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ABSTRACT
Advanced failure recovery strategies in HPC system bene-
fit tremendously from in-place failure recovery, in which the
MPI infrastructure can survive process crashes and resume
communication services. In this paper we present the ratio-
nale behind the specification, and an effective implementa-
tion of the Revoke MPI operation. The purpose of the Re-
voke operation is the propagation of failure knowledge, and
the interruption of ongoing, pending communication, under
the control of the user. We explain that the Revoke opera-
tion can be implemented with a reliable broadcast over the
scalable and failure resilient Binomial Graph (BMG) over-
lay network. Evaluation at scale, on a Cray XC30 super-
computer, demonstrates that the Revoke operation has a
small latency, and does not introduce system noise outside
of failure recovery periods.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—fault tolerance;
D.1.3 [Programing Techniques]: Concurrent Program-
ming—distributed programming ; D.4.4 [Operating Systems]:
Communication Management—network communication

1. INTRODUCTION
As the number of components comprising HPC systems in-
creases, probabilistic amplification entails that failures are
becoming a common event in the lifecycle of an applica-
tion. Currently deployed Petascale machines, like Titan or
the K-computer, experience approximately one failure every
10 hours [23], a situation which is expected to worsen with
the introduction of Exascale systems in the near future [2].
Coordinated Checkpoint/Restart (CR), either at the appli-
cation or the system level, is currently the most commonly
deployed mechanism to circumvent the disruptions caused
by failures. It can be implemented without meaningful sup-
port for fault tolerance in the Message Passing Interface

(MPI). However, models and analysis [16, 8] indicate that
the status-quo is not sustainable, and either CR must dras-
tically improve (with the help of in-place checkpointing [5,
21], for example), or alternative recovery strategies must be
considered. The variety of prospective techniques is wide,
and notably includes checkpoint-restart variations based on
uncoordinated rollback recovery [9], replication [16], or algo-
rithm based fault tolerance —where mathematical proper-
ties are leveraged to avoid checkpoints [13, 10]. A common
feature required by most of these advanced failure recovery
strategies is that, unlike historical rollback recovery where
the entire application is interrupted and later restarted from
a checkpoint, the application needs to continue operating de-
spite processor failures, so that, whatever the recovery pro-
cedure, it can happen in-line and in-place. The User Level
Failure Mitigation (ulfm) proposal [6] is an effort to de-
fine meaningful semantics for restoring MPI communication
capabilities after a failure.

One of the most important features provided by the ulfm
interface is the capability to interrupt ongoing MPI opera-
tions, in order for the application to stop the normal flow
of processing, and regroup in a recovery code path that
performs the application directed corrective actions. The
ulfm API exposes that operation to the users, through a
function named MPI_COMM_REVOKE, so that applications can
selectively trigger this interruption only when the recovery
strategy is collective, and on the scope of the communication
objects that need to be repaired. In this paper, we investi-
gate an effective implementation of such a Revoke operation,
based on the Binomial Graph topology [3].

The contribution of this paper is threefold: In Section 2,
we present the rationale for non-uniform error reporting in
MPI operations, and thereby infer the specification of an ex-
plicit failure propagation routine that can interrupt a failed
communication plan; in Section 3 we lay down the require-
ments of the proposed Revoke operation in terms of a reliable
broadcast with relaxed properties, expose that the BMG
overlay broadcast has the desired resiliency while remaining
scalable, and describe important implementation features
of the BMG based Revoke operation; then in Section 4 we
present the performance of the BMG based Revoke on a
Cray supercomputer, which is, to our knowledge, the first
practical evaluation of a reliable broadcast at such a large



scale. We then discuss, in Section 5, how these contribu-
tions contrast with, and complement related works, before
we conclude.

