, and T. Ligocki, “A fourth-
order Cartesian grid embedded boundary method for Poisson’s
equation,” Communications in Applied Mathematics and Computational
Science, vol. 12, no. 1, pp. 51–79, May 2017. [Online]. Available:
https://doi.org/10.2140/camcos.2017.12.51

[32] R. Ditchfield, W. J. Hehre, and J. A. Pople, “Self-consistent molecular-
orbital methods. IX. An extended Gaussian-type basis for molecular-
orbital studies of organic molecules,” J. Chem. Phys., vol. 54, pp. 724–
728, 1971.

[33] W. J. Hehre, R. Ditchfield, and J. A. Pople, “Self-consistent molecular
orbital methods. XII. further extensions of Gaussian-type basis sets for
use in molecular orbital studies of organic molecules,” J. Chem. Phys.,
vol. 56, pp. 2257–2261, 1972.

[34] P. C. Hariharan and J. A. Pople, “The influence of polarization functions
on molecular orbital hydrogenation energies,” Theor. Chim. Acta, vol. 28,
pp. 213–222, 1973.

[35] “Nvidia gtx a100 datasheet,” https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf.

[36] “Summit supercomputer specification,” https://www.olcf.ornl.gov/olcf-
resources/compute-systems/summit/.

332

Authorized licensed use limited to: University of Manchester. Downloaded on July 08,2024 at 09:25:57 UTC from IEEE Xplore. Restrictions apply.

