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Abstract
Many applications, ranging from big data analytics to nanostructure designs, require the so-
lution of large dense singular value decomposition (SVD) or eigenvalue problems. A first step
in the solution methodology for these problems is the reduction of the matrix at hand to
condensed form by two-sided orthogonal transformations. This step is standardly used to
significantly accelerate the solution process. We present a performance analysis of the main
two-sided factorizations used in these reductions: the bidiagonalization, tridiagonalization, and
the upper Hessenberg factorizations on heterogeneous systems of multicore CPUs and Xeon
Phi coprocessors. We derive a performance model and use it to guide the analysis and to
evaluate performance. We develop optimized implementations for these methods that get up
to 80% of the optimal performance bounds. Finally, we describe the heterogeneous multicore
and coprocessor development considerations and the techniques that enable us to achieve these
high-performance results. The work here presents the first highly optimized implementation
of these main factorizations for Xeon Phi coprocessors. Compared to the LAPACK versions
optmized by Intel for Xeon Phi (in MKL), we achieve up to 50% speedup.

Keywords: Eigensolver, multicore, Xeon Phi, task-based programming

1 Introduction

Eigenvalue and singular value decomposition (SVD) problems are fundamental for many engi-
neering and physics applications. For example, image processing, compression, facial recogni-
tion, vibrational analysis of mechanical structures, and computing energy levels of electrons in
nanostructure materials can all be expressed as eigenvalue problems. Also, the SVD plays a
very important role in statistics where it is directly related to the principal component analysis
method in signal processing and pattern recognition as an essential filtering tool, and in anal-
ysis of control systems. It has applications in such areas as least squares problems, computing
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the pseudoinverse, and computing the Jordan canonical form. In addition, the SVD is used
in solving integral equations, digital image processing, information retrieval, seismic reflection
tomography, and optimization. The solution of these problems can be accelerated substantially
by first reducing the matrix at hand to a condensed form matrix that has the same eigen-
values as the original one. The reductions are referred to as two-sided factorizations, as they
are achieved by two-sided orthogonal transformations (see Section 3). The main ones, that
are also the focus of this paper, are the bidiagonalization, tridiagonalization, and the upper
Hessenberg factorizations. It is challenging to accelerate the two-sided factorizations on new
architectures because they are rich in Level 2 BLAS operations, which are bandwidth limited
and therefore do not scale on multicore architectures and run only at a fraction of the machine’s
peak performance. There are techniques that can replace Level 2 BLAS operations with Level
3 BLAS. For example, in factorizations like LU, QR, and Cholesky, the application of consec-
utive Level 2 BLAS operations that occur in the algorithms can be delayed and accumulated
so that at a later moment the accumulated transformation can be applied at once as a Level
3 BLAS. This approach totally removes Level 2 BLAS from Cholesky, and reduces its amount
to O(n2) in LU, and QR, thus making it asymptotically insignificant compared to the total
O(n3) amount of operations for these factorizations. The same technique can be applied to
the two-sided factorizations [6], but in contrast to the one-sided, a large fraction of the total
number of floating point operations (flops) still remains Level 2 BLAS. For example, the block
Hessenberg reduction has about 20% of its flops in Level 2 BLAS, while both the bidiagonal
and triadiagonal reductions have 50% of their flops in Level 2 BLAS. In practice, the flops in
Level 2 BLAS do not scale well on current architectures and thus can significantly impact the
total execution time. Moreover, we show that the asymptotic performance (for large matrix
sizes) can be modeled very accurately based on the amount of Level 2 BLAS flops.

Besides the algorithmic and performance modeling aspects related to the importance of re-
ducing the Level 2 BLAS flops, this work is also focused on the computational challenges of
developing high-performance routines for new architectures. We describe a number of optimiza-
tions that lead to performance as high as 95% of the theoretical/model peak for multicore CPUs
and 80% of the model peak for Intel Xeon Phi coprocessors. These numbers are indicative for
a high level of optimization achieved – note that the use of accelerators is known to achieve
smaller fraction of the peak compared to non-accelerated systems, e.g., for the Top500 HPL
benchmark for GPU/MIC-based supercomputers this is about 60% of the peak, and for LU on
single coprocessor is about 70% of the peak [4].

