
Access-averse Framework for Computing Low-rank
Matrix Approximations

Ichitaro Yamazaki†,∗, Theo Mary‡, Jakub Kurzak†, Stanimire Tomov†, and Jack Dongarra†
†Department of Computer Science, University of Tennessee, Knoxville, Tennessee, U.S.A.

‡Université de Toulouse, INPT(ENSEEIHT)-IRIT, France

Abstract—Low-rank matrix approximations play important
roles in many statistical, scientific, and engineering applications.
To compute such approximations, different algorithms have
been developed by researchers from a wide range of areas
including theoretical computer science, numerical linear algebra,
statistics, applied mathematics, data analysis, machine learning,
and physical and biological sciences. In this paper, to combine
these efforts, we present an “access-averse” framework which
encapsulates some of the existing algorithms for computing a
truncated singular value decomposition (SVD). This framework
not only allows us to develop software whose performance can
be tuned based on domain specific knowledge, but it also allows
a user from one discipline to test an algorithm from another, or
to combine the techniques from different algorithms. To demon-
strate this potential, we implement the framework on multicore
CPUs with multiple GPUs and compare the performance of
two representative algorithms, blocked variants of matrix power
and Lanczos methods. Our performance studies with large-scale
graphs from real applications demonstrate that, when combined
with communication-avoiding and thick-restarting techniques,
the Lanczos method can be competitive with the power method,
which is one of the most popular methods currently used for these
applications. In addition, though we only focus on the truncated
SVDs, the two computational kernels used in our studies, the
sparse-matrix dense-matrix multiply and tall-skinny QR factor-
ization, are fundamental building blocks for computing low-rank
approximations with other objectives. Hence, our studies may
have a greater impact beyond the truncated SVDs.

I. INTRODUCTION

Low-rank matrix approximations play important roles in
many statistical, scientific, and engineering applications. Given
that the modern applications that generate “big data” with a
massive volume, variety, velocity, and veracity, we face an
increasing demand for a software package that can efficiently
and robustly compute such approximations for a wide range of
applications on modern computers. Though many algorithms
have been developed for computing low-rank approximations,
they are often developed by the researchers of a given dis-
cipline and optimized for their individual needs. As our first
attempt to combine these efforts, in this paper, we present
the existing algorithms to compute low-rank approximations
in a single framework. This framework allows a user to
test an algorithm developed by different disciplines, combine
techniques from different algorithms, or tune its performance
based on their domain specific knowledge (e.g., required
solution accuracies or singular value distributions). In addition,

∗iyamazak@eecs.utk.edu

the framework may provide a foundation for developing a
robust and efficient software package.

While there exist low-rank approximations with different
objectives (e.g., matrix completion and matrix sampling), in
this paper, we focus on truncated singular value decomposi-
tion (SVD) [5]. This is primarily because SVD computes the
approximation with the minimum spectral or Frobenius norm,
and it has been used in many applications, including principal
component analysis, community detection, clustering, node
ranking, and collaborative filtering in large graphs. Though
there are many algorithms to compute a truncated SVD, we
focus on random projection methods [6], [9] because in com-
parison to the classical algorithms like a block Lanczos [4],
these methods are claimed to be not only robust with noisy
or incomplete data, but also efficient on large data because
it requires fewer matrix accesses and can exploit higher data
locality and parallelism. On modern computers, data access
and communication are becoming increasingly expensive (in
terms of both time and energy consumption), and such “access-
averse” properties of the random projection methods to extract
as much useful information as possible from each data access
are becoming attractive.

To compare the performance of different algorithms, we
implemented the framework, which encapsulates all the al-
gorithms described in this paper, including the access-averse
algorithms, on multicore CPUs with multiple GPUs. Our
experimental results with large-scale graphs from real applica-
tions demonstrate that a block Lanczos can be efficient when
combined with communication-avoiding [8], [22] and thick-
restarting [2], [18] techniques; two techniques developed by
two different disciplines – computer science and numerical
linear algebra. These two techniques allow us to build the pro-
jection subspace with the minimum data access and accelerate
the solution convergence by retaining the useful information
when restarting the iteration, respectively. Hence, compared to
random projection, Lanczos could build a projection subspace
that is richer in useful information with fewer communication
phases, and potentially with about the same amount of data
access, especially when the solution convergence requires a
few restart cycles and the matrix can be partitioned well.

The rest of the paper is organized as follows: first, in
Sections II and III, we review the random projection and
block Lanczos methods, respectively, for computing truncated
SVDs. Second, in IV and V, we present thick-restarting and
communication-avoiding variants of block Lanczos, respec-

70

2014 IEEE International Conference on Big Data

978-1-4799-5666-1/14/$31.00 ©2014 IEEE

Notation Description
m-by-n dimension of sparse coefficient matrix A

b block size for block Lanczos
t targeted number of block singular vectors

to be computed
s step size for matrix powers kernel,
c restart cycle for block Lanczos
k number of kept Ritz block vectors for

thick-restarted block Lanczos
` oversampling for random projection

aj or Aj1:j2 j-th, or j1-th to j2-th columns of A
Ai1,i2,j1:j2 i1-th to i2-th rows of Aj1:j2

a(j) or A(j1:j2) j-th, or j1-th to j2-th block columns of A
a(i,j) (i, j)-th block of A

Fig. 1. Notations used in this paper.

tively. Then, in Section VI, we introduce our access-averse
framework that encapsulates these methods and describe its
implementation on a hybrid CPU/GPU architecture. Next, in
Section VII, we discuss our experimental setups to compare
the performance of different algorithms in a reasonably fair
condition. Finally, in Section VIII, we present our experimen-
tal results, using large-scale graphs from real applications. We
list our final remarks in Section IX.

