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A PARALLEL ALGORITHM FOR THE MONSYMMETRIC
EIGENVALUE PROBLEM*

JACK 1 DOMNGARRAT ann MAJED SIDAMIE

Abstract, This paper describes a paraibel algerithm for computing the cigenvalues and eigenveciars of
a nonsymmenic mairix. The algosithm is based on & divide-nnd-conguer procedure and vses an ldative
refinement technique

Ky wards. cipenvalies prohlem, divide and conguer, parallel compuanng
AMS(MOS) subject classification. 63F15

1. Incroduction. The algebraic eigenvalue problem is one of the fundamental
problems in computational mathemartics. [t arises in many applications and therefore
represents an important area of algorithmic research. The problem has received con-
siderable attention, which has resulted in relinble methods [17]-[19]. However, it is
reasonable ta expect that caleulations might be accelerated through the use of parallel
algorithms. A fully parallel algorithm for the symmetric eigenvalue problem was recently
proposed in [7]. This algorithm is based on a divide.and-conquer procedure cutlingd
in [4]. The latter was based on work in [11] and [2]. The fundamental principle behind
this algorithm is that the partitioning by rank-one tearing interlaces the eipenvalugs
of the modified problem with the eigenvalues of the original problem (the matrix i
first reduced to tridiagonal form). This approach in turn enables rapid and accurate
determination, in parallel, of the eigenvalues and the asseciated clgenvectors,

In this paper we propose a parallel algorithm for the solution of the nonsymmetric
eigenvalue problem. The approach uses some of the features of the divide-and-conguer
algorithm for the symmetric case mentioned carlier. In particular, the original problem
is divided into two smaller and independent subproblems by a rank-one modification
of the matrixz, {We assume that the matrix has already been redoced (o Hessenberg
form, and that the rank-one modification removes a subdiagonal element.) Onee the
cigensystems of the smaller subproblems are known, it is possible to compute those
of the original matrix. In the nonsymmetric case, the eigenvalues of the modified matrix
do mol interlace with those of the enginal matrix, Indeed, the eigenvalues can scalter
anywhere in the complex plane.

In cur algorithm for the nonsymmetric case, the eigensystem of the subproblem
iz used onby to construct initial guesses for an iterative process which yields the desired
eigensystem of the original problem. Under suitable conditions, iterative refinement
or conlinuatien can be used to find the cigenpairs of the anginal preblem. We report
here on our application of an iterative refinement approach based on Mewton's method;
we shall not pursee the continuation method in this paper. Work on the continuation
approach has been reported by [ 1d4]and [15]. For other divide-and-conguer approaches,
see [1] and [12].
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In § 2 we describe an algorithm that uses an iterative refinement procedure based
on Mewlon's method, Section 3 covers the deflation step required 1o avercome multiple
convergence to a particular eigenvalue. In % 5 the convergence behavior of the new
algorithm is discussed. In §4 we discuss the case when the matrix or its rank-one
modification has a defective system of eigenvectors. Section 7 estimates the amount
of work the parallel algorithm requires and compares this to the standard technigues.
Section 6 describes the parallel algorithm and the different parallel implementations
of the new algorithm, and gives numerical results, Section % describes how our ideas
extend to the generalized eigenvalue problem.

2. The algorithm. Given a matrix H, an cigenpair (x,, Aq) of [ can be thought
of as o solution 1o the polynomial system

5]

le--.:'.:r=':J.
Lix)}=1,

where Lix) is a scalar equation. Here, we set Lix)= el x, where g, is the sth unit
vector {in practice, we choose & 50 as to normalize a known approximation to an
eigenvector of H). Let

Hx— J..'r)
"T.'l.' ]

ot

Fix, A): (

i
Then, finding an eigenpair of H reduces to finding a zero of F,. In what follows, unless
otherwise mentioned, H iz assumed to be a real, unreduced (no zeros on the sub-
diagonal}, upper-Hessenberg matrix of order a. This does not restrict the type of
problems we want 1o solve, since if H has a zero on the subdiagonal then finding its
eigenvalues reduces to finding those of the blocks on the diagonal. We note also by
our assumption that H is wnreduced, an eigenvalue of H can only have geometric
multiplicity one: this is quite casy to see since the first # — 1 columns of H —AT are
lincarly independent. We assume for 2ow that H has a simple spectrum. We can write

H as
H-“ I HI!}
=[] ==
H (I.'-I'E'I|M|3"Lkl'l-5 Hz: =

5

where H,, and H,; are upper-Hessenberg of dimensions k=k and n—kxn—k
respeclively; & = fyp, ., and ei*' is the ith unit vector of length k

Let Hy=H —aelVei™ . Then

Hy | H "
Hﬂ;(ﬁﬂ';:\] and ol Hyl = ol Hy P ol H,)

{where or{ M} is the spectrum of M), The algorithm can then be described as follows.
We first find the k eigenpairs of H,, and the n —k eigenpairs of Hy, by some method.
These gigenpairs are then used to construct initial approximations 1o the cigenpairs
of H. If A is an eigenvalue of H,, and x is the corresponding eigenvector, then A is
viewed as an approximate eigenvalee of H with the corresponding approximate
cigenvecior taken to be {§), where n—k zeros are appended to x Mote that (5) 35 an
exact eigenvector of M, corresponding to A. On the other hand, if A is an eigenvalue
of M., and x is the corresponding eigenvector, then (5), where k zeros are prefixed to
x, is taken as an approximate eigenvector of ff cormresponding to the approximate
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eigenvalue A If A4 is not an eigenvalue of My, then the last n— & componcnts of an
exact sipenvector of By corresponding to A,

([.H.q_-:'lt' II.F”-'I:.\)

x

are the components of x. However, if A is an eigenvalue of H,,, and il its geometric
multiplicity is one as an eigenvalue of H, then no eigenvector of Hy will have the
components of x as its trailing components, We have chosen to take (v} as initial

cigenvector instead of
(IH,,—M 'ﬂ.,x)
x

in order to avoid the additional computation involved in solving a lingar svstem. The
choice proved adequate in practice, in that there was no significant difference in the
convergence behavior of the algorithm.

Mewton's method comes into this problem in a rather “natural™ way. Indeed,
suppose that (x, A) is an approximate eigenpair of H, Hx = ax. Let us find a way to
compute a correction (p, gl to this approximate eigenpair. Clearly, (y, @) should satisfy

Hix+yl={A+pulx+yl
Fearranging the latter equation vields
(1 (H—=Ay—px=hx— Hx+

Mow we ignore the second-order term py, and we impose a normalization condition
on x, say x, = 1, where x, is the sth component of x. 1f we also assume that the desired
eigenvector should satisfy the same condition, then (y, p) is the solution of

(" ) C)-():

wilh r = Ax — Hx, But, this is the same cquation that we obtain when a Mewton ileration
is applicd to the function F, Lo find a correction o (x, A} We note here a result from
[5], where the author studied an iterative refinement technigue Lo compute the correc-
tion (¥, u) to (x, A} from (1] {i.e., without ignoring the sccond-order term) and proved
that in exaed anithmetic, that method and Newton's method prodece the same final
iteration.