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed
design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial area
of fault tolerance research. Although in the most adverse hy-
pothesis of a completely asynchronous system, failures (even
simple processes crash, as we consider here) are intractable
in theory [17], the existence of an appropriate failure de-
tector permits resolving most of the theoretical impossibili-
ties [11]. In order to avoid deadlocks, a process needs only to
know about failures of processes it is actively communicat-
ing with. Requiring complete awareness of failures of every
process by every other process would generate an immense
amount of system noise (from heartbeat messages injected
into the network and the respective treatments on the com-
puting resources to respond to them), and it is known that
MPI communication performance is very sensitive to sys-
tem noise [22]. Furthermore, processes that are not trying
to communicate with the dead process do not need, a priori,
to be aware of its failure, as their operations are with alive
processors and therefore deadlock-free. As a consequence,
failure detection in ulfm only requires to detect failures of
processes that are active partners in a communication oper-
ation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detection
of failures at any rank results in MPI automatically altering
the state of all communication objects in which the associ-
ated process appears (i.e. communicators, windows, etc.).
In such a model, it is understood that the failure “dam-
ages” the communication object and renders it inappropri-
ate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
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Figure 1: The transitive communication pattern in
plan A must be interrupted, by revoking the com-
munication context, before any process can switch
to the recovery communication pattern plan B. Oth-
erwise, unmatched operations in plan A could result
in deadlocks.

is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.
Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.

An additional criterion to consider is that some MPI oper-
ations are collective, or have a matching call at some other
process (i.e. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that par-
ticipated in the communication. This would easily permit
tracking the global progress of the application (and then in-
fer a consistent, synchronized recovery point). However, the
performance consequences are dire, as it requires that ev-
ery communication concludes with an agreement operation
between all participants in order to determine the global
success or failure of the communication, as viewed by each
process. Such an operation cannot be possibly achieved in
less than the cost of an AllReduce, even without accounting
for the cost of actually tolerating failures during the op-
eration, and would thus impose an enormous overhead on
communication. In regard to the goal of maintaining an un-
changed level of performance, it is clearly unacceptable to
double, at best, the cost of all communication operations,
especially when no failure has occurred.

As a consequence, in ulfm, the reporting of errors has a local
operation semantic: the local completion status (in error, or
successfully) cannot be used to assume if the operation has
failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence of
failures has the potential to deeply disturb the application
and prevent an effective recovery from being implemented.



Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk−1, then sends a message to Pk+1 (when
such processes exist). Let’s observe the effect of introduc-
ing a failure in plan A, and consider that P1 has failed. As
only P2 communicates directly with P1, other processes do
not detect this condition, and only P2 is informed of the
failure of P1. The situation at P2 now raises a dilemma:
P3 waits on P2, a non-failed process, therefore the opera-
tion must block until the matching send is posted at P2;
however, P2 knows that P1 has failed, and that the appli-
cation should branch into its recovery procedure plan B ; if
P2 were to switch abruptly to plan B, it would cease match-
ing the receives P3 posted following plan A. At this point,
without an additional MPI construct, the application would
reach a deadlock: the messages that P3 to Pn are waiting for
will never arrive. The proposed solution to resolve this sce-
nario is that, before switching to plan B, the user code in P2

calls MPI_COMM_REVOKE, a new API which notifies all other
processes in the communicator that a condition requiring
recovery actions has been reached. Thanks to this flexibil-
ity, the cost associated with consistency in error reporting
is paid only after an actual failure has happened, and only
when necessary to the algorithm, and applications that do
not need consistency, or in which the user can prove that
the communication pattern remains safe, can enjoy better
recovery performance.

3. THE REVOKE OPERATION
When a process of the application calls MPI_COMM_REVOKE

(similar operations exist for windows and files), all other
processes in the communication object eventually receive a
notification. The MPI_COMM_REVOKE call has an effect on the
entire scope of the communication context object, without
requiring a collective or matching call at any participant.
Instead, the effect of the Revoke operation is observed at
other processes during non-matching MPI communication
calls: when receiving this notification, any communication
on the communicator (ongoing or future) is interrupted and
a special error code returned. Then, all surviving processes
can safely enter the recovery procedure of the application,
knowing that no alive process belonging to that communi-
cator can deadlock.

After a communication object has been revoked, its state is
definitively altered and it can never be used again to com-
municate. This alteration is not to be seen as the (direct)
consequence of a failure, but as the consequence of the user
explicitly calling a specific operation on the communication
object. In a sense, Revoking a communication object ex-
plicitly achieves the propagation of failure knowledge that
has intentionally not been required, but is provided when
the user deems necessary. Because the object is discarded
definitively, any stale message matching the revoked object
is appropriately ignored without modifications in the match-
ing logic, and multiple processes may simultaneously Revoke
the same communication object without fears of injecting
delayed Revoke notifications, thereby interfering with post-
recovery operations. In order to restore communication ca-
pacity, ulfm provides the repair function MPI_COMM_SHRINK,
which derives new, fresh communication objects that do not
risk intermixing with pre-failure operations or delayed noti-

fications.