Throughout this paper, we aim to compute a tb-rank ap-
proximation of an m-by-n sparse matrix A, where t is our
target block-wise rank, and b is the block size used in block
Lanczos. We denote the j-th column of a matrix A by aj ,
while Aj:k is the submatrix consisting of the j-th through the
k-th columns of A, inclusive. In addition, we use a(i,j) and
a(j) to represent the (i, j)-th block and the j-th block column
of A, respectively, while A(j:k) is the submatrix consisting of
the j-th through the k-th block columns of A. Figure 1 lists
the notations that will be used in this paper.

II. RANDOM PROJECTION AND POWER METHODS

A random projection method computes a truncated SVD of
an m-by-n input matrix A, based on the following three steps:

1) Generate a pair of (t+ `)b orthonormal basis vectors P
and Q that approximately span the ranges of the matrices
A and AT , respectively,

A ≈ PQT ,

where b is the block size, t is the number of block
singular vectors to be computed, and ` is a parameter
referred to as oversampling [6].

2) Use a standard deterministic algorithm to compute SVD
of the projected matrix B,

B = XΣY T , (1)

where B = PTAQ, X and Y are the left and
right singular vectors of B, respectively, and Σ =
diag(σ1, σ2, . . . , σ(t+`)b) with the singular values in the
descending order (i.e., σ1 ≥ σ2 ≥ · · · ≥ σ(t+`)b).

3) Compute an approximation to the truncated SVD of A,

A ≈ U1:tbΣ1:tb,1:tbV
T
1:tb, (2)

where U = PX and V = QY .
To generate the orthonormal basis vectors P and Q, one popu-
lar approach is to perform power iterations [10]. Namely, start-
ing with an initial n-by-(t+`)b Gaussian random vectors Q̂(1),
we perform the following procedure for j = 1, 2, . . . ,

1) Compute the orthonormal basis vectors Q(j) by a
tall-skinny QR (TSQR) factorization of Q̂(j), i.e.,
Q(j)R(j−1,j) := Q̂(j) with an upper-triangular R(j−1,j).

2) Compute P̂ (j) by the sparse-matrix dense-matrix multi-
ply (SpMM), P̂ (j) = AQ(j).

3) Compute the orthonormal vectors P (j) by TSQR of P̂ (j),
i.e., P (j)R(j,j) := P̂ (j) and an upper-triangular R(j,j).

4) Compute Q̂(j+1) by SpMM, Q̂(j+1) = ATP (j).
Hence, after the j cycles of the power method, we have the
orthonormal projection subspaces that satisfy{

span(Q) = span((ATA)j−1Q̂(1)), and
span(P) = span(A(ATA)j−1Q̂(1)),

where Q = Q(j) and P = P (j). Since P (j)R(j,j) = AQ(j),
the projected matrix B is given by the upper-triangular matrix
R(j,j) (i.e., R(j,j) = P (j)TAQ(j)). In Section VII, we discuss
our implementation of TSQR.

III. BLOCK LANCZOS METHOD

In contrast to the subspaces (3) generated by the power
method, the c steps of a block Lanczos method [4] generate
the Krylov projection subspaces,

span(q(1),q(2), . . . ,q(c))
= span(q̂(1), (ATA)q̂(1), . . . , (ATA)c−1q̂(1)), and

span(p(1),p(2), . . . ,p(c))
= span(Aq̂(1), A(ATA)q̂(1), . . . , A(ATA)c−1q̂(1)).

Here, q̂(1) is an initial n-by-b random block vector, and the
columns of the projection subspaces, Q(1:c) and P(1:c), are
orthonormal. These basis vectors satisfy the relation,{

ATP(1:c) = Q(1:c)BT + q(c+1)r(c,c+1)e(c)T , and
AQ(1:c) = P(1:c)B,

(3)

where B is a cb-by-cb upper-triangular band matrix,

B =


r(1,1) r(1,2)T

r(2,2) r(2,3)T

.
r(c−1,c−1) r(c−1,c)T

r(c,c)

 ,

with b-by-b upper-triangular blocks r(i,j), and e(c) is the
last b columns of the cb-by-cb identity matrix. Hence, given
the orthonormal block vectors q(1), the first step of Lanczos
generates p(1) by SpMM to multiply q(1) with A, followed by
TSQR to orthonormalize the resulting vectors, i.e., p(1)r(1,1) =
Aq(1). Then, for the remaining j-th step (i.e., j = 2, 3, . . . , c),
Lanczos computes the pair of the basis vectors q(j) and p(j)

based on the following two-term recurrences,{
q(j)r(j−1,j) = ATp(j−1) − q(j−1)r(j−1,j−1)T

p(j)r(j,j) = Aq(j) − p(j−1)r(j−1,j)T .
(4)

71

To ensure the orthogonality of q(j), we may perform
full reorthogonalization. This is done by first block-
orthogonalizing q(j) against all the previously-
orthonormalized basis vectors Q(1:j−1) (BOrth), followed by
TSQR of q(j). The basis vectors p(j) may be reorthogonalized
in the same way.