2 Related Work

The earliest standard method for computing the eigenvalues of a dense nonsymmetric matrix
is based on the QR iteration algorithm [7]. This schema is prohibitively expensive compared to
a two phases scheme that first reduces the matrix to Hessenberg form (using either elementary
or orthogonal similarity transformations), and then uses a few QR iterations to compute the
eigenvalues of the reduced matrix. This two phase approach using Householder reflectors [24]
was implemented in the standard EISPACK software [5]. Blocking was introduced in LAPACK,
where a product of Householder reflectors Hi = I− τiviv

T
i , i = 1, . . . , nb were grouped together

using the so called compact WY transform [2, 21]:

H1H2 . . . Hnb ≡ I − V TV T ,

where nb is the blocking size, V = (v1| . . . |vnb), and T is nb × nb upper triangular matrix.

Performance Analysis and Optimisation of Two-Sided Factorization . . .Kabir, Haidar, Tomov, Dongarra

181



Alternatively to the Householder reflector approach, the use of stabilized elementary matri-
ces for the Hessenberg reduction has been well known [18]. Later [8] proposed a new variant
that reduce the general matrix further to tridiagonal form. The main motivation was that iter-
ating with a tridiagonal form is attractive and extremely beneficial for non symmetric matrices.
However, there are two major difficulties with this approach. First, the QR iteration does not
maintain the tridiagonal form of a nonsymmetric matrix, and second, reducing the nonsym-
metric matrix to tridiagonal by similarity transformations encounters stability and numerical
issues. To overcome the first issue, [20] proposed the LR iteration algorithm which preserves the
tridiagonal form. [8] proposed some recovery techniques in his paper and later [11,23] proposed
another variant that reduce the nonsymmetric matrix to a similar banded form and [12] pro-
vided an error analysis of its BHESS algorithm. Blocking to the stabilized elementary reduction
was introduced in [14], similar to the blocking for the LU, QR and Cholesky factorizations.

Hybrid Hessenberg, bidiagonal, and tridiagonal reduction that use both multicore CPUs
and GPUs was introduced first through the MAGMA library [22]. The critical for the perfor-
mance Level 2 BLAS were offloaded for execution to the high-bandwidth GPU and proper data
mapping and task scheduling was applied to reduce CPU-to-GPU communications.

Recent algorithmic work on the two-sided factorizations has been concentrated on two- (or
more) stage approaches. In contrast to the standard approach from LAPACK that uses a “single
stage”, the new ones first reduce the matrix to band form, and second, to the final form, e.g.,
tridiagonal for symmetric matrices. One of the first uses of a two-step reduction occurred in the
context of out-of-core solvers for generalized symmetric eigenvalue problems [9], where a multi-
stage method reduced a matrix to tridiagonal, bidiagonal, and Hessenberg forms [17]. With this
approach, it was possible to recast the expensive memory-bound operations that occur during
the panel factorization into a compute-bound procedure. Consequently, a framework called
Successive Band Reductions was created [3]. A multi-stage approach has also been applied
to the Hessenberg reduction [16] as well as the QZ algorithm [15] for the generalized non-
symmetric eigenvalue problem. These approaches were also developed for hybrid GPU-CPU
systems [10]. In this paper we performed a performance model analysis and use it to guide and
evaluate the our implementation for multicore and coprocessor architecture in order to achieve
high efficiency. We developed optimized implementations for two sided factorization routines
and showed how our model guided us to drive it close to the theoretical limit.

3 Background

The eigenvalue problem finds an eigenvector x and eigenvalue λ that satisfy

Ax = λx,

where A is a symmetric or nonsymmetric n× n matrix. When the entire eigenvalue decompo-
sition is computed we have A = XΛX−1, where Λ is a diagonal matrix of eigenvalues and X is
a matrix of eigenvectors. The SVD finds orthogonal matrices U , V , and a diagonal matrix Σ
with nonnegative elements, such that A = UΣV T , where A is an m× n matrix. The diagonal
elements of Σ are singular values of A, the columns of U are called its left singular vectors, and
the columns of V are called its right singular vectors.

All of these problems are solved by a similar three-phase process:

1. Reduction phase: orthogonal matrices Q (Q and P for singular value decomposition)
are applied on both the left and the right side of A to reduce it to a condensed form
matrix – hence these are called “two-sided factorizations.” Note that the use of two-sided
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orthogonal transformations guarantees that A has the same eigen/singular-values as the
reduced matrix, and the eigen/singular-vectors of A can be easily derived from those of
the reduced matrix (step 3);

2. Solution phase: an eigenvalue (respectively, singular value) solver further computes the

eigenpairs Λ and Z (respectively, singular values Σ and the left and right vectors Ũ and

Ṽ T ) of the condensed form matrix;

3. Back transformation phase: if required, the eigenvectors (respectively, left and right

singular vectors) of A are computed by multiplying Z (respectively, Ũ and Ṽ T ) by the
orthogonal matrices used in the reduction phase.