3.1 A Resilient, Asynchronous Broadcast
The revocation notification needs to be propagated to all
alive processes in the specified communication object, even
when new failures happen during the Revoke propagation.
Therefore, it is in essence a reliable broadcast. Among the
four defining qualities of a reliable broadcast usually con-
sidered in the literature (Termination, Validity, Integrity,
Agreement) [19], the non-uniform variants of the properties
are sufficient, and the integrity criteria can be relaxed in the
context of the Revoke algorithm.

First, the agreement and validity properties ensure that if
a process broadcasts a value v, all processes deliver v. In
the uniform-agreement case, that property extends to failed
processes: if a failed process had delivered the value, then
it must be delivered at all correct processes. In the Revoke
operation, if failures kill the initiator as well as all the al-
ready notified processes, the Revoke notification is indeed
lost, and surviving processes may never receive the notifi-
cation. However, either correct processes are not expecting
messages from the set of dead processes, therefore no oper-
ation can deadlock, or at least a correct processes actively
trying to exchange messages with a dead process will detect
its failure, which means that its blocking operations will
complete in error and leave the opportunity for the appli-
cation to reissue the Revoke operation. In all cases, a non-
uniform reliable broadcast is sufficient to ensure deadlock
free operation. This is of practical significance, because the
reliable broadcast respecting the uniform-agreement prop-
erty requires that the system is free of send-omission fail-
ures (that is, a send has completed, but the receiver does
not receive the message). In MPI, when a send operation
completes, it does not mean that the receiver has delivered
the message; the message may still be buffered on the sender
process, and when that process is the victim of a crash fail-
ure, it may thereby simultaneously commit a send-omission
failure. Ensuring that the network is free of send-omission
failures requires the acknowledgement of all sent messages,
or additional rounds of message exchanges before delivering
the reliable broadcast. As Revoke can be implemented with
a non-uniformly agreeing reliable broadcast, that extra cost
is spared.

Second, the integrity property states that a message is de-
livered once at most, and variants with additional ordering
properties exist, like FIFO or causal ordering between the
delivery of different broadcasts. In the case of a Revoke no-
tification, the first Revoke message to reach the process has
the effect of immutably altering the state of the communica-
tion context. Supplementary deliveries of Revoke messages
for the same communication context have no effect. Simi-
larly, if multiple initiators concurrently broadcast a Revoke
notification on the same communication context, the order
in which these notifications are delivered has no importance,
as the final outcome is always a switch to an immutable
revoked state. Therefore, we can retain a non-ordered, re-
laxed integrity reliable broadcast, in which we allow multiple
out-of-order deliveries, but retain the reasonable assumption
that Revoke messages do not appear out of “thin air”. Then,
as long as the algorithm still ensures the non-uniform agree-
ment property, there are no opportunities for inconsistent



views.

These simplified requirements are crucial for decreasing the
cost of the Revoke operation, as the size of the messages
and the number of message exchanges rounds can be dras-
tically increased when one needs to implement an ordered,
uniform reliable broadcast. Given the non-uniform agree-
ment, the no-ordering, and loose integrity properties, in the
Revoke reliable broadcast, a process that receives its first
Revoke message can perform a single round of emissions to
all its neighbors, with a constant message size, and then de-
liver the Revoke notification immediately, without further
verifications.

The last important aspect is the topology of the overlay
network employed to perform the broadcast operation. In
the reliable broadcast algorithm, when a process receives a
broadcast message for the first time, it immediately broad-
casts that same message to all its neighbors in the over-
lay graph. The agreement property can be guaranteed only
when failures do not disconnect the overlay graph. In early
prototype versions of the ulfm implementation, the reliable
broadcast procedure employed a fully connected network
(which guarantees that disconnected cliques never form).
Obviously, this method scales poorly as the graph degree
is linear with the number of processes, and the number of
exchanged messages is quadratic. In practice, at scale, the
large graph degree resulted in the application aborting due
to resource exhaustion (too many open channels simultane-
ously, not enough memory for unexpected messages, etc.).
Therefore, one needs to consider a more scalable overlay
topology with a low graph degree that can yet maintain
connectivity when nodes are suppressed.