Like the random projection method, an approximation to the
truncated SVD is computed based on (1) and (2). To measure
the approximation error, we use the i-th residual norm,

‖ri‖2 = (‖Av̂i − σ̂iûi‖22 + ‖AT ûi − σ̂iv̂i‖22)1/2. (5)

Because of the equations (2) and (3), we have

‖Av̂i − σ̂iûi‖2 = ‖AQ(1:c)yi − σ̂iP(1:c)xi‖2
= ‖Byi − σ̂ixi‖2 = 0,

and

‖AT ûi − σ̂iv̂i‖2 = ‖ATP(1:c)xi − σ̂iQ(1:c)yi‖2
= ‖Q(1:c)(BTxi − σ̂iyi) + q(c+1)r(c,c+1)e(c)Txi‖2
= ‖r(c,c+1)e(c)Txi‖2. (6)

Hence, the residual norm (5) can be efficiently computed.
The combined cost of SpMM, BOrth, and TSQR typically

dominates the total costs, and hence the total solution time,
of Lanczos. To accelerate the solution process, our hybrid
CPU/GPU implementation generates the basis vectors on the
GPUs, while the SVD of the projected matrix B is computed
on the CPU. We distribute both the sparse matrices, A and AT ,
and the basis vectors, Q(1:c+1) and P(1:c), among the GPUs
in a 1D block row format (e.g., using a graph or hypergraph
partitioning algorithm, see Section VIII). A more detailed
description of our implementation can be found in our previous
paper [19].

IV. THICK-RESTARTED BLOCK LANCZOS

As the Lanczos iteration proceeds, the explicit orthogo-
nalization of the basis vectors becomes expensive in terms
of computation and storage. To avoid the high costs of
computing a large projection subspace, we restart the iteration
after computing a fixed number c of block basis vectors.
There are several strategies to restart the Lanczos iteration for
computing eigenvalues [14], [18], which can be adapted to
the singular value computation. In this paper, we focus on the
thick restarted Lanczos [2], which keeps multiple approximate
singular vectors, referred to as Ritz vectors, at restart, i.e.,
q̄(j) = v(j) and p̄(j) = u(j) for i = 1, 2, . . . , k, where
we put a bar on top of the next basis vectors q̄(j) and p̄(j)

to distinguish them from those of the previous restart-cycle.
There are several heuristics to decide which singular vectors
to keep at restart [18], [20], but in this paper, we simply keep
the fixed number k of block Ritz vectors associated with the
largest Ritz values. In addition, the last basis vector from the
previous restart-cycle is kept (q̄(k+1) = q(c+1)). From (3), it
can be shown that the residual vectors belong to the space
spanned by q(c+1) (i.e., ri ∈ span(q(c+1)) for i = 1, 2 . . . , k),
and the kept vectors span a Krylov subspace. In addition,

for the next restart-cycle, the two-term recurrences (4) are
recovered after the (k+1)-th block vector p̄(k+1) is explicitly
orthogonalized against all the kept vectors,

p̄(k+1)r̄(k+1,k+1) = Aq̄(k) −
k∑
i=1

p̄(i)r̄(i,k+1), (7)

where r̄(i,k+1) = p(i)TAq(k) for i = 1, 2, . . . , k. Since
r̄(i,k+1) is equal to (r(c,c+1)e(c)Txi)

T of (6), it is available as
a by-product of computing the residual norm at the previous
restart. In the end, after thick-restart, the projected matrix B
has the block structure,

B =



σ(1) r̄(1,k+1)

. . .
...

σ(k) r̄(k,k+1)

r̄(k+1,k+1) r̄(k+1,k+2)T

. . .
. . .

r̄c−1,c−1) r̄(c−1,c)T

r̄(c,c)


,

where σ(i) = diag(σ(i−1)b+1, σ(i−1)b+2, . . . , σib).

V. COMMUNICATION-AVOIDING BLOCK LANCZOS

SpMM, BOrth, and TSQR all require communication.
This includes point-to-point neighborhood communication for
SpMM, and global reductions in BOrth and TSQR, as well
as data movement through the local memory hierarchy (for
reading the sparse matrix and for reading and writing vectors,
when they do not fit in cache). On modern computers, such
communication is becoming expensive compared to arithmetic
operations, in terms of both cycle time and energy.

To improve the performance of block Lanczos for com-
puting singular values, we adapt a communication-avoiding
variant of Lanczos for eigenvalue computation [8], [22].
This is done by replacing SpMM with a new com-
putational kernel, called matrix powers kernel (MPK),
that generates a set of s block basis vectors at once.
MPK applies the matrix power s times to a start-
ing block vector p(i), and computes ATp(i), (AAT)p(i),
AT (AAT)p(i), . . . , (AAT)s−1p(i), AT (AAT)s−1p(i). This
generates two sets of block vectors:

Q̂(i+1:i+s) = [ATp(i), AT (AAT)p(i), . . . , AT (AAT)s−1p(i)],

P̂(i+1:i+s) = [(AAT)p(i), (AAT)2p(i), . . . , (AAT)s−1p(i)].

To compute such matrix powers on multiple GPUs, each GPU
first exchanges with its neighboring GPUs all the required
vector elements of p(i) for computing the local parts of
Q̂(i+1:i+s) and P̂(i+1:i+s). Then, each GPU independently
computes the matrix powers by invoking SpMM with its local
part of the matrix A without further communication [12].