%o far we have not attempied to answer the question of which subdiagonal encry
will introduce the zero. We will use first-order perturbation theery in order to shed
some light on this issue. Let £ = —oe,,ef, where as above, & = by, (note that
H < E = H,, introduced ahove). Then given a simple eigenpair (5, A) of H, classical
results from function theory [13, V.2, ppo 119-134] allow us to state that in 2 small
neighborhood of zero, there exist differentiable (x(e), A{e]) that satisly

{(H+eE)x{el=Als)z(r),

for all £ in that neighborhood. Clearly, x(0) =x and A(0)=a. Let p" be the lefl
gigenvetor of H corresponding te A Then diffzrentiating both sides with respect 1o =
we have

Hid xiel+ ExipiteED x{e)= D Ale)x{e)+Al210, 206,



FAaRALLEL ALGORITHM FOR MONSYMMETRIC EIGEMYALUE PROBLEM 545

where 12, denotes the differentiation operator. Multiplying by ¢"' and setting £ =0 we
el

v Ex = D00y,
and therefore

|J'H-EI| = |"-"‘ "."‘Il‘i-lll'rll
|y x|

(3) [ A(0)] =

The guantities that vary with k in this expression are in the numerator. However, ||,
[#4+4], and |x;| are not really independent of one another; indeed, if « =10, then at least
one of y.,, or x, is zero. Hence for & small, we can expect one of y., and x, to be
correspondingly small, since the components of the eigenvectors vary continuously.
Therefore, we have found it sufficient in practice to look for the smallest subdiagonal
eniry in & prespecified range, and accept it as the subdiagonal entry {in that range)
with respect to which the eigenvalues of the matrix are least sensitive, and set it equal
Lo zero.

An outling of the algorithm Tollows.

ALGORITHM 2.1. Given an unreduced upper-Hessenberg matrix H, the following
algorithm computes the eigensystems of two submatrices of ff and uses them as initial
guesses for starting Newton iterations Tor determining the eigensystemn of H.

Determine subdiagonal element &« whers

- (Hll i ”l:)

0" | Hy
should be split; Determing initial guesses from eigensystems of the two
diagonal blocks H,, and H.,; For each initial guess (A, x) iterate until
CONVErgenoe:

(H AT "-1'.) (!,) (ff Aje A+ |

= : =l <o 1
2! 1 i I:I/}' Gl e e s
cnd;

Check for duplicates and defate il necessary;

Maore will be said about the last step, deflation, in § 3. In practice, the original
matriz will be dense and we will need to reduce it to upper-Hessenberg form as a first
step. This can be done in a stable fashion through a sequence of orthogonal similarity
transformations, although elementary transformations can also be used with confidence,
as in ELMEES [17].

A brief studv of some sufficient conditions guarantecing the convergence of our
method will be ouched upon in £ 5. Now, assuming that the algerithm converges, it
cowld happen that the same sigenpair of H is obtained more than once, i.e., starting
from two (or more) distinet initizl approximations, Mewton's method converges o the
same eigenpair of H. We have investigated methods to obtain further eigenpairs of H
should this happen {(see % 3).

We end this section with some implementational deteils. Our algorithm will accept
(x A) as an eigenpair of H when || H, —A.[/||x]| | H || <tol, where tol is some specified
tolerance of order £, the machine unit roundoff. Under these conditions [9], (x, A} is
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an exact eigenpair of 3 matax obained from H by a slight perturbation. Indeed,
] H
(H+Tn )x=}u-:,
XX

where r=Ax— Hx.

Atarting from two complex conjugats initial approximations, Newlon's method
will converge o two complex conjugate zeros of F,, or the same real zero. To prove
thiz, it suffices to look at one eration and zhow that when the current approzimations
are complex conjugate, Mewton's method yields two complex conjugate correclions,
or the same real correction. The svstem we must solve starting from (x, A) is (2). For

(%, X this becomes
(H A 1)(})_(rjl
el IRl AN

But this 15 the same linear svstem obiained when the conjugate of both sides in (2} is
taken, since 5 = H. Therefore, ' =7 and w'= . This will allow significant savings in
the computations,

Last, when starting from a real initial guess, only real corrections are computed,
Therefors, the imaginary part of the gigenvalue should be perturbed if convergence
ot a complex cigenpair is to be made possible, In practice, we have dons this when
real arithmetic does not lead (o convergence aler a prespecified number of corrections.
A 2% 2 real matrix whose cigenvalues are complex is o simple example of when
permurhing the imaginary part of the cigenvalue is necessary.

3. Deflation. When Mewton's method is applied to solve the cigensystem of @
matrix H, two distinet initial guesses may possibly converge 1o the same eigenpair of
H, In fact, 2 naive implementation of the algorithm in % 2 may result in many eigenvalues
being found multiple times and, consegquently, some gigenvalues not being found at
all, To avord this unwanted situation, we included a deflation step in our algorithm
that is designed to obtain lurther seros,

Azzume that when Algorithm 2.1 15 applied 1o the & = 7 matrix F Cwee will azsome
for simplicity that it has no multiple eigenvalues) the cigenpair (x, A} of H is obtained
more than once, Le, the algoothm converges 1o (x &) Trom several distiner initial
guesses (xy”", Ay'), i=1,, .., 1 r>1. There exist two classes of methods for finding
the additional eigenpairs of FL The methods of one class produce an (r—11x{n—1}
matrix H™ zuch that o H' )= o H)={&}, and then Algorithm 2.1 is applied to '
starting from r— | of these initial guesses. In this case, iF the algonthm converges, then
it will do so o eigenpairs different from (x, A since A is no longer in the spectrum.
Methods of this type will he discossed in §% 3.1 and 3.3, The other class of methods
will reapply Algorithm 2.1 to the original matrix & starling from r—1 of the inital
puesses mentioned above, but will Force convergence away from (x, A) by ensuring, at
all steps, that the current @igenvector forms 3 nonzere angle with £ A method of this
type will he discussed in & 3.2

A common drawback of all of these methods 15 that they end 1o senalize the
compuiztion, However, it has bheen our experience that the need o deflate arises
infrequently: less than 3 percent of the (me in our Lests,

3.1, Deflation vsing elementary transformations. We now describe one possible
defating similarity transformation, We azsume that H s an wnreduced upper-
Hessenberg matrix, A is an cigenvalue of H, and x 5 the corresponding elgenveclor,
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Sinee we are assuming M to be upper-Hessenberg with no zeros on the subdiagonal,

then x, # 0, and the ¢lementary transformation M =[e,, ..., &, x] i.e,
1 X
dl M= =
l:. ¥ 1 Xn—|
0 X
is nonsingular. The inverse of this marrix is
I.I- _-:"-ll'l.-‘.ll 3
3 ."r'il' — :

(3) = e
ﬂ I-'rxrl
[y is easy to see that M 'x = e, Now we let
(6 H=M"'HM

It is easy to verily that H is unreduced and upper-Hessenberg, and that the last column
of H is Ae,. Furthermore, the leading principal submatrix of order & —1 af H, which
we will call M, is upper-Hessenberg, has the property that

ol H'}=w(H)—{A},

and differs from the leading (m — 1) % (r — 1) principal submatrix of H in the [ast column
only. In fact, il we let k,_, be the last column of the leading principal submatriz of
H of arder n—1, then it is straightforward to verify that the last column of H' is

Bpey= My oy x’, where
( X x5,
x'= ] :
X Xy

The strategy we have just described is given in [19] and applies regardless of whether
the eigenpair {x, A} is real or not. However, when (x, A 15 real we g¢1 a real maltrix
H'. In the case when (x A} 2= not real, the last column of H' alone is not real since,
as we remarked earlier, the oti.er columns are those of a leading principal submatrix
of H. Hence the leading principal submatrix of H' of order # =2 is real. Also, in this
case the complex conjugate of (x, A), (%, X) iz an eigenpair of H, and therefore A is
an eigenvalue of H: a corresponding eigenvector is

fl_-"'-ll;-:'l-.:u'rxml
M™'E= e
i.._| — &n —1[in.lII 't.n.:l
Ete T
Since o H')=o{H])={A}, A is an eigenvalue of H', and a corresponding elgenveclor
is the vector X of length & — 1, whose components are the firse 5 — 1 components of a
scalar multiple of M ™'#:

[ X 10 ':".I.-'Eu :'."I i

Lot
I

(1 X0 = Xy Xa )
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where i¥=—1. This is due to the special structure of H. Mow recall that H’ has no
zeros on the subdiagonal, and so we know that the last component of F I nonzero.
Mote that % is real, We can carry out a deflation that produces a matrix 5 of order
n—31 with the property that

a{ H) = o H) — {X;

in the same way, we obtained H' from H using the elementary transformation of erder
n—1:

M= ek -
X

[.} i'l Li
From a previcus remark about this deflation strategy, we know that HY difiers from
the leading principal submatrix of H' of order n —2 (which is real) in the last columan
only, The last column of H" is b} _;—f,_, ,.»X", where il 5 15 the last column of the
leading principal submatrix of M, and x° is the vector whose componenis are the first

n—2 components of £ Since all of the quantities involved are real, H” is real.