3.2 Binomial Graph Algorithm
The Binomial Graph (BMG), introduced in [3], is a topology
that features both opposing traits of a small degree, yet a
strong resistance to the formation of disconnected cliques
when nodes fail. A BMG is an undirected graph G = (V,E),
where the vertices V represent a set of nodes, and the edges
E are a set of links forming an overlay network between
the nodes. Each node v ∈ V is given an unique identifier in
[0 . . . n−1], where n = |V | (its rank). For each node v, there
is a link to a set of nodesW = {v±1, v±2, . . . , v±2k|2k ≤ n}.
Intuitively, a binomial graph can be seen as the union of all
the binomial trees rooted at all vertices.

The BMG topology is proven to feature several desirable
properties. It is a regular graph topology, in which all nodes
have the same degree, even when the number of nodes has no
special properties (like being a power of two, as an example).
The degree, δ = 2×dlog2ne, is logarithmic with the number
of nodes, therefore scalable. Meanwhile, it retains a small
diameter and a small average distance (in number of hops)
between any two nodes. In addition, a binomial broadcast
tree rooted at any node can be naturally extracted from
a BMG. Such an extracted broadcast tree is symmetric in
terms of performance, in the sense that the broadcast du-
ration for a short message is λ × log2n, where λ is the link
latency, whatever the node selected as the root.

Last, the BMG topology has a high connectivity and a strong
resiliency to failures. The node-connectivity of a BMG,

the minimum number of nodes whose removal can result in
disconnecting the network, is equal to the degree δ, which
means that the BMG is δ− 1 node fault tolerant in all cases
(an optimal result for a graph of degree δ). The probability
distribution for the formation of a disconnected graph when
δ or more failures happen is very favorable (the failures have
to strike a particular set of nodes, in a variant of the gen-
eralized birthday problem). Indeed, model evaluations have
observed that when less than 50% of the nodes have failed,
the disconnection probability is well under 1% [4].

3.3 Implementation
The Revoke operation is implemented in the ulfm variant
of Open MPI [7]. Its algorithm is a non-uniform, non-
ordered reliable broadcast spanning on a BMG overlay net-
work. When a process invokes MPI_COMM_REVOKE, first the
communicator is locally marked as revoked, then the initia-
tor process sends a message to all its neighbors in the BMG
overlay. Revoke messages are sent using the low-level Byte
Transport Layer (BTL) interface of Open MPI. The BTL
layer is the baseboard upon which the MPI communication
operations are implemented, so reusing that infrastructure
provides a portable access to all the high performance net-
works supported by Open MPI. Unlike MPI communica-
tions, a BTL communication has no matching receive. In-
stead, it is active message based: the sender tags outgo-
ing messages, the reception of a message of a particular tag
triggers the execution of a corresponding registered callback
routine at the receiver, with the message payload as a pa-
rameter. The Revoke tag is distinct from the active mes-
sage tags employed for MPI communications, which ensures
a clear separation and avoids polluting the MPI matching
code with special cases for Revoke. With this low level in-
terface, failure detection is not forced; a message sent to a
failed peer is silently dropped.

The message itself contains the communicator’s context iden-
tifier and an epoch. Overall, a Revoke message is 192 bytes
long, header included. When the active message is received,
it triggers the Revoke forwarding callback. This callback
is executed within the context of the Open MPI progress
engine and has access to the internal structures of the im-
plementation. The callback first seeks the communicator
associated with the context identifier. A technical difficulty
arises here: 1) in Open MPI, context identifiers are actu-
ally indices in an array, and for performance reasons it is
desirable to reuse lower indices as soon as the associated
communicator is freed, rather than increase the size of the
communicator array; 2) MPI_COMM_FREE is not synchroniz-
ing. As a consequence, in some cases, a Revoke message
may arrive after the associated communicator has been freed
locally, and it is important to verify that the operation has
no side effects on an unrelated communicator reusing that
context identifier. In order to discriminate between different
communicators using the same index, the Revoke message
compounds the index with an epoch number, representing
how many times this index has been allocated. The MPI
matching still operates on normal context identifiers, but
the Revoke matching operates on the compounded index
and epoch. If a communicator does not exist anymore (the
message epoch is lower than the index epoch), the Revoke
message is dropped. When the communicator with the cor-
rect epoch exists, there are two cases; 1) the communicator
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Figure 2: The Revoke Benchmark: a process re-
vokes plan A during a collective communication. As
soon as plan A is interrupted, every process switches
to plan B, a similar communication plan, with the
same collective operation, but on a distinct, dupli-
cate communicator.

had already been revoked, then the callback drops the mes-
sage and returns; 2) the communicator is not yet revoked,
then it is revoked immediately and the Revoke message is
broadcast to all neighbors.