Due to the two-term recurrences (4), the new sets of vectors,
Q̂(i+1:i+s) and P̂(i+1:i+s), can be orthogonalized against the
previous vectors by only orthogonalizing q̂(i+j) against the j
previous block vectors, Q(i−j:i), and p̂(i+j) against the (j+1)
previous block vectors P(i−j−1:i), for j = 1, 2, . . . , s [22].

72

Then, these resulting vectors are orthonormalized against each
other using TSQR,

Q(i:i+s)R(i:i+s,i:i+s)
q := Q̂(i:i+s),

P(i:i+s)R(i:i+s,i:i+s)
p := P̂(i:i+s).

To maintain the orthogonality, we may perform the full re-
orthogonalization just as in the block Lanczos (see Section III).

In the end, this communication-avoiding Lanczos, referred
to as CA-Lanczos, generates the same basis vectors Q(1:c)

and P(1:c) as Lanczos, mathematically, but reduces the com-
munication latency by a factor of s (see our implementation in
Section VI). In addition, when the matrices A and AT can be
partitioned well, CA-Lanczos communicates about the same
amount of data as Lanczos [12].

Once the basis vectors are generated, the band matrix B
can be cheaply computed, i.e., for j = i, i+ 1, . . . , i+ s,

b(j,j+1) = (r(j,j)
p)−T r(j+1,j+1)T

q ,

b(j+1,j+1) = r(j+1,j+1)
p (r(j+1,j+1)

q)−1, (8)

where r
(j,j)
q and r

(j,j)
p are the (j − i + 1)-th diagonal

blocks of the upper-triangular matrices, R
(1:s+1,1:s+1)
q and

R
(1:s+1,1:s+1)
p , respectively.

VI. FRAMEWORK AND IMPLEMENTATION

Figure 2 shows the pseudocode of the framework that aims
to encapsulate all the algorithms described in this paper. This
framework can compute the low-rank approximations based
on a random projection or power method (i.e., c = 0), or
CA-Lanczos (i.e., c > 0). It can also run the standard block
Lanczos by orthogonalizing the basis vectors after each SpMM
during MPK, and disabling the orthogonalization after MPK.
We also implemented an option to run the standard Lanczos
iterations for the first few restart cycles before switching to
CA-Lanczos. This option not only allows us to build the initial
projection subspaces in a stable manner, but it also allows us
to gather valuable performance and numerical statistics, which
may be used to tune the input parameters of CA-Lanczos for
the remaining cycles (e.g., the MPK step size s) [21]. Our
implementation also includes a few restarting schemes like
explicit-restart [4] and thick-restart [18].

For BOrth and TSQR in our experiments, we used the
classical Gram Schmidt (CGS) process [1] and the Cholesky
QR (CholQR) factorization [16], respectively, both of which
were implemented using the optimized dense GPU kernels
that we previously developed in [19]. Though the Householder
QR factorization [5] provides an unconditionally stable or-
thogonalization scheme, CholQR and CGS can exploit the
data locality better and obtain higher performance. In ad-
dition, for our experiments in this paper, we assumed that
the ((t + `)b + 1)-st singular value of A is greater than
the machine epsilon (i.e., σtb+1 � ε) such that CholQR is
numerically stable orthogonalizing the basis vectors. Detailed
numerical and performance studies of different orthogonaliza-
tion schemes for a CA Krylov method can be found in [19]. In
most cases in that study, an efficient and stable performance

Initialization
Initialize q̂(1) as random vectors
q̂(1) = TSQR(q̂(1)), and k = 0

do (Main Loop)
1. Loop-Initialization

1.1. Sparse-Matrix Vector Multiply
p̂(k+1) = Aq̂(k+1)

1.2. Orthogonalization
Full Orthogonalization (if needed)

p(k+1) = TSQR(p̂(k+1) −P(1:k)b(1:k,k+1))
Full Reorthogonalization (if needed)

p(k+1) = OrthB(p(k+1),p(1:k)), update b(k+1,k+1)

2. Krlov Iteration
for i = k + 1, k + 1 + s, k + 1 + 2s, . . . , c do

2.1. Matrix Powers Kernel
for j = i, i+ 1, . . . , i+ s

q̂(j+1) = AT p̂(j) and p̂(j+1) = Aq̂(j+1)

2.2. Orthogonalization
Two-term Orthogonalization (if needed)

Q(i,i+s)Rq = OrthB(Q̂(i,i+s),Q(min(1,i−s):i))

P(i,i+s)Rp = OrthB(P̂(i,i+s),P(min(1,i−2s):i))
Full Reorthogonalization (if needed)