We performed a set of experiments in order to determine the percentage of time spent in
each of these phases for the symmetric eigenvalue problem, the singular value decomposition
problem, and the nonsymmetric eigenvalue problem. The results showed that the first phase
is the most time consuming portion for the symmetric eigenvalue and the SVD problem. It
consists of more than 80% or 90% of the total time when all eigenvectors/singular vectors or
only eigenvalues/singular values are computed, respectively. For the nonsymmetric eigenvalue
problem, it consists of about 25% of the time. These observations illustrate the need to study
and improve the reduction phase. For that, we focus in this paper on the reduction phase and
study its limitations. Furthermore, we propose and show how to accelerate the reduction phase
on Intel Xeon-Phi coprocessors.

4 Performance Bound Analysis

In order to evaluate the performance behavior of the two-sided factorizations and to analyse if
there are opportunities for improvements, we conduct a computational analysis of the reduction
to condensed form for the three two-sided reductions (TRD, BRD, and HRD). Similar to the
one-sided factorizations (LU, Cholesky, QR), the two-sided factorizations are split into a panel
factorization and a trailing matrix update. Unlike the one-sided factorizations, the panel factor-
ization requires computing Level 2 BLAS matrix-vector products involving the entire trailing
matrix. This requires loading the entire trailing matrix into memory, incurring a significant
amount of memory bound operations. The application of two-sided transformations creates
data dependencies and produces artificial synchronization points between the panel factoriza-
tion and the trailing submatrix update that prevent the use of standard techniques to increase
the computational intensity of the computation, such as the look-ahead technique used exten-
sively in the one-sided LU, QR, and Cholesky factorizations. As a result, the algorithms follow
an expensive fork-and-join parallel computing model.

4.1 Flops count and its distribution in Level 2 and 3 BLAS

Performance of an algorithm can be modeled by the performances of its basic kernels. In our
case, the algorithms of interest are expressed as sequence of BLAS routines, and therefore
is important to determine their flops count, and more importanltlly, the flops distribution in
correspondingly the Level 2 and Level 3 BLAS. The blocked implementations of the reductions
proceed by steps of size nb. We give the detailed cost of step i as a cost for the panel and a
cost for the update:

• The panel is of size nb columns. The factorization of every column is primarily domi-
nated by either one (Tridiagonal, and Hessenberg reduction) or two (Bidiagonal reduction)
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matrix-vector products with the trailing matrix. Thus the cost of a panel is 2 nb l
2+Θ(n)

for the tridiagonal and the Hessenberg reductions, and 4 nb l2 +Θ(n) for the Bidiagonal
reduction, where l is the size of the trailing matrix. For simplicity, we omit Θ(n) and
roundup the cost of the panel by the cost of the matrix-vector product.

• The update of the trailing matrix consists of applying the Householder reflectors gener-
ated during the panel factorization to the trailing matrix from both the left and the right
side using Level 3 BLAS routines.

For Tridiagonal, it is updated as:
Ai+nb:n,i+nb:n ← Ai+nb:n,i+nb:n − V × WT − W × V T where V and W have been computed
during the panel phase. This Level 3 BLAS operation is computed by the syr2k routine
and its cost is 2 nb k2, where k = n− i nb is the size of the trailing matrix at step i.

For Bidiagonal, similarly it is computed:
Ai+nb:n,i+nb:n ← Ai+nb:n,i+nb:n − V × Y T − X × UT where V and Y are the Householder re-
flectors computed during the panel phase, X and Y are two rectangular matrices needed
for the update and also computed during the panel phase. This update phase can be per-
formed by two matrix-matrix products using the gemm routine and its cost is 2× 2 nb k2

where k is the size of the trailing matrix at step i.

For Hessenberg, the update follows three steps, first and second are the application
from the right and third is the application from left:
1) A1:n,i+nb:n ← A1:n,i+nb:n − Y × V T using gemm,
2) A1:i,i+1:i+nb

← A1:i,i+1:i+nb
− Y1:i × V T using trmm,

3) Ai:n,i+nb:n ← Ai:n,i+nb:n(I − V × TTV T) using larfb.
Its cost is 2 nb k n+ nb i2 + 4 nb k (k + nb) where k is the size of the trailing matrix at
step i. Note that V , T , and Y are generated by the panel phase.