We remark here, as can be readily realized, that H* {or H") is quite cheap to
oblain in practice once an eigenpair of H iz available. Tt requires CHn) Operalions
consisting of a vector normalization, a scalar-vector multiplication, and a vector-vector
addition. However, the conditioning of the matrix M might raise concern. Indeed,

cond,, (M) = || M||.of| M " || = max {|x]) max (l'f'll) ,
i §
which can be large il x, % x,. Having noted this, it is clear that the ill-conditioning of
M can be easily detected, and therelore one of the more stable (and costlier) methods
that we introduce next and i the following seclionz can be used.

It is possible to prevent the ill-conditiening of M from bearing on the algorithm
vy avoiding a similarity transformation. More precisely, the cigenvalue problem we
want to solve can be thought of as a generalized eigenvalue problem, Hx = Al with
=1 We want to find o H)=a{H, I}, Now we know that given any nonsingular M
and M,

alH, [} = o NHM, NM).

Given a particular eigenpair {(x, A}, we would like to choose M and N in & way that
solves the problem we set for ourselves at the beginning of this section, namely, we
want to reduce the problem to one where A is no longer in the spectrum, A closer look
at the similarity transformation (6) reveals that its deflating property is due Lo the Fact
that M ~'x = e,. But then M ' is not the only matrix that ¢an be used to accomplish
this. In Fact, the matrix N can be chosen to reduce x to a multiple of ¢,: N =DM,
where I is the diagonal matrix with the eniries

di=1, if|x]f|x.l=1,
dy= =, i || ] = 1,
Lo, £ i chosen 5o that all the entries in W oare less than or equal 1o ong. Then we have

: . H' 0 st Irin
(7 J\HJW—(':' = '.I-'):' J‘-:'F'f—(_'—ﬂiﬁ)..
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with A = A/ & Also, o{ H', D)= H, ['1={A}, and therefore, by this transformation, A
has been “removed” Trom the spectrum. Working on the solution of a generalized
eigenvalue problem from this point on will not generally cause any dramatic increase
in the cost of the algerithm, mainly because I is diagonal. A Newton step with this
problem involves the following computation:

(H = 0,0" Dy r -
(81 ( ¥ { ) , At ety
£, f I 0

where r. = AV x, — Hx,. Clearly, the previous computation involves an CHn) increase
in the cost of one step: this comes from the multiplications by LY, The details on how
{81 is derived are given in §9. If & is complex, then after deflating A and its conjugale
1. the resulting matrices &' and " are generally complex. This is the major drawback
of this method,

Finally, we mention another approach that can be of interest when the similarity
transformation (6} involves a very ill conditioned M. This approach consists of inter-
changing two components of x and the corresponding columns and rows in H so that
the last component of x is large enough. More precisely, let x, be the largest component
of x [in absolute value), and let P, be the matrix obtained from the identity matrix
by permuting the nth and sth columns. Then (F,.x, A) is an sigenpair of the matrix
P HP, since

(P HP NE . x)=A4F, x

Mow scale the vector P, x so that the last component is 1 and ¢all that vector £ Then,
as above, the clementary transformation

can be used to deflate the matrix &, HP,,. The fact that here B, HF,, 15 nal upper-
Hessenherg is of no consequence. In fact, we can make the following general slatement:
Given any matrix A of erder « and any cigenpair (x, A} of A, then a matrix ) satis{ying

O 'xme, or Q'x=¢e,
can be uzed o deflate A, in the zense thal
Q'AQ =[Ae,, 8] or G T'AQ=[B:,Ae,),

rezpectively, where B, and B are ra{n=1) matrices.
Having thus deflated the matrix B, HP,,, the leading principal submatriz of order
n—1uof

X MT'P HP M

icall it H") has all the eigenvalues of H except A (if A 15 simple). However, H' is not
generally upper-Hessenberg, and therefore will be reduced back to Hessenberg form
before applying MNewlon's iterations; this is meant to save on the cost of factorizing
the Jacobian when solving the linear systems arising at each step of Mewlon's iteration.
Note that it is only the trailing diagonal submatrix of order (n—s+1)x(n—s+1) of
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F' that needs to he reduced and that if s = n — | or s = n, then & 15 upper-Hessenberg,
Morcover, 5 need not be chosgen 2o that x, is the largest component of x (in absolute
valuel, Indeed, since the size of the matrix to be reduced to upper-Hessenberg form
increases when s approaches 1, it is more advantageous to choose the largest 5 for
which the ratics x/x, are moderate. We wish, therefore, to define a threshald ¢ for
the size of these ratios on the basis of which & will be determined.

Let H be the computed form of the matrix in (%) In [1%, Chap. 2], Wilkinsen
catablished that if [|x||-2= 1, then the eigenvalues of H are the exact cigenvalues of a
matrix H' satisfving

|+ - I-:"||ME [I7lla+in—1}e,

where ris the residual Ax — Hx and & iz the machine cpsilon. With no assumptions
on the mfinity norm of x, this inequality becomes

(10 | H = A'||.o = [l flet (0 = 1] %]cz

Since, im our algorithm, our computed eigenpairs have residuals on the order of
n||H||..&, we propose that 1= | H | ..

In addition 1o destraying the structure of the matrix, this last method of deflation
suffers from the fact that in the case when the eigenvalue 1o be defated is nonreal,
the resulting matrix H* s complex, and therefore will considerably increase the cost
of finding subsequent cigenpairs if o Newlon process is restaried from a real initial guess.

3.2, Deflation with help from the left eigenvector. The method we introduce now
is different in spirit [rom the ones in the previous section, in that no attempt is made
to muoedify the matris.

Azsume that (x &) i5 an exact eigenpair of H and that A 15 simple fx=Ax Na
assumption is made about the remaining eigenvalues of H.

Let (x, A7) be such that

A D
=1 1=
(x, X1 Hix X (III J)

where the right-hand side is the Jordan canonical form of . Now set

(x X) ’=[*':).

Then it is clear that ¥" is a lefl eigenvectar of H corresponding to A and furthermore
that

¥ =0,

Thiz property can be used to modify Mewton's method 1o avoid convergence to the
eigenpair (x, A) a second time. Indeed, given A, we can compute the lefl eigenvecior
y corresponding to it, and use it to confine the current eigenvector to the range R{X)
of X. Therefore, we cin expect to converge to an cigenvector linearly independent of
x and hence corresponding to a differsnt sigenpair (since (=, A) was assumed (o be
simple), When {x, A} has already been computed once, our algorithm for aveiding it
then consists of the following major steps.
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Compute the left cigenvector " corresponding to A, with || ¥]:=1; Given
the current eigenpair (2, ) compute the Newton correction from Algorithm
2.1: Let ' be the approximate eigenvector obtained after adding the Mewton
correction to z; choose the next sigenvector 27 as:

L VT

Tn the last step we are just projecting z* onto R{X' ). We note that when this algorithm
is applied, it could happen (as with all the deflation methods we are describing) that
we obtain another eigenpair of H, (x', o'}, that was already computed. Then the process
must be restarted and ¥ will he obtained from z' by & projection onto R{X"), where
X =(x", X7, in order to avoid both (x, A) and (x°, A7); this will require the computation
of the left eigenvector corresponding to A as well.