Q(i:i+s) = OrthB(Q(i:i+s),Q(1:i−1)), update Rq

P(i:i+s) = OrthB(P(i:i+s),P(1:i−1)), update Rp

2.3. Projected Matrix Computation
for j = 1, 2, . . . , s− 1

compute b(i+j−1,i+j) and b(i+j,i+j) by (8)
end for

3. Convergence Check
3.1. Approximation to Truncated SVD
XΣ̂Y T = SVD(B)
U(1:t) = P(1:c)X(1:t) and V(1:t) = Q(1:c)Y(1:t)

3.2. Sparse-Matrix Vector Multiply
q̂(c+1) = ATp(c)

3.3. Two-term Orthogonalization (if needed)
q(c+1) = TSQR(q̂(c+1) − q(c)b(c,c)T)

3.4. Full Reorthogonalization (if needed)
q(c+1) = OrthB(q(c+1),Q(1:c)), update b(c,c+1)

3.5. Residual Norm Computation
for i = 1, 2, . . . , t do

b(i,i) = σ̂(i) and b(i,t+1) = x(c,i)Tb(c,c+1)

for j = 1, 2, . . . , b (and ĵ = (i− 1)b+ j)
‖ATuĵ − vĵσĵ‖2 = ‖(b(i,t+1)T)j‖2

end for
if all converged then

return U(1:t), Σ̂(1:t),V(1:t)

else if explicit restart then
q(1) = u(1), and k = 0

else if thick restart then
Q(1:(t+1)) = [U(1:t)q(c+1)], P(1:t) = [V(1:t)], and k = t

else if power restart then
q(1) = TSQR(q̂(c+1)), and k = 0

end if
while

Fig. 2. Access Averse Framework for Computing Low-Rank Approximation.
In this figure, OrthB(p(k+1),p(1:k)) performs BOrth to orthogonalize
p(k+1) against p(1:k) followed by TSQR to orthonormalize p(1:k).

of CA-Krylov was obtained using CholQR and CGS with
reorthogonalization. Our implementation also includes several
reorthogonalization options (e.g., full reorthogonalization [3]
and one-sided reorthogonalization [13]). For SpMM, we used
CuSPARSE in the compressed sparse row format, while a

73

Name Source m n nnz
m

σ̂1

BerkStan snap.stanford.edu 685, 230 685, 230 11.1 6.7 × 102

Netflix netflixprize.com 2, 649, 429 17, 770 37.9 1.9 × 104

Fig. 3. Test matrices.

threaded version of MKL is used to compute the SVD of B.
For the two-term orthogonalization of CA-Lanczos, the

block vectors q̂(i+j) and p̂(i+j) need to be only orthogonalized
against the j block vectors Q(i−j:i−1) and the (j + 1) block
vectors P(i−j−1:i−1), respectively, for j = 0, 1, . . . , s (see
Section V).1 In contrast, our implementation uses BOrth to
orthogonalize the new set of vectors, Q̂(i:i+s) and P̂(i:i+s),
against the s and (s + 1) block vectors, Q(i−s:i−1) and
P(i−s−1:i−1), respectively. Though this increases the compu-
tational cost, we can exploit data locality by orthgonalizing
Q̂(i:i+s+1) or P̂(i:i+s+1) all at once, instead of orthogonalizing
each block vector q̂(i+j) or p̂(i+j) at a time. Since on a modern
computer, the data access is becoming increasingly expensive
compared to the computation, orthogonalization time can be
dramatically reduced by exploiting the data locality.

VII. EXPERIMENTAL SETUPS

To check for the convergence, we use the equality (6)
to compute the residual norms at every restart. This intro-
duces extra computation for the power method, but com-
puting other error measurements (e.g., approximation error
‖A − Û(1:t)Σ̂(1:t,1:t)V̂(1:t)‖) may require about the same
or higher computational cost. In particular, to use (6), we
followed the algorithm in [10] and used the orthonormal
starting vectors q(1). Though the random projection could
start with non-orthogonal vectors, the initial orthogonalization
cost may not be significant, or may be needed to maintain
the numerical stability in practice. We study the overhead and
accuracy of computing the residual norms in Section VIII.

In our experiments, we fixed the oversampling to be equal
to the number of target block singular vectors (i.e., ` = t).
Then, to compare the performance of different algorithms, we
also fixed the projection subspace dimension (i.e., t+ ` = c).
With this setup, the power method has about the same storage
and computational costs as Lanczos or CA-Lanczos for the
first restart cycle (i.e., they generate the same number of
orthonormal basis vectors). Then, to thick-restart the Lanczos
iteration, we kept two additional block Ritz vectors in addition
to the current approximate singular vectors (i.e., k = t + 2).
Hence, after the first restart-cycle, each Lanczos’ cycle only
generates the remaining t − 2 block basis vectors, P(t+3:c)

and Q(t+4:c+1), while the power method generates the 2t
block vectors, P(1:c) and Q(c+1:2c) (i.e., c = 2t). As a result,
compared to Lanczos, the power method performs about 2.0×
and 1.25× more floating point operations (flops) for SpMM
and Orth, respectively.

To generate the projection space, the power method has four
communication phases (i.e., two SpMMs and two TSQR). To

1Lanczos avoids recomputing the coefficients r(j−1,j−1) and r(j−1,j)

in (4), which are readily available from the previous iteration due to the
symmetry of the coefficient matrix A.

Power−2 Power−1 CALan−2 CALan−1 Lanc−2 Lanc−1
0

10

20

30

40

50

60

70

80

T
im

e
 p

e
r

R
e

s
ta

rt
 C

y
c
le

 (
s
)

Other

Ortho

Ortho(r)

SpMM

Init

Restart

Fig. 4. Time breakdown for BerkStan matrix, with three GPUs.

generate the projection space of the same dimension, Lanczos
requires about 4(c − k) communication phases. With c = 2t
and k = t + 2 used in our experiments, this is about t
times more communication phases compared to that of the
power method. In contrast, CA-Lanczos computes the same
basis vector P(k+1:c) and Q(k+2:c+1) as Lanczos, but requires
only 3(c− k)/s communication phases (e.g., two SpMMs are
replaced by a single MPK). In addition, in our experiments,
we set the MPK step size such that after the first restart
cycle, there is only one MPK call per restart cycle (i.e.,
s = c−k). Hence, for the second restart loop on, CA-Lanczos
has only three communication phases, which is less than the
four communication phases required by the power method.