When a communicator is revoked for the first time, the list
of pending MPI requests is traversed to mark all requests
on that communicator as completed in error. Their sta-
tus is set to the special error code MPI_ERR_REVOKED, pend-
ing RMA operations are cancelled, and the memory regis-
trations are withdrawn. In addition, the unexpected and
matching queues of the communicator are also traversed to
discard incoming message fragments.

4. EXPERIMENTAL EVALUATION
The experimental evaluation of the Revoke operation is con-
ducted on the Darter platform, a Cray XC30 supercomputer
hosted at the National Institute for Computational Science
(NICS). Each of the 724 compute nodes features Two 2.6
GHz Intel 8-core XEON E5-2600 (Sandy Bridge) Series pro-
cessors, and is connected via a Cray Aries router with a
bandwidth of 8GB/sec. We employ the ulfm Open MPI
derivative with the “tuned” collective communication mod-
ule, the “uGNI” transport module between nodes, and the
“SM” transport module for inter-core, shared-memory com-
munication.

4.1 Benchmark
Because of its asymmetrical nature, the impact of the Re-
voke call cannot be measured directly. At the initiator, the
call only starts a non-synchronizing wave of token circula-
tion, and measuring the very short duration of the call is
not representative of the actual time required for the Revoke
call to operate at all target processes. Measuring the time
needed for a particular operation to be interrupted gives a
better estimate of the propagation time of a Revoke notifica-
tion. However, the overall impact remains underestimated
if one doesn’t account for the fact that even after all pro-
cesses have successfully delivered a Revoke notification, the
reliable broadcast algorithm continues to emit and handle
Revoke messages in the background for some time.

The benchmark we designed measures both the duration
and the perturbation generated by the progress of a Revoke
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Figure 3: Revoke cost in Barrier depending on
the initiator rank calling MPI_COMM_REVOKE (6,000 pro-
cesses).

operation on the network. The benchmark comprises two
communication plans (illustrated in Figure 2). Plan A is a
loop that performs a given collective operation on a com-
municator that spans on all available processes (commA). At
some iteration, an initiator process does not match the col-
lective operation, but, instead, invokes MPI_COMM_REVOKE on
commA, which effectively ends plan A. Plan B is a similar
loop performing the same collective operation in a duplicate
communicator (commB) that spans on the same processes as
commA. However, because it is a distinct communicator, op-
erations on commB do not match operations on commA; in par-
ticular, the Revoke operation on commA has no effect on the
semantic of collective operations posted in commB, all ranks
need to match the operation, and it completes normally. We
consider that the duration of a particular collective opera-
tion is the maximum latency across all ranks, and we then
compute the average over 2,000 repetitions of the bench-
mark. We report the latency of operations on commA before
it is revoked, and when one rank does not match the op-
eration and instead invokes MPI_COMM_REVOKE; this Revoked
collective communication gives an estimate of the Revoke
propagation time. Last, we report the latency of the first op-
erations posted on commB until the typical latency becomes
similar to pre-Revoke operations on commA.

The collective operations employed are inherited, without
modification, from the non-fault tolerant “tuned” module of
the Open MPI version on which the ulfm implementation
is based. Although they may not be as optimized for the
Aeries interconnect as in the Cray MPI, they are nonetheless
representative of typical communication patterns commonly
found in HPC applications.

4.2 Initiator Location and Revoke Impact
Figure 3 presents the latency of Barriers on 6,000 processes,
depending on the rank of the initiator process that invokes
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Figure 4: Impact of Revoke on collective communication patterns, depending on the number of processes.

the MPI_COMM_REVOKE operation. Thanks to the symmetric
nature of the BMG topology, the Revoked Barrier latency
is stable and independent of the initiator rank. One can
note that the time to complete a Revoked Barrier is smaller
than the time to complete a normal Barrier. The normal
Barrier has a strong synchronizing semantic, which is not
guaranteed by a Revoked Barrier. Indeed, the latency of
the Revoked operation denotes the time taken by the Revoke
resilient broadcast to reach every rank for the first time; this
propagation latency is similar to the cost of a small message
Broadcast.