For all steps (n/nb), the trailing matrix size varies from n to nb by steps of size nb, where l
varies from n to nb and k varies from (n−nb) to 2 nb. Thus the total cost for the n/nb steps is:
For Tridiagonal:

≈ 2nb

n/nb∑
nb

l2 + 2nb

n−nb
nb∑
2nb

k2

≈ 2
3n

3
symv +

2
3n

3
Level 3

≈ 4
3n

3.

For Bidiagonal:

≈ 4nb

n/nb∑
nb

l2 + 4nb

n−nb
nb∑
2nb

k2

≈ 4
3n

3
gemv +

4
3n

3
Level 3

≈ 8
3n

3.

For Hessenberg:

≈ 2nb

n/nb∑
nb

l2 + 2nbn

n−nb
nb∑
2nb

k+

nb

n/nb∑
nb

i2 + 4nbn

n−nb
nb∑
2nb

k(k + nb)

≈ 2
3n

3
gemv + n3

Level 3+

1
3n

3
Level 3 +

4
3n

3
Level 3 ≈ 10

3 n3.

4.2 Performance bounds derivation

According to the equations above we derive below the maximum performance Pmax that can
be reached by any of these reduction algorithms. In particular, for large matrix sizes n,
Pmax = number of operations

minimum time tmin
and thus Pmax is expressed as:
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For Tridiagonal:

4
3n

3

2
3n

3∗ 1
Psymv

+ 2
3n

3∗ 1
PLevel3

2∗PLevel3∗Psymv

PLevel3+Psymv

≈ 2Psymv

when PLevel3 � Psymv.
(1)

For Bidiagonal:

8
3n

3

4
3n

3∗ 1
Pgemv

+ 4
3n

3∗ 1
PLevel3

2∗PLevel3∗Pgemv

PLevel3+Pgemv

≈ 2Pgemv

when PLevel3 � Pgemv.
(2)

For Hessenberg:

10
3 n3

2
3n

3∗ 1
Pgemv

+ 8
3n

3∗ 1
PLevel3

5∗PLevel3∗Pgemv

PLevel3+4∗Pgemv

≈ 5Pgemv

when PLevel3 � Pgemv.
(3)

The performance of the Level 2 BLAS routines such as the matrix-vector multiplication
(symv or gemv) is memory bound and very low compared to the Level 3 BLAS routines which
can achieve close to the machine’s peak performance. For example, on a multicore CPU system
with 16 Sandy Bridge cores the performance of dgemv is about 14 Gflop/s, while for dgemm it is
323 Gflop/s. Thus, one can expect from Equations (1,2,3) that the performance of the reduction
algorithms is bound by the performance of the Level 2 BLAS operations. This explains the well
known low performance behavior observed for the three algorithm.

5 Performance results, analysis, and optimizations

We benchmark and study our implementations on an Intel multicore system with two 8-core
Intel Xeon E5-2670 (Sandy Bridge) CPUs, and 52 GB of system memory. Each core runs at
2.6 GHz and has a private 256 KB L2 and 64 KB L1 caches. Each socket has a 24 MB shared
L3 cache. The system’s theoretical peak in double precision is 20.8 Gflop/s per core, netting
332 Gflop/s in total. For the experiments utilizing accelerators we used an Intel Xeon Phi KNC
7120 coprocessor. The Xeon Phi has 15.1 GB of dedicated memory, runs at 1.23 GHz, and yields
a theoretical double precision peak of 1, 208 Gflop/s. For our experiments, we used the MPSS
2.1.5889-16 software stack, the icc compiler that comes with the composer xe 2013 sp1.2.144
suite, and the BLAS implementation from MKL (Math Kernel Library) 11.01.02 [13].