For the power method and CA-Lanczos, we used a one-
sided orthogonalization scheme, where Q(1:c) is orthogonal-
ized by the two-term orthogonalization, followed by a full
reorthogonalization, while P(1:c) is orthogonalized by a full
orthogonalization alone. This orthogonalization scheme was
stable with the block size and restart length used for the test
matrices in our experiments (i.e., b = 10 and t = 3 ∼ 5).
On the other hand, for the one-sided orthogonalization of
Lanczos, we used the two-term recurrence, followed by a full-
reorthogonalization for Q(1:c), and just the two-term recur-
rence for P(1:c). To maintain the stability of Lanczos, we ran
a full reorthogonalization of the last block vector q(c+1).

VIII. PERFORMANCE RESULTS

Table 3 shows the two graph matrices from real applications,
that we used to study the performance of the power method
and Lanczos. For the BerkStan and Netflix matrices, we
computed the largest 50 and 30 singular values (in double
precision), respectively, using the block size of 10. Unless
otherwise specified, both Lanczos and CA-Lanczos are based
on thick-restarting. To study the convergence rates, we show
the maximum residual norm of the computed singular val-
ues at each restart, which was computed using (6). All the
experiments were conducted on a single compute node of the
Keeneland system at the Georgia Institute of Technology. Each
of its compute nodes consists of two six-core Intel Xeon CPUs
and three NVIDIA M2090 GPUs, with 24GB of main CPU

74

0 5 10 15 20 25 30 35 40 45 50 55 60
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

R
e

s
id

u
a

l
N

o
rm

s

Number of Cycles

Power (2−sided)

Power (1−sided)

Lanczos (2−sided)

Lanczos (1−sided)

CA−Lanczos (2−sided)

CA−Lanczos (1−sided)

Fig. 5. Convergence history using one-sided or two-sided orthogonalization
schemes for BerkStan matrix.

memory per node and 6GB of memory per GPU. We used
the GNU gcc 4.4.6 compiler and CUDA nvcc 5.0 compiler
with the optimization flag -O3, and linked with Intel’s Math
Kernel Library (MKL) version 2011 sp1.8.273.

Figure 4 shows the average time spent in the different
computational kernels over 100 restart cycles for BerkStan,
where “Init” is the time required to orthogonalize the first
block vector p(k+1), and “Restart” is the time required to
compute the SVD of the projected matrix, the residual norms,
and the kept Ritz vectors. The matrix is sparse, and all the
methods spent a significant amount of time in orthogonal-
ization. We show the time required to orthogonalize the last
basis vectors q(m+1), separately (i.e., “Ortho(r)”). This is a
part of the overhead for the power method to compute the
residual norm, while Lanczos recycles these basis vectors
to restart the iteration. The figure also shows the timing
results with both one-sided and two-sided reorthogonalizaiton
schemes (e.g., Power-1 and Power-2), where the two-sided
scheme performs the two-term orthogonalization followed by
the full reorthogonalization. We clearly see that the iteration
time was reduced significantly using the one-sided scheme.
With the one-sided scheme, the “Init” time of the power
method was almost halved because the initial block vector p(1)

is orthogonalized only once. On the other hand, both the
one-sided and two-sided schemes of Lanczos orthogonalize
the block vector p(k+1) against the previous vectors p(1:k)

(using the short-cut described with (7) for the first), and spent
about the same amount of time in “Init.” Figure 5 shows
that the one-sided scheme obtained about the same solution
convergence as the two-sided scheme.

In Figure 4, we also see that compared to the power method,
Lanczos spends less time in SpMM per restart cycle. This is be-
cause with thick restarting, in total, Lanczos performs SpMM
with fewer block vectors per restart cycle (i.e., with t−k block
vectors). On the other hand, the orthogonalization time of
Lanczos was longer because the power method orthogonalizes
more block vectors at a time, and the required dense-matrix
GPU kernels obtain higher performance, exploiting more data
locality and higher parallelism. Finally, CA-Lanczos generates

0 5 10 15 20 25 30 35 40 45 50 55 60
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of Cycles

R
e

s
id

u
a

l
N

o
rm

s

Power (computed)

Power (true)

Ex−Lanczos (computed)

Ex−Lanczos (true)

Lanczos (computed)

Lanczos (true)

CA−Lanczos(computed)

CA−Lanczos(true)

(a) vs. Restart Cycle.

0 5 10 15 20 25 30 35
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Time (s)

R
e

s
id

u
a

l
N

o
rm

s

Power (computed)

Power (true)

Lanczos (computed)

Lanczos (true)

CA−Lanczos(computed)

CA−Lanczos(true)

(b) vs. Time (s).

Fig. 6. Convergence history for BerkStan matrix, with three GPUs.

and orthogonalizes the basis vectors all at once, and it obtained
the shortest time per restart cycle.