However, as stated before, when the Revoke notification
has been delivered to every rank the reliable broadcast has
not terminated yet, and some Revoke token messages have
been freshly injected in the network (at the minimum, the
2log2(n) messages injected by the last rank to deliver the
Revoke notification are still circulating in the network). As
a consequence, the performance of the first post-Revoke
AllReduce operation sustains some performance degrada-
tion resulting from the network jitter associated with the
circulation of these tokens. This performance degradation
is moderate, with the latency approximately doubling. The
jitter noise is equally spread on the BMG topology, theref-
pre the increased latency of the first (and the much reduced
impact on the 2nd to 5th) Barrier is also independent of the
initiators’ rank.

Although after the first post-Revoke Barrier, no new Re-
voke tokens are injected (when the first Barrier of plan B
completes, a Revoke token has been delivered at every rank,
thus every rank has already injected its reliable broadcast
tokens), the absorption of delayed tokens and the lost syn-
chrony resulting from the initial jitter combine to impact
slightly the Barrier performance. After the fifth Barrier (ap-
proximately 700µs), the application is fully resynchronized,
and the Revoke reliable broadcast has terminated, therefore
leaving the application free from observable jitter.

4.3 Scalability
Figure 4 presents the scalability of the Barrier (left) and
AllReduce (right) collective communications in the Revoke
benchmark. The first observation is that the performance
of post-Revoke collective communications follows the same
scalability trend as the pre-Revoke operations, even those
impacted by jitter. In the case of the AllReduce collec-
tive communication, aside from the 1st post-Revoke AllRe-
duce communication, which still exhibit a moderate over-
head from jitter, the 2nd post-Revoke AllReduce is only
mildly impacted and the 3rd AllReduce exhibit no signifi-
cant difference from the failure free case, illustrating that
the jitter introduced by the reliable broadcast algorithm
has a lesser impact this communication pattern. When the
number of processes increases, the impact of jitter —the
difference between the failure-free and the 1st post-Revoke
operation— is almost constant (or slightly decreasing). If
this trend were to continue at larger scales, the impact of
jitter could become asymptotically negligible.

Last, while the implementations of the “tuned” collective
operations differ in performance trends on this Cray machine
(for reasons outside of the scope of this work, but rooting in
the internal collective algorithm selection logic being tuned
for the Infiniband network), the performance of the BMG
reliable broadcast is similar in both cases, illustrating that,
as long as MPI progress is activated, the propagation latency
is independent of the communication plan being revoked.

4.4 AllReduce and Message Size
Figure 5 presents the latency of the AllReduce collective
communication when the message size varies. Focusing first
on the cost of the Revoked AllReduce operation, one can ob-
serve that the duration of the operation remains independent
of the message size until the message size increases to 1MB
or more. As the Revoked operation is interrupted without
completing the entire communication volume, this behavior
is expected. For larger message sizes, however, the delivery
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Figure 5: Impact of Revoke on AllReduce, depend-
ing on the message size (6,000 processes).

of the Revoke notification may be delayed by the granularity
of the ongoing reduction computation; meanwhile, as these
computations are progressing, the MPI progress engine is
managing them with maximum priority, and thus does not
consider incoming fragments for that time duration. As soon
as one of these computation completes, the Revoke notifica-
tion is delivered, supplementary computation on pipelined
blocks are discarded, and further data transfers cancelled.

For post-Revoke AllReduce operations, the impact of jitter
on performance is visible only for small message operations.
As soon as the message size is larger than 512 bytes, the
initial performance difference is absorbed in the cost of the
operation itself.

Interestingly, the standard deviation (between 2,000 runs)
for both Revoked and jitter-disturbed AllReduce operations
remains low, and of the same magnitude as the natural,
failure-free standard deviation of the operation.

5. RELATED WORKS
Any production distributed system needs a failure detection
and propagation mechanism, if only for the platform job
manager to be able to cleanup a failed application and re-
lease the compute resources. This approach pairs well with
legacy coordinated checkpoint/restart, which is most appli-
cable to machines with a low failure rate, thus the central-
ized, slow handling of failure in the job manager is accept-
able in that case.