5.1 Kernel optimization for CPU and Xeon Phi

The goal of the performance analysis is to make our algorithm achieve the best performance
on a specific architecture. This requires detailed analysis of the performance obtained from
each kernel used (e.g., symv for TRD and gemv for BRD and HRD). Here we briefly describe
the optimizations for the symv and gemv that we performed in order to make their performance
match our expectation.
The symv kernel: Our first implementation of the tridiagonal reduction on CPUs achieved,
asymptotically, around 26 GFlop/s (see the brown curve for LAPACK in Figure 1b). However,
as stated in Equation (1), the expected performance of sytrd is twice that of symv. While the
gemv performance shown in Figure 1a is about 15 GFlop/s, the symv should be around 30
GFlop/s. Therefore, the tridiagonal reduction should reach around 60 GFlop/s. Our analysis
of this behavior showed that the symv kernel is not performing as expected. Instead of delivering
twice the performance of gemv, the symv kernel was attaining similar performance. For that we
developed an optimized implementation (magma dsymv) that matched the expected theoretical
bound. We illustrate the performance obtained from our optimized magma dsymv and compare
it to the one from the Intel MKL library in Figure 1a. We also studied the symv routine
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Figure 2

performance on the Phi coprocessor. We observed the same behavior as the CPU and developed
our own optimized implementation. In Figure 4a we depict the performance obtained from MKL
as well as the performance achieved by our implementation.
The gemv kernel: The gemv performance on the Phi is as expected – achieving around 40
GFlop/s in double precision, which translates to a bandwidth of about 160GB/s. However, the
result obtained from the bidiagonal reduction (BRD) is not satisfying its upper limit defined
by equation (2). According to equation (2) the performance upper bound is about twice the
gemv, while our experiment shows that the BRD attains less than 40 GFlop/s. A detailed
analysis of the gemv kernel showed that its performance highly depends on the location of the
data in the memory, and in particular on the memory alignment. We benchmarked gemv with
consecutively decreasing matrix sizes, similar to the way that the BRD reduction calls it, and
found the performance fluctuates as shown in Figure 2 (the blue curves) according to the offset
from which the matrix is accessed. Thus, we proposed a fix to this problem, and developed a
version that always accesses the matrix from its aligned data, performing a very small amount
of extra work but keeping its performance stable at its best. The red curves of Figure 2
shows our improvement. The optimized transposed and non-transposed matrix-vector dgemv
performances are now as expected – reaching about 40 GFlop/s, or in terms of bandwidth,
about 160 GB/s. This is consistent, even slightly exceeding, the bandwidth achieved by the
STREAM benchmark [19].
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Figure 3

5.2 Tridiagonal reduction on multicore CPUs

Figure 1b shows the performance for the tridiagonal reduction on multicore. According to our
detailed cost description in Section 4.2, the tridiagonal reduction performance is bounded by
the symmetric matrix-vector multiplication and thus the performance of dsymv is considered to
be critical for the dsytrd routine.

As shown in Figure 1a, MKL’s dsymv runs at about 15 GFlop/s, which translates to a low
bandwidth of 30 GB/s. Although this kernel runs at the same performance of dgemv, while
we expect it to be twice as fast due to the symmetry. This warrants an improvement, so we
developed a kernel that utilizes the symmetry (denoted by MAGMA DSYMV CPU) and performs as
expected (around 60 GB/s). Its effect is denoted by LAPACK DSYTRD CPU (MAGMA DSYMV CPU)
in Figure 1b. The results also show that MKL’s dsytrd uses a well optimized dsymv internally.
Both LAPACK and MKL reach, asymptotically, about 84% of the theoretical peak. Note that
the jump in performance observed for matrices of sizes between 3, 000 and 4, 000 is due to the
fact that a large part of the matrix data at these sizes can be loaded into the L2 cache, and thus
the memory bandwidth is higher, letting the Level 2 BLAS routine reach higher performance.
But for larger matrix sizes, no single cache level is large enough to hold the matrix data, and
the performance of the Level 2 BLAS is stubbornly bound by the bandwidth — which limits
the performance of the reduction. For example, the TRD reduction is limited by 50 Gflop/s on
16 Intel Xeon E5-2670 cores, which is about twice the performance observed for our optimized
magma dsymv routine. We would also like to mention that the performance obtained on 8 and
16 cores are very close to each other. Despite the fact that half of the floating point operations
are done by the dsyr2k routine, which benefits every additional core devoted to the computation,
the performance ceiling remains low. This cannot be changed by using additional cores because
the performance is bound by what can be achieved with dsymv, which is limited by the available
memory bandwidth.