Figure 6 compares the convergence behaviors for
BerkStan. Figure 6(a) clearly indicates that compared
to the power method, Lanczos obtained a faster solution
convergence, and CA-Lanczos achieved the same convergence
as Lanczos. As a result, though the time per Lanczos iteration
was longer than the time per power iteration, Figure 6(b)
shows that Lanczos converged faster in terms of wall-clock
time. Finally, CA-Lanczos had the shortest time and the fastest
convergence per iteration, obtaining the fastest convergence
in terms of wall-clock time. The figure also shows that as
the iteration proceeds, the computed residual norm could
diverge from the true norm. We believe that this gap between
the computed and true residual norms may be reduced by
integrating more numerical linear algebra techniques (e.g.,
locking the converged singular values [11], [15]). Finally, in
Figure 6(a), we show the convergence behavior of Lanczos
with explicit restarting (i.e., Ex-Lanczos with b̂ = tb and
ĉ = 2, where we put the hat on top of the parameters for
explicit-restarting to distinguish them from those used for
thick-restarting). In many cases, with explicit restarting, the
last few singular values converge slowly, demonstrating the
benefits of thick restarting.

Figure 7 shows the breakdown of the average iteration and

75

Power−2 Power−1 CALan−2 CALan−1 Lanc−2 Lanc−1
0

20

40

60

80

100

120

140

160

180

T
im

e
 p

e
r

R
e

s
ta

rt
 C

y
c
le

 (
s
)

Other

Ortho

SpMM

Init

Restart

Fig. 7. Time breakdown for Netflix matrix, with three GPUs.

restart time for Netflix. Clearly, the iteration time was
dominated by SpMM for all the methods. This is because com-
pared to BerkStan, Netflix has more nonzeros, making
SpMM computationally more expensive. In addition, compared
to BerkStan, the computational cost of the orthogonalization
process, relative to SpMM, is lower for Netflix because
the matrix is rectangular (i.e., O(mn2/nnz), where n � m
for Netfilx, while n = m for BerkStan). Just as with
BerkStan, due to the thick-restarting, Lanczos spent much
less time in SpMM, having much shorter iteration time than
the power method. Also, for both BerkStan and Netflix,
CA-Lanczos spent more time in SpMM than Lanczos. This is
because, in order to reduce the communication latency, MPK
requires 2s ghosting of the boundary elements. This could lead
to significant computational and storage overheads, and may
increase the total communication volume [12], especially for
a matrix with an irregular sparsity structure like Netflix.
Since Lanczos and CA-Lanczos spent significant time in
SpMM for Netflix, the time per CA-Lanzos iteration was
longer than the time per Lanczos iteration due to this overhead
of MPK. Finally, especially for Netflix, all the methods
spend insignificant time restarting the iteration, demonstrating
the small cost of computing the residual norms.

Just like we have observed for BerkStan, Figure 8 shows
the faster convergence of Lanczos compared to the power
method, with respect to both the restart count and wall-clock
time. On the other hand, unlike BerkStan, for which CA-
Lanczos converged faster than Lanczos in terms of wall-clock
time, for Netflix, CA-Lanczos was slower to converge. This
is because CA-Lanczos spent significant time in SpMM, and
suffered from the overhead of MPK.

In this paper, we used the residual norms to measure the
solution accuracies. In contrast, other applications may prefer
other accuracy measures. To study the performance of the
power method and Lanczos, independently from the accuracy
measures, Figure 9 plots the time required by these methods
with respect to the restart cycle. For instance, Figure 9(a)
shows that for BerkStan, CA-Lanczos may be a better
choice if all the methods perform the same number of cycles,
and the solution convergence requires more than five iterations

0 10 20 30 40 50 60 70
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Number of Cycles

R
e

s
id

u
a

l
N

o
rm

s

Power (computed)

Power (true)

Lanczos (computed)

Lanczos (true)

CA−Lanczos(computed)

CA−Lanczos(true)

(a) vs. Restart Cycle.

0 20 40 60 80 100 120
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Time (s)

R
e

s
id

u
a

l
N

o
rm

s

Power (computed)

Power (true)

Lanczos (computed)

Lanczos (true)

CA−Lanczos(computed)

CA−Lanczos(true)

(b) vs. Time (s).

Fig. 8. Convergence history for Netflix matrix, with three GPUs.

(some methods may converge faster than the others, e.g., in our
previous experiments, Lanczos converged faster in terms of the
residual norms). The first restart cycle of Lanczos was longer
than the rest of the cycles because it generates the full c block
vectors, while the remaining cycles only generate c− k basis
vectors. Figure 9(b) shows the same statistics for Netflix.
In this case, Lanczos was competitive even for the first restart
cycle. This is because the iteration time was dominated by
SpMM, and the time (and potentially the local communication)
required by the power method to perform a single SpMM with
the 60 vectors was about the same as the time required by
Lanczos to perform six SpMMs with 10 vectors.

In this paper, we distributed the matrices and the basis vec-
tors among the GPUs such that each GPU has about the same
number of rows. We also used METIS and PaToH2 to partition
A and AT based on graph and hypergraph algorithms [7],
[17]. These partitioning algorithms often improve the load
balance and reduce the communication among the GPUs for
SpMM, while the load imbalance may increase during Ortho.
For BerkStan, the performance of the power method was
slightly improved using the partitioning algorithm due to the
higher performance of SpMM, while the Lanczos performance
degraded due to the lower Orth performance. For Netflix,

2www.cs.umn.edu/∼metis and www.bmi.osu.edu/umit/software.html

76

0 3 6 9 12 15
0

1

2

3

4

5

6

7

8

9

T
im

e
 (

s
)

Number of Cycle

Power

Lanczos

CA−Lanczos

(a) BerkStan matrix.