However, in a distributed infrastructure that aims to effec-
tively support machines with moderate to high failure rates,
the quick recovery of the communication infrastructure itself
is crucial. MapReduce [14] is often lauded for its capability
to gracefully tolerate failures; the programming model sup-
ports essentially master-worker workloads, in which the han-
dling of a failure is entirely localized at the master process

currently managing the failed worker, thereby enabling the
seemingly instantaneous recovery of the infrastructure. Al-
though this operational mode is shared by some HPC appli-
cations, many are tightly coupled, and require the reestab-
lishment of a consistent environment after a failure, and thus
failure knowledge propagation.

In FT-MPI [15], when the infrastructure detects a failure,
it repairs the state of MPI internally, according to the pre-
selected recovery mode. All nodes are notified of failures in
unison and collectively re-exit from the MPI_INIT function,
thereby requiring an implicit global propagation of failure
knowledge, inflexibly invoked from within the MPI library.
In PVM [18], while the triggering of the failure propaga-
tion remains implicit, the user code subscribes explicitly to
failure notifications, which could —in theory— restrict the
scope of the failure knowledge propagation to self-declared
interested parties. In GVR [12], users explicitly subscribe
to, and publish failure conditions. A local failure detection
can then be escalated by any node, by publishing a global
failure condition.

Compared to these interfaces, the Revoke operation is ex-
plicit at the publisher, but its subscriber scope is implicitly
derived from the communicator (or window, file) object on
which it operates. The pre-established subscriber set is ben-
eficial because it offers a static naming of processes and helps
build an efficient diffusion topology. For the propagation al-
gorithm itself, many approaches have been employed in the
past. Gossip [20] algorithms, or Chord/Tapestry-like topolo-
gies [24] have been considered to disseminate (or gather)
knowledge in peer-to-peer systems. These approaches have
to operate under a set of adverse constraints, where the net-
work topology and the unique process mapping have to be
established online. The reliable BMG broadcast exchanges
some of this flexibility for improved propagation latency, and
much less system noise (in effect, the total absence of system
noise during failure-free periods), which makes it a better
match for the Revoke operation.

In addition, a unique property of the Revoke operation is to
provide a clear specification of what is to happen to in-flight
operations that are pending on the corresponding communi-
cation object when the error callback is triggered at a sub-
scriber.

6. CONCLUSIONS
Without a consistent view of the failed processes, some tightly
coupled, or transitively dependent communication patterns
prevent legitimate applications from deploying a meaningful
recovery strategy. When a process detects a failure, and thus
switches to a recovery communication plan, it takes the risk
of leaving in a deadlock unmatched operations at processes
that are oblivious of the failure, and therefore continue to
follow the original communication plan. Unfortunately, pro-
viding a consistent common view of failure knowledge at all
times implies unnecessary, severe overheads that should be
reserved for cases where such knowledge is imperative, and
not imposed on all scenarios, especially the failure-free case.
Therefore, the propagation of the failure knowledge must be
provided as a separate construct that can be triggered explic-
itly by the application, on a voluntary base, and only when
necessary after some application process effectively observed



a failure.

We introduce the Revoke operation to enable interrupting
a failed communication plan, and giving applications the
opportunity to regroup into a new, different communica-
tion plan, as needed by their recovery strategy. An effec-
tive implementation of the Revoke operation depends upon
a scalable, reliable broadcast algorithm, for which we have
delineated relaxed theoretical requirements, and have pro-
posed to deploy it over a BMG overlay network. The BMG
topology features both a low graph degree, a requirement for
scalability, yet a strong resistance to the formation of par-
titioned cliques that threaten the correctness of the reliable
broadcast.

We implemented and evaluated a Revoke reliable broadcast
based on the BMG topology, and demonstrated that it can
effectively interrupt typical MPI communication plans (as
featured in commonly employed collective communication
patterns) with a low latency and without incurring long-
lasting jitter. Experiments outline that after a short period
of time, of the same order of magnitude as a Broadcast com-
munication, the recovery communication plan can start, and
after a couple more Broadcast latencies, the post-Revoke
performance of this communication plan is free of jitter and
returns to the nominal, failure free latency.

The performance and scalability improvements provided by
the BMG reliable broadcast, which are demonstrated at
scale for the first time here, also have application beyond
the Revoke operation, and with minor adaptations can be
leveraged in other HPC contexts where the failure resistant
dissemination of information is essential.
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