It is obvious why the known sigenpair must be simple for the algorithm just
outlined to work, IT A is multiple, then left eigenvectors are no longer necessarily
orthogonal to X. In fact, the algorithm will be adversely affected if the eigenvalue A
iz ill conditioned, i.e., if ¥™'x is very small. Indeed, in this case, if the current cigenvector
z = ax + Xu, where p is a vector of length n—1, then

(F=yMiz=z—{3":z)y=ex+ Xo—(ap"xly=1=

showing that = is hardly modified by the projection and therefore suggesting that the
algorithm will not necessarily prevent a second convergence 1o (s, A).

The algorithm generalizes to the case when A is multiple in the following way.
Let ¥ be a right invariant subspace corresponding to A Let (V] ¥.) be such that

5 0
V, VTTHIV W =(* ]
{ l ) 0 7
where the right-hand side is again the Jordan canonical form of H. J, is the Jordan
block corresponding to A; since H is assumed to be unreduced, there can be only one

such hlock. 1F we sel
grt
LV, ¥, "=( r)
[ [ w

then clearly L% is a left invariant subspace corresponding to A, and furthermore,
b P £

iy, =0

This last property will allow L7 to be used in much the same way as the left eigenvector
was used earlier. However, the practical usefulness of this method is restricted Lo the
case when the eigeavalue A is simple. Indeed, the problem of determining the invariant
subspace associated with a multiple eigenvalue A is an extremely difficult one and can
be prohibitively expensive,

Thiz method in its simplest form (using the left eigenvector) adds O(n*) work to
the cost of finding one cigenpair distinct from (x, A). This is the cost of computing the
left eigenvector corresponding to A; the cost of a single projection is Ol

1.3, Deflation with orthogonal transformations, We present now a very stable
method for obtaining an upper-Hessenberg matrix M’ with the property that it has all
the eigenvalues of H except for A [19]. We assume for now that the eigenpair {x, A)
15 exact,

The strategy consists of n—1 major steps, where at each step a new zero is
introduced in the last column of H — Al starting from the bottom. The ¢onfiguration
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at the beginning of the rth step looks like

with zeros in the last r—1 components of the last column. The rth step then Consisis
in a post-multiplication by {,, where . i the (possibly complex) rotation in the
plane {n—r, #) designed to annihilate the (n—r, n} element

where ||e;|[*+]5.07 = 1. This post-multiplication will affect columns n—r and # anly,
and therefore will not disturb zeros previously introduced in the last column. Al the
in—1) step, .-, which is constructed 1o zero the (2. w1 element, will alse zera the
{1, n} element. Indeed, assume that after the (2, n} element has been zeroed we have
some value o in the (1, n} position; then we have

(& --- =& o

=

P [ Fer R g :
« 0
Now if we develop the determinant of this matrix by the last column we get
det[(H—AIG, - - Gaoy]=aby - - - by,
where b, is the rth subdiagonal element of (H — AT}, - - - G,y
det[{H=ANG, -+ G, ]=det{H —-al)=0,

since {(det (G =1 forr=1,...,n—1, But b, # 0 torall since we have assumed that
H had no zeros on the subdiagonal and since post-multiplication by a G, ¢an only
increase the modulus of a subdiagonal element in H = AL Thus we must have a =1,
and therefore, at the end of the n— 1 steps just described, the last column iz zero. Let
ug set @= (3, « + « (3,_, to simplify the notation. Then

- I
g =F =GN, - G,

and it is straightforward to verify that the zeros of the last column of (Ff — AT} will
be preserved when it is premultiplicd by ¥ ', because the successive premultiplications
b G!.r=1,...,n=1, will preserve those zeros. Therefore, the last column of

H= g (- ATV + Al
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is equal to Ae,. The eigenvector of F corresponding 1o A s £,. Mote, however, Uhat
F is not upper-Hessenberg in this case. Indeed, nonzero elements will he introduced

inm the lust row of H; in Fact,

g’
Il

* ® A

This is not disturbing since if H' is the leading principal submatrix of H of order
n—1, then H' is upper-Hessenberg and o H ) = o H) = {A].

If A is a multiple igenvalue of H of {algebraic) multiplicity s, then A is an
eigenvalue of H™ of multiplicity m—1,

So far we have assumed that the cigenpair (x, A) is exact. In practice, (x, A) will
only he approximate, in the sense that Hx — Ax =r 15 of the order of the machine s
In this case, roundoff crrors will generally prevent &, from annihilating the {1, #)
entry. Tn fact, the accuracy of the computed cigenvalue A will come into play. If A
corresponds 1o an ill-conditioned eigenvalue of H, then it is possible that A will be a
rather poor approximation of the exact cigenvalue, As a ¢onsequence, the (1, n) entry
might not be negligible at all, and examples do exist where this is indeed the case [19].
A way around this difficulty is 1o construct the plane rotations G, ..., O, In 4 way
to reduce the vector x to e, and then apply the corresponding similarity translormation
to M. Inequality {100 from § 3.1 holds when this s done (with obvious modification
in the definition of B} However, this will generally result in introducing nonzero
entries below the subdiagonal of H and therefore H needs to be reduced 1o upper-
Hessenberg form again, We refer the reader to [3] for an example of such an algorithm;
the generalization of that zlgorithm to the case where the eigenvalue to be deflated is
complex is straightforward.

In addition to the difficulty just mentioned, the deflation with plane rotations
suffers Trom the fact that the defated matrix will be complex if the eigenvalue to be
deNated is complex. Indeed, it is unforunately not true that when an eigenvalue and
its complex conjugate are dulated by this method, the resulting matrix 15 rel,

Fxample 3.1. When the two complex cigenvalues of the 4x 3 upper-Hessenberg
MLrix

02190 00756  04TET  —0639]
08615 08052 04371 (LER04
] —0.382F 04526 ~0.064]

] 0 —0.1069  —(L0252

are defiated using plane rotations as just described, we obtain

11563 = 000004 000004+ 10126 00000+ 000007 GO0 & 000001
OL0000 — 030537 01740 = 000007 0000 4+ 00000 00000 -+ 00008
—0,1534— 035400 0.5717+0.0013 01082 - 046810 Q0000+ 0.00001 |7

—(LABA0+ 019887 02187 — 034650 039644006118 01082+ (Ldas i

After the defation, we will be working with the upper 2 2 block of H' which is clearly
complex.
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3.4, Remarks on identifying duplicate eigenvalues. We have already remarked that
the computed eigenpairs from our algorithm are the exact eigenpairs of a nearby
matrix. Under those conditions [9],

A=A, = |ENs(aci,

where F is the error in the matrix, and [s(A,)| is the condition number of the exact
gigenvalue A, of the original matrix H. When A, is ill conditioned, we can expect
unpredictably large errors (compared to the tolerated size of the residual} in the
computed approximations to A, and therefore in the duplicates, if any. Identifying
these duplicates becomes a rather daunting task: in particular, they will not be detected
if their difference is compared to tol introduced earlier. Conversely, it can happen that
under certain conditions the tolerated size of the residual will be much larger than the
distance hetween certain exact eigenvalues and therefore between cerlain computed
gigenvalues, In this case, it could happen that distingt computed cigenvalues will be
declared as duplicates il their difference is compared to tol.
Example 3.2, We illustrate this last case with the lollowing matrix:

x0T 0 0
H = 7 " a |
0 R L

The tolerated size of the residuals for this matrix as chosen in our algorithm is
tol = || H|| e = 10"%, Therefore, if we decide to declare as duplicates those eigenvalues
whose difference is less than tol, then the first twao distinct eigenvalues of H will be
declared as duplicates.