5.3 Bidiagonal reduction on multicore CPUs

Figure 3a shows the performance for the bidiagonal reduction on multicore CPUs. The critical
kernel for achieving high performance is a combination of two gemvs – a transposed version and
a non-transposed version. Both kernels perform as expected and the performance of the dgebrd
is within 80% of the theoretical peak. As with other two factorizations, MKL is better for small
and mid-size problems, and about the same performance as LAPACK, asymptoticly, for large
problems.
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Figure 4

5.4 Hessenberg reduction on multicore CPUs

Figure 3b shows the performance for the Hessenberg reduction on multicore. We compare LA-
PACK (in red) vs. the Intel MKL implementation (in green). The result shows that MKL
has optimizations for small to medium size problems. Both have about the same performance
asymptotically, for large matrix sizes, reaching about 80% of the theoretical peak. The perfor-
mance of dgemv, about 16 GFlop/s, translates into an achieved bandwidth of about 64 GB/s.
Still, these results are state-of-the-art, do not show major deficiency, and we therefore consider
them sufficiently high as not to warrant further optimizations in the scope of this work. The
bumps in performance for small sizes are due to cache effects – matrices fitting into the L3
cache, resulting in higher bandwidth and hence improved gemv and overall gehrd performance.

5.5 Tridiagonal reductions for Xeon Phi

Figure 4b shows the performance for the tridiagonal reduction using the Xeon Phi. Here,
the native MKL and LAPACK implementations are much slower than MAGMA. In particular
the native implementation reaches about 64% of the theoretical peak, while the MAGMA is
within 86% of the peak. Again, the bound is derived from equation (1) according to the BLAS
performance on the MIC, and since MAGMA falls back to CPUs for small problems, we observe
that the peak for small problems exceeds the theoretical bound for the MIC due to the CPU
cache reuse effect. We also illustrate the effect of our optimized version of symv where we can
see an improvement of about 20 GFlop/s for large sizes and where the curve shows asymptotic
behavior compared to the bound.

5.6 Bidiagonal reductions for Xeon Phi

Figure 5a shows the performance for the bidiagonal reduction on the Xeon Phi. Similarly to the
tridiagonal factorization, the MKL and LAPACK implementations are much slower – 51% of
the peak vs. 86% for MAGMA. For the same reason explained above, the MAGMA performance
on small size is related to cache effect of the CPU since it uses the CPU exclusively for small
sizes.

5.7 Hybrid and native Hessenberg reductions for Xeon Phi

Figure 5b shows the performance for the Hessenberg reduction on the Xeon Phi. The perfor-
mance bound is derived from the MIC BLAS results, i.e., it is linked to the gemv’s performance
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(a) Performance of magma dgebrd on Xeon Phi.
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(b) Performance of magma dgehrd on Xeon Phi.

Figure 5

on the MIC. Note that because of the small caches associated with the MIC’s cores, in con-
trast to the multicore case, there is no bump in the performance for small problems on the
MIC. The native implementations for MKL and LAPACK have the same performance, reach-
ing up to about 62% of the performance bound peak. On the other hand, the hybrid MAGMA
implementation reaches up to 91% of the peak. This may seem counterintuitive since both
implementations use the same performance-critical gemv kernel, and moreover the hybrid code
has the expensive CPU-to-MIC data transfers. It turns out that the fork-and-join parallelism,
employed in the hybrid codes, has very high overhead on the highly-parallel MIC architectures
when different BLAS kernels are called in a sequence. Indeed, benchmarks with consecutive
executions of the same kernel, e.g., a sequence of gemvs, do not show overheads, while combin-
ing a gemv with other the BLAS kernels in the panel factorizations significantly slows down all
kernels (including the gemv). This mixing of kernels does not exist in the hybrid code, and as
a result, in spite of the extra CPU-to-MIC communications, performance is much higher.

Note that the hybrid uses the multicore CPUs for small problems, explaining the bump in
performance for those sizes. The bound is exceeded since the bound is derived, as mentioned
above, for the MIC-native implementation.

6 Conclusions and future work directions
For the first time, we present results on the main two-sided factorizations for Xeon Phi archi-
tectures. We used the same programming methodology for all three factorizations. We used
and compared native and hybrid programming models, and developed implementations and
optimizations guided by performance analysis. We achieved up to about 80% on average of
the optimal performance bounds. Moreover, we showed that the hybrid implementations are
50% faster than the MIC-native implementations (in both MKL and our own LAPACK versions
optimized for the Xeon Phi). We showed that only the symv kernel has to be further accelerated
on MIC. We are currently exploring acceleration strategies, similar to our improvement for the
symv on multicore CPUs, which will be described in a future paper targeting low level MIC
kernels. Future work is also concentrated on the development of two-stage approaches for MIC
that first reduce the matrices to band-forms, followed by bulge chasing procedures to finish the
reductions to the final Hessenberg, tridiagonal, or bidiagonal forms.
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