The problems we have just raised do not have easy solutions [10], and indeed,
more research is needed here,

1.5, Conclusion regarding deflation techniques, As we pointed out carlier, the need
to deflate arises less than 5 percent of the time in our tests. Our method of choice has
been the method of deflation using elementary transformations introduced in § 5.1
This method is indeed the least expensive among all those we have discussed. Also,
the resulting deflated matrix is in wpper-Hessenberg form and is real when 2 par of
complex conjugate eigenvalues has been deflated.

4. Defective case. Our being a nonstationary iteration (the iterating map is not
fixed), it is not easy to analyze the behavior of the successive approximations, We try,
however, to address this problem in this section with a particular emphasis on the case
when either the matrix H or the modified matriz M, is defective, i.e., when either one
ol these matrices does not have a complete set of eigenvectors, As we remarked earlier,
an ecigenvalue of H {with no zeros on the subdiagonal] can only have pEmmernic
multiplicity one, and there [ is defective whenever it has a multiple eigenvalue. An
eigenvalue of Hy, on the other hand, ¢can have geometric multipli¢ity one or two. In
what Tollows, # is the order of H.

The connection between Mewton's method and inverse eration is well known
[16]). We derive this relationship in a way that motivates the subsequent analysis: We
let 7 be the Jacobian of the map & at (x, A) defined in § 2,

‘o —aAf —=x
J"[\{-.-- 1).
2, i

and we assume that x, = 1. The order of the Jacobian is n< 1. Then

J =0 '-?nl1#?
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with
. _(H-—M —x)
: i 1
and
' 0
1l
D=, — 8 = 1
0
_ll

Assume that J; is not singular; this is true it and only il A is not an gigenvalue. Assume
also that J iz not singular. The correction to {x, )iz computed in the following manner:

¥ F
4 = J' ] ( J :
(#) 0
where r = Ax — Hx Using the Sherman-Morrison formula [#], we can write J! as

1
— I7lennan o

J = (ot ) =00 TR

Therelore, letting bigl, we have,

- T 1
(1] (}J=J "p=J5'h— il Jo s

3 |-+‘|-:'F'\-I'\ILEn+I

o= (2)
ren(l).

where ( H = A1)% = x. Now, il we let (x, A,) be the next eigenpair, we have from (11}
and the subsequent equalities:

)=+ )-0)+(C)-memesC)

Rl ]

It can be casily checked that

and that

Furthermaore,

=

T T
and so finally we see that our scheme reduces to the following: Given [x, A), compute
phe mext iterate (x, 4,) via
1

.'El .:'||=H."T_
0

i % l
{12} (H—Allk=x, x=7
x

n
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4.1. Case when H is defective. When the algorithm is expressed as in (12), we can
readily see some of the difficulties that arise when the matrix H is defective or almost
defective, which is generally more likely due to roundoff errors. These problems are
simmilar to the kind of problems that we face with the application of inverse iteration.
More precisely, assume that I is almost defective with x,....,x, a8 4 complete sct
of cigenvectors. Let &, ..., 4 be a cluster of eigenvalues of H and suppose that the
initial approximate gigenvalue A co rresponds 1o one of these. The eigenvectors X, ..., X
corresponding to these cigenvalucs are then almost linearly dependent. In general, the
eigenvector corresponding 1o A can be expected to converge to the space gencrated
by %, ..., % A the gigenvalue A approaches the cluster, however, continued correc-
tions to the eigenvector cannot be expected to refine it, We refer the reader to the
particularly lucid account in [16] for a justification of these claims, Solving as in inverse
iteration (see INVIT [17]) is a possible way around this problem. Computing the
residual with extended precision arithmetic is also an obvious approach, and has been
successtul in practice.

When approaching a singular solution, Mewton’s method loses its quadratic
convergence rate. We will prove later (Theorem %.1) that the Jacobian is singular at
multiple eigenpairs. Therefore, we can expect slower convergence when multiple
eigenpairs or almost multiple eigenpairs are the Large: this is indicated in Fig. 1 by
the large numhber of iterates separating the initial guesses from the converged values
for an almost-delective matrix.

Recall the rate of change of 4 that we derived in 3 1:

L T |

|.-'l."[ﬂ]|=l_' ||- f.-:lll Ll

: S

We wish o caution against hastily drawing conclusions about the sensitivity of ths
eigenvalues of a defective matrix 1o our dividing process from this expression. Indeed,

a5 an extreme case which will help to illustrate our point, the eigenvalues of & defective

DG : ; ]

s - J
5 L ey g
; ] S N L - -
E an ﬂ."" ‘ L 3 .

a2t e SR Rl -

ndf - i

DA| :

-4 02 i 02 4 D g
real Juait

Fics. 1. The hehasior of the alporilfem for an almost defectioe 255 15 melris, e crosses pre ke clpencalues
of the priginel mare; the siars aee the initie] guesses; the cirphes e the sipeavaives compated by car algasitm;
phe dors are e iferaies arsing in MNewnpe's iteraiions,
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matrix can remain virually unchanged afier a zero has been introduced in the sub-
diagonal. An example is the 232 matrix

(o)
(o)

The starting eigenpairs are then ((5), 1) and ((}), 1) The second of these is, of course,
the exact ¢igenpair. Now, even though the first starting eigenvector 15 orthogonal to
the desired ons, the equations arising during the first of Mewton's iterations can be
solved in such a way that the desired eigenvector is produced from the first step: zero
pivats must be replaced by small numbers on the order of the machine unit rou nedod
(a5 is done in inverse iteration; see INVIT [17])

Finally, we mention that the deflation process can ¢ontribute to the Improvement
of the condition of the eigenvalues. Indeed, if A and A" are pathologically close land
fairly distant from the rest of the eigenvalues), then by deflating A, A will have a better
condition number a5 an eigenvalue of the resulting matrix, Indeed, A" is no longer part
of a clester.

After the dividing process we have

4.2, Casewhen H,isdefective. 11can happen in this case (.., il H s nondelective}
that the initial dividing process would leave us with a number of initial approximations
that is smaller than n, Tn this case, random gigenvectors are used o complete the set
of initial eigenvectors. Furthermore, whatever eigenpairs we have can be extremely
poor approximations to the desired ones, An extreme situation is illustrated by the
matrx

JLUBSL I B |
0
a0
g1 0 b
00 10

No matter where the zero is introduced on the subdiagonal, the resulting matnix
hus zero as its only eigenvalue, and we only have two initial approximations to the
four distinet eigenpairs of H, namely,

L0

4

il the zero is introduced i the (3, 21 position.
Furthermore, the Jacobian is exactly singular at each of these initial apprexima-
tinns. Indeed, the Jacobian @

=T = |
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1%
g 0 g 1 0
L s =1
1 S T T
IR ] | )
O 1 0 0 0

which is clearly of rank four, since the first and the last celumns are linearly dependent.
Similarly, it ¢an he seen that the Jacobian at

o
g 0
ol
1r
is also singular. A remedy to this sitation is to perturb the initial guess zero by &
small amount, thereby making the Jacobian nonsingular. Indeed, this has been success-
ful in practice. The problem in this case, as in most other similar cases, results from
the particular structure of the matrix. In order to obtain Turther eigenvalues, we need
ter defiate the malrix each time a new eigenpair is computed which makes the algorithm
almoszl serial.

4.3, Known Tailures. Some matrices of the structure mentioned al the end of & 4.2
{companion-like matrices), provided us with the only cases where the algorithm failed
in praclice to converge to the desired eigenpairs, i.c., failed 1o produce eigenpairs with
emall residuals after a Axed number of iterations, When these matrices were subjected
to random orthogonal similarity transformations, however, and then reduced back Lo
upper-Hessenberg form, the dividing process provided us with much better initial
approximations and, indeed, the algorithm converged for all initial approximations.
We are certainly not advecating this as a general viable scheme: we want Lo emphasize
the fact that it is the structure of the matrix that caused the poor approximations and
the Failures, and not some inherent difficulty with the spectrum of these matrices.

5, Convergence. In § 2, we mentioned that computing an ¢igenpair of H reduces

o computing a sero of
e Hx=Ax
Fixa)=| + ‘
e x—1
The Jacobian of F, at (x, A 15
D (Hx—Ax) Dy Hx --J-x}) (H—M - )
Do anFdx A —( ; - .
mar Pl A) D.iel =1} Diel -1 el ]

where 2_( F) denotes the derivative with respect to x of the function 5 In this section,
we give sufficient conditiens for the convergence of cur procedure. The result 1s 4
version of the Kantorovich theorem as it applies to our case.

THroREM 5.1 (Wilkinzon)., Assame that (x, A} i= an exac! zers af F. Then

(H—-‘.j" —.1:)
el 0

iv singuelar i and only i A 15 multiple,
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Froof. Let us assume first that A is & multiple eigenvalue of H and that x is the
corresponding (exact) eigenvector, Then there exists a nonzero vector ¥ such that
yYiH-All=0 and y'x=0;

v is zimply a left sigenvector of H corresponding to A Thus { »"0) is & nonzero vector

and
H=AI —x
{;-”uh( o7 i )—n.

This proves that the Jacobian is singular.

Maow, conversely, if
[H —Al - x)
el ]

is singular then there exists & nonzero vector () such that

H—Al - ]
{ el U‘)(.u)_n-

But then ¢, =0 and (H —Afjv=px If w=0, then o is nonzero since () # 0, and 5o
¢ is an eigenvector that is lincarly independent of x, since x, =1 and ©, =0. Hence A
is g multiple eigenvalue in this case. If g 0, then v is also nonzero; if it were zero
then we would have
px={H—-Alv=(H-AIN0=10,

and hence x = 0, contradicting our assumpdion on x. But (H — Al o= u(H -al)x =0,
and thus v i= a nonzera vector that has grade 2, Therefore, A is multiple in this case
as well. O

Remark. Since we are assuming that H is upper-Hessenberg and unreduced, an
cigenvalue can only be nonderogatory, ic., the associated ¢igenspace has dimension
o,

The previous result applies to the Jacobian at a zere of F,, We wish to know mors
aboul the Jacohian at those approximations arising during Mewton’s iteration hefore
CONVErZence Lo an elgenpair,

ThEOREM 5.2, Asswme thar (x, A) & not 2 zere of I, Then

(H—-:l.f - )
el 0

is singulor i and only (o ot least one af the jollowing is true;

(11 & is an eigenvalue of H and has an eigenvector whose sth componen! 15 Zero.

(2] x helongs to the space generated by (0. .. €y Gy - -0 O )y Where o is T
ith columin of H = AT (A may or may ol be an eigenvalue ),

Proof. Assume first that (1) is true and let y he an eigenvector, y, = 0. Then {5}
is clearly in the null space of the Jacobian. 1 (2) holds and x=(H = ATy with y. =0,
then (771 35 in the null space of the Jacobian,

Conversely, if the Jacobian is singular then there exists a vector (1) such that,

H—A =Xy ¥y
( - ﬂ)(#)_ﬂ'

(H =My =px, ely=0,
and clearly y, =0, We now ¢onsider two cases according to whether g is Zero or not.
If e i= zero, then A is an eigenvalue with corresponding cigenvector y: therefore, we

This implics that
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are in case (1. If g is not zero, then wx and hence x is in the range of 7 — AT; therefore
we arc in case (2] since ¥, = 0. Note that A may or may not be an cigenvalue in this
last chse. O

Remarks., The theorem tells us that more eften than not, a singular Jacobian is
an indication that the current eigenvalue has already converged, and this has been our
gxperience indeed. The gsingularity of the Jacobian is also an indication of an ill-
conditioned eigensystem. In fact, if we accept that the current pigenvecton was moving
in the “right” direction, then if it satisfies condition (2] of Thearem 5.2, we can say
that the eigenvalue is acting like a multiple one since the eipenvector is also in the
range of { H —Al). In practice, we have nol encou ntered @ situation where condition
(1) applied. If we accept again that the gigenvector was moving in the right direction,
then condition (1) implics that the cigenvalue is acting like an eigenvalue of geometric
multiplicity more than ene (since x, = 1), which is impossible since the matrix is
unredoced.

The second derivative of F, is a constant bilinear operater with norm equal 1o 2.
In fact,

O e | Fi 0
A AL e il gt )

Suppose now that our procedure is started with initial guess {xq, Ag). We now give
sufficient conditions for the convergence of our procedurs with the given initial guess,
Let us first introduce

K =||F; (0, Aal
and
ey = [{xy, Ar} = (5. Ao,
where (x,, A,) is the first iterate, i.e.,
[y, Aq) T =g, Ag) T = Fi"'{xg, Ag}Fo{xp, Ao},

We call (xg, Ag), .- -, ( Xy, 4 ) the sequence of iterates produced by the algorithm, Mow
the classical Kantorovich theorem [6] gives the following result.

THEoREM 5.3. If Bo= Koy <}, then the sequence (xy, Ay} converges guadratically
starting from (x5, Aol

The progess can be regarded as starting from any of the iterates (x, A, and in
fact it will often converge even when the conditions of the theorem are not salisfied
at [xy, Ag). These conditiens will then be et for some (x,, A:) at which stage conver-
gence hecomes quadratic.

6. Parallel algorithms: Details and performance. It is fairly straightforward to ses
from & 2 how 1o obtain a parallel algorithm. We discuss here certain details, The given,
generilly dense, matrix is firet reduced to upper-Hessenberg form using a parallel
blocked algorithm. Next comes the paritioning phase or “divide.” This phase amounts
to constructing a binary tree with each node representing a partition into two subprob:
lems. It has been our praciice to partition the matrix into a number of subproblems
(at the lowest level) equal to the number of processors available on the target machine.
Each of these problems may be spawned independently without fear of data confiicts;
the computation at this level (the lowest) consists of calls to the EISPACK routine
HOQRZ. The tree is then traversed in severse arder with Mewton's method applied at
cach node, using the results from the children as initial approximations. MNote here
that the computation at a node does not have 1o wait for both children to complete
in order to starl: 5 a matter of fact, it can start as soon as one child has computed
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one eigenpair of a subproblem. In order to stress this point, we mention here thit this
is quite different from the situation in the symmetric case [7], where information from
both children is needed before computations can start at the node. However, in praclice,
we have zllowed computations to start at 2 node only after at least one child has
completed; the need to check for duplicate eigenvalues and deflate if necessary has
imposed further synchronization.

The algorithm has been implemented on computers with 2 shared memory and
computers with distributed memory architeciures.

6.1. Shared memory implementation. 3o far we have used SCHEDULE [8] to
implement the algorithm on shared memory computers. 5CH EDULE is a package of
FORTEAM and O subroutines designed to aid in programming explicitly parallel
algorithms for numerical caleulations, An important part of this package is the provision
of a mechanism for dynamically spawning processes even when such a capability is
not present within the parallesl language extensions provided for a given machine.

6.2, Distriboted memory implementation. The current implementation on dis-
tributed memery machines requires that the matrix be stored on each processor. This
obviously puts rather severs constraints on the size of problems that can be solved.
With this implementation however, communication is needed only during the deflation
phase. This implementation is best described through the contribution of a particular
processor. Suppose that we have four processors at our disposal, py, ..., py, and that
accordingly the matrix H has been divided into four subproblems, H, ..., Hs, that
their commen size is n/d4, and that they occur in this order on the diagonal of the
matrix, We describe now the contribution of gy by steps;

1. Call HQR2 to solve for the gigensystem of the matrix i,

2. Refine the output from step 1 to get ! the number of (ie., n/4) cigenpairs of

the matrix Hy»
H. | B
Lo (m'; H_;) !

where M, is & submatrix of f.

3, Refine the output from step 2 to get § the number of eigenpairs (e, n/4) of
the matrix M.

Az can he readily realized, no communication between processors is needed except
for checking for eigenpairs to which convergence occurred from more than one initial
approximation. For example, the sigenpairs of H,,; are generated on p; and py, and
therefore we need o check For duplicate eigenpairs {on each processor separately,
which requires no communication, and across both, which requires communication).

We are currently developing another implementation where blocks of columns of
the matrix are stored on different processors. This storage scheme has been dictated
to us by the need to call HQRZ ar the lowest level. Indeed, to call the serial HQR2
requires that ¢ontiguows columns of the matrix reside en the same processor. Therefore,
storage schemes more advantageous for linear system solving, such as wrap mapping
of eolumns or rows, could not be used, The communication between processors [or
this second implementation is more intensive. Communication is needed when solving
the linsar systems arising in Mewton's iterations as well as for the deflation phase.
Also because of the storage scheme, we can expect the processors 1o become successively
idle during the factorization of the Jacobian and the back solve for the correction.
However, we have implemented an efficient scheme where the Jacobian is repartitionsd
by rows before the back solve takes place: the “reshuffling” of the submatrices takes
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place between processors that became idle after doing their part of the Gaussian
climinaticn.

7. Work estimates. We assume in this section that we are given a real dense matrix
A Then, the first tagk in our algorithm is 1o reduce A 1o an upper-Hessenberg matrix
. This reguires 10n" /3 operations (plus lower-order terms) if elementary transforma-
tions are used, since these matrices are 10 be accumulated.

The dividing process is now applied to H. Assume that m=2"r for some m =1,
where r is not neccssarily relatively prime to 2. In order to simplify the subsequent
analysis we will assume that the dividing process produces submatrices of equal size,
namely half the order of the original matrix. [ we repeat the dividing process i Limes,
we end up with 27 matrices of size 1, each of which is upper-Hessenberg. A submatrix
of size n/2’ obtained in the dividing process will be referred to as a matrix at the level
i The matrix H itself is at the level 0, and the r matrices referred 1o above are at the
level n Thus we have m+1 levels in total. Lel p'=2" be the number of submatrices
at the lowest level, and p the number of processors; we will assume that p=2" g=m.
The cost of Anding the eigenpairs of a { Hessenberg) matrix at the lowest level (by the
QR algorithm) is roughly 13 (n/p'¥. This figure is very approximate and assumes,
among other things, that two QR steps are needed hefore a real or two complex
conjugate eigenvalues are identified, and that the matrix has an equal number of real
and complex eigenvalues [9]. Let 5 = /2 he the size of one matrix at the level L Let
k, be the average number of iterations needed 1o get one eigenpair of a matrix at the
level [k, depends on the matriz and on its size, of course. We will make the Tellowing
simplifying assumption, however: b=k I=0,,,.,Mm, i.e., We assume that the averags
number of steps required for convergence is the same at all lewvels, Our experients
with the algerithm suggests that this is a realistic assumption as long as the size of the
submatrices remains moderate. IF the number ol levels is increased to the point where
we are left with small submatrices (less than 20 = 20, say]), then K, becomes significantly
larger as | increases {for very small matrices it can be more than 10 on the average).

The cost of computing one cofrection &t the level ! s roughly 6. Indeed, one
Mewton iteration involves the solution of a linear system that is upper-Hessenbery,
but for possible nonzeros in the last row, the order of this linear system i3 s+
Therefore, two multipliers at most must be computed per column and, when updating
the matrix, each of these will be wsed in 205+ 1=i) multiplications and additions,
where i is the index of the coelumn. The factorization of the Jacobian requires 25
gperations in addition to O{s ) operations {including divisions and comparisons). The
forward solve is ({s) work and is negligilble. The hacksolve requires 57 operations
and computing the residual requires another =i operations. Therefore, for a real current
approximation, one correction comes at the cost of 455 . For a complex current gigenpair,
this becomes 1657 since the dominant operations are a roughly equal number of
multiplications and additions, Since, as we indicated in § 2, only one of a conjugate
pair of complex eigenpairs must ke corrected, we can assume that 257 operations are
required for correcting a complex cigenpair. Assuming again that the mateix hos an
equal number of real and complex cigenvalues, our estimate for the amount of work
required for computing ong co rrection at the level | hecomes 657 operations.

We shall use n/p initial guesses to starl #/p Newlon processes on cach proeessorn.
We now have the following work estimale ¢n Qne processer, assuming that all processors
share equally the cost of all the stages of the algorithm

a ' 1 m— i}
0 (E)(2)' 5 o(2) 2,
am n P =il P P
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where 101" /3p 15 the processor’s contribution to the reduction of the original matrix
to upper-Hessenberg form; 18 {p'/ p' ) e/ p')" is the cost of applying the QR algorithm
to p'/p matrices of size n/ps E7 0 600/ piksy is the cost of solving & linear systems
with matrices of size 5, repeating this for n/p initial guesses and for /=
i, ....m—1; 20"/ p iz the processor’s contribution o the computation of the eigenvec-
tors of the original dense matrix A once those of H have been computed. The expression

for the work can be rewritten as

W= (18,18, 26(,_()7))
p A3 gt 3 4 1,

But p'=2" and therefore p?=4" and hence

; n' 16 1

{13} W, ; (3+Hh+[lt‘- !:‘-A]I*,"),

where for sase of reference we redefine the various parameters: o is the order of the
matrix, p i= the number of processors, k is the average number of Newlon iteralions
needed belore an eigenpair is accepted, and m is the number of zeros introduced on
the subdiagonal.

The cost of gerting the eigenvalues and eigenvectors by the QR algorithm is 150°
[9]. A reasonable value for k 35 3; however, there are cases when k is 2 or less. There
are also cases where & is larger than 3, mostly with matrices of small erder or defective
ratrices.

It is easy to verify that for £ =2 and for m =1 {one split) the model for the cost
af the algorithm predicts that a sequential implementation of our algorithm i3 faster
than EISPACE s Beal General { RG), Our mode] predices that & seguential implemanta-
tion of our algorithm is slower than RG for problems where k equals or exceeds 2
izee Fig. 2). Here are some sample values of W, assuming that k=3 and p=p'=1",
which means that the original problem is subdivided inte a number of problems equal
i the number of available processors,

p=128~ W, =0.2291n", p=1024= W, = 0.0286n".

Here we have assumed that the problem is large enough e allow the eMcient wse of
that many processors. Mote that the ratio of the work estimate from our model to the

] =

B

-
-
-3 ._/_,.H"
-
o

Fro, 2. Varigdioe .-:-__l" e n'_bgﬂ]n:em pf'u" im work evtirsane raondel (2 lenns -El__lr the nmber of sieps I!C'I il
=1 oand p=11{ree expression for work),
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work estimate of QR is independent of n. This is due to the simplilying assumplion
on k made at the beginning of this section. That assumption has in effect “hidden"”
the dependency on n of the coefficient of a* in our model. Figures 2, 3, 4, and 3 show
plots of the work estimate for various values of the parameters invalved,

We note, finally, that the cost of our algerithm will increase when the mairix ar
the subproblems obtained in the divide process are ill conditioned (see § 4 and [12]3.
Furthermore, repeated deflations will also contribute to an increase in the cosl.

8. Numerical results and performance. 1n this section we present the results of the
implementation of the algorithm on a number of machines, The serial version of the
code is available through NETLIE where it is ¢alled “nonsymde.”

The same algorithm has been run on the [BM RS5/6000-550, the Alliant FX/8,
the Tntel iPSC/2, and the Intel iFSC/860. We compared our results to those of HOQR2
from the EISPACE collection. We have used randomly generated upper-Hessenberg
matrices in these tests, with entries uniformly distributed between —1 and 1; deflation

I

Erc. 3. Variation ef the cacfficient of n i wark cstimare mode! in rermes af the aumber of splits m, with
k=3 and g =1 (se0 cxpression Jor wark ).

e B ]
=

Fic, 4. Prodicied speedup aper QR in e gl numiber af splive o, witk p=2% and k=3 (a0 Eression
_."nr wirrk .
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Hpeede
=

-~ -
i .-.___.-'
-
.--"
1] ___.-"'
.--"
m-/
- e : :
-} m 40 Eoe = 10 130 Ll
’
Frei, 5. Predicied speevap ovee QR i terms of the aumber of processnes p, ol mo=luge poand & =3 (aee

capressio e wark |

wis not performed. The storage requirement for our algorithm in a serial implementa-
tion is 40+ O n), which is twice the storage requirement for a serial implementation
of HQRE [17].

Tahle | provides the reselts from the TBM RE/6000-5350 implementation. The [BM
RS/ &000-550 is a single-processor computer with a RISC-based architecture. In the
last column we have given the number of distinet eigenvalues that was computed by
our algorithm (the test matrices had no multiple sigenvalues); some eigenvalues wers
found multiple times. Each matrix was divided into two subproblems, i.e., only one
zern was introduced on the subdiagonal.

In an implementation on a shared memory machine, the storage allocated 1o the
Jacobian (in serial mode) is multiplied by the number of processors wsed; this is meant
to prevent concurrent write to the same memory locations. Table 2 provides some
results from the Alliant FX/% implementation, The Alliant FX /8 is a parallel machine
with gight vector processors.

TarLL |
Kecules an 1B RS/ G050,

Drder HOQREI (b1 Fatin HOURDS Dhid [Hsting A

(LEH] 1.4 112 .93 o

20 2.5 AL (Wi 154

30 a0 151 1.2 f X

R 4.1l oL 1.4 I

RI] 1% 13& 1.4 a1

({1 1741 Gz L.7 T{HME
TaELE 2

Reswlrs o Allianr FXRJE,

Oirler M, af pracs. Levels Rutio HORZ DEC

1)

.
e Bd —
gt =
= = =l
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The results on the Alliant were generally disappointing. The storage schems for
the Jacobian that we used on thal machine scems 1o have inhibited the compiler’s
vector oplimizations. HR2, running on a single processor, was vector optimized.

Takle 3 provides some results from the Intel iPSC/2 implementaticn. The largest
size used was dictated by the memory capacity of a single node,

Tahle 4 provides some results from the Intel iPSC/E60 implementation. We observe
here that the specdups realized by our algorithm over the QR algorithm do not remain
linear for a large number of processors. This is due to the fact that our algorithm 3
musch less efficient on small matrices, and we had to work with small matrices when
the number of processors became large. For example, with a matrx of order GO0 and
using &4 processors, matrices of average size 20 had to be selved on each node at level 3.

TanLe X
Reswliz ea iFSCTL

Cirder Wi, al proc, Lavels Ratie HJRL DO

1

E
-
i
o

Fad

T
&l
2
116
2.2
33
5.1
ul

125
33

1z
ak
R
152

213

W ode b o

—
=

lb:l-P-h-..-r-E-b:.n.u-—

i)

et
=

i
i
ko e Lr Bl e = g L e e La Wk B = —

ar s
dn

TamLa 4
Fesulis on (PS5O EG.

Order Mo ol preds,. Levels Fatia HORY D&C

141} 1 1 113
2 1 1.%
d rd 3.3
4 3 5.1

ELix] I 1 124
) 1 T4
4 2 i s
& 3 LR
14 4 E.d

L] 5 3 1.5
16 4 13.3
a2 5 23
fid & a2
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9, The generalized cigenvalue problem. We show here how the ideas behind our
algorithm can be used to solve the generalized eigenvalue prolilem.

9,1. Basic algorithm. Given an upper-Hessenberg matnx A and an upper-

iriangular matnx L)
H|| -”:.'J (L"-l'.- 'I-:-'Ilz)
H = ( ; [F=] = —= ],
[_}" H:: ﬂ "—'z:

we want Lo solve the generalized cigenvalue problem
(14 Hx = AL

Without loss of generality, we can assume A 1o be unreduced and LY to be nonsingular
since olherwise the problem reduces to a smaller proklem. Then our algorithm gencral-
izes casily. Indeed, set

-”n = .“. — Xy |‘|-"E|
and consider solutions of (or approximations of )
(15] Hox=allx,

as initial approximations to the sought eigenpairs. More precisely, solving (15 reduces
o solving

Hyx=aUpx and Hoox=aAll.x
Let us denote these solutions by (24,0, ... (%5, 4,0 (we have a solutions because
of our assumption that L is nonsingular). These can be used (o construct initial

approximations {x;, Ak o0, 05, A, ) to the eigenpairs of the original peneralized
eigenproblem in much the same way we did in the ¢ase U= I More precisely, we take

cn=((3))
wn=((9)4)

il Ay e ol Hyy, Usy) (appropoate number of zeros in cach casel.
Finally, solving the generalized eigenvalue problem (14) above is the same as
golving the problem

if Ay ol £y, D), and

Hx—allx=0, Lix)l=1,

where Lix] is a scalar equation, which we take to be a normalizing condition: cen =1y
Then lor each initial cigenpair {x;, 4,1, successive cormections: can be computed via

(H — L Enas m.}( _'r} (r\J o y
. =["], Aedtp xext+n
e, 0 S 1, 5 :

ro= AU — Hx,.

whers

A possible stopping criterion Tor this scheme is the condition

| Foxe = 4,00
S = fin)|[H] L] e,
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where fin) is a modest function of n, It is easy to see that starting from Lwo complex
conjugale initial guesses the algorithm will compute complex conjugate correclions,
therefore allowing savings similar 1o those in the case U'=1

9.2. Deflation in the generalized case. The method of deflation presented in & 3.1
generalizes to this case in the following manner, Let Hx < alix (of course, in practice,
we only have an approximate eigenpair), Then it is true that if w= Lx then W, # L
Indeed. if w, =0, then it can be shown that w is zero using the fact that H is unreduced.
[J being nonsingular implies that x is zero, which is not true.

Let

and

()

We know that of H, U') is the same as o NHM, NUM} for any nonsingular M and
M, For our purposes, we take

M=[e,..., ¢, %]
and
= e e .

Then it 15 easy to verily that we have

- rEny = [t i e (e ]
(16) .NHM—(ﬂTh), ;-.LM_({] ﬁ)

where H' is upper-Hessenberg, U is upper-triangular, and

(17} v/ 6=A.

In fact, in this particular case we have y=4A and § = 1. Clearly,
e H', L"y=o(H, L) ={A).

Therefore, having “removed™ A from the spectrum we can get [urther eigenpairs, We
nole that, just as in the case L'=1I A" and L are very cheap to obtuin once N has
been determined. Indeed, H' differs from the #—1xn—1 prncipal submatnx of H
in the last column only, whereas U is the n=1xn—1 principal submatnx of L. The
computation of N requires & matrix-vector multiply.

It is also easy to verify that deflating two conseculive complex conjugare cigenpairs
resulis in real H and L7

The condition number of & might raise concern. We have

cond, { N} = max {|w/])*.

It is therefore easy 1o detect an ill-conditioned N, We propose to handle thizs situation
in the generalized case in the following manner. Let I? be a diagonal matrix with its
diagonal elements d, defined by
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Then, clearly,
o DNHM, DNUM) = o H, U),

since [? is nonsingular. The multiplication by 2 cancels all the large entries in the
last colummn of M. It is easy 1o see that (16) and (17} are satisfied when the premultiplica-
tion is done with 2N instead of N, The disadvantage of having to premultiply by L2
is that after the deflation of two complex conjugale eigenpairs, the resulting H' and
L' moight still be complex.
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