0 3 6 9 12 15
0

5

10

15

20

25

T
im

e
 (

s
)

Number of Cycle

Power

Lanczos

CA−Lanczos

(b) Netflix matrix.

Fig. 9. Run time vs. number of restart cycles, with three GPUs.

the hypergraph algorithm led to either about the same or lower
performance of all the algorithms, while the graph algorithm
was slower computing the partition for BerkStan and failed
for Netflix.

IX. CONCLUSION

In this paper, we compared the performance of a block
Lanczos with that of the power method for computing trun-
cated SVDs of graph matrices from real applications. Our
performance studies demonstrated the potential of the block
Lanczos to obtain high performance, when combined with
communication-avoiding and thick-restarting techniques. In
particular, Lanczos became competitive to the power method
when the power method required a few iterations to converge.
We conducted our performance studies on a hybrid CPU/GPU
node architecture because we had the optimized computational
kernels from the previous studies. We believe the observed
performance trends to be true even with other setups. To
verify this, we plan to extend our studies for other test
matrices, input parameters, objectives, stopping criteria, and
hardware architectures. In particular, we plan to extend our
implementation to a hybrid CPU/GPU cluster and compute a
larger number of singular vectors. In addition, we are inves-
tigating other techniques to improve the numerical stability
(e.g., orthogonalization scheme, other basis vectors). Finally,

to be practical, we would like to develop an interface between
our solver and the database where the data is stored.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy Office of Science under Award Number
DE-FG02-13ER26137/DE-SC0010042, and the U.S. National
Science Foundation under Award Number 1339822.

REFERENCES

[1] N. Abdelmalek. Round off error analysis for Gram-Schmidt method and
solution of linear least squares problems. BIT Numerical Mathematics,
11:345–368, 1971.

[2] J. Baglama and L. Reichel. Augmented implicitly restarted Lanczos
bidiagonalization methods. SIAM J. Sci. Comput., 27:19–42, 2005.

[3] G. Golub and W. Kahan. Calculating the singular values and pseudo-
inverse of a matrix. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.,
2:205–224, 1965.

[4] G. Golub, F. Luk, and M. Overton. A block Lanczos method for
computing the singular values and corresponding singular vectors of
a matrix. ACM Trans. Math. Softw., 7:149–169, 1981.

[5] G. Golub and C. van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, MD, 4rd edition, 2012.

[6] N. Halko, P. Martinsson, and J. Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM Rev., 53:217–288, 2011.

[7] B. Hendrickson and T. Kolda. Partitioning rectangular and structurally
unsymmetric sparse matrix for parallel processing. SIAM J. Sci.
Comput., 21:2048–2072, 2006.

[8] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD
thesis, University of California, Berkeley, 2010.

[9] M. Mahoney. Randomized algorithms for matrices and data. Found.
Trends Mach. Learn., 3:123–224, 2011.

[10] P. Martinsson, A. Szlam, and M. Tygert. Normalized power iterations
for the computation of svd. Technical report, 2010.

[11] J. McCombs and A. Stathopoulos. Iterative validation of eigensolvers:
A scheme for improving the reliability of hermitian eigenvalue solvers.
SIAM J. Sci. Comput., 28:23372358, 2006.

[12] M. Mohiyuddin. Tuning Hardware and Software for Multiprocessors.
PhD thesis, EECS Department, University of California, Berkeley, 2012.

[13] H. Simon and H. Zha. Low-rank matrix approximation using the
Lanczos bidiagonalization process with applications. SIAM J. Sci.
Comput., 21:2257–2274, 2000.

[14] D. Sorensen. Implicit application of polynomial filters in a k-step
Arnoldi method. SIAM J. Mat. Anal. Appl., 13:357–385, 1992.

[15] A. Stathopoulos. Locking issues for finding a large number of eigenvec-
tors of hermitian matrices. Technical Report WM-CS-2005-09, College
of William and Mary, 2005.

[16] A. Stathopoulos and K. Wu. A block orthogonalization procedure with
constant synchronization requirements. SIAM J. Sci. Comput., 23:2165–
2182, 2002.

[17] B. Uçar and C. Aykanat. Revisiting hypergraph models for sparse matrix
partitioning. SIAM Rev., 49:595–603, 2006.

[18] K. Wu and H. Simon. Thick-restart Lanczos method for large symmetric
eigenvalue problems. SIAM J. Mat. Anal. Appl., 22:602–616, 2000.

[19] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra.
Improving the performance of CA-GMRES on multicores with multiple
GPUs. Technical Report UT-EECS-14-722, University of Tennessee,
Knoxville, 2014. To appear in the proceedings of the 2014 IEEE
International Parallel and Distributed Symposium (IPDPS).

[20] I. Yamazaki, Z. Bai, H. Simon, L.-W. Wang, and K. Wu. Adaptive
projection subspace dimension for the thick-restart Lanczos method.
ACM Trans. Math. Softw., 37, 2010.

[21] I. Yamazaki, S. Tomov, T. Dong, and J. Dongarra. Mixed-precision
orthogonalization scheme and adaptive step size for CA-GMRES on
GPUs. Technical Report UT-EECS-14-730, University of Tennessee,
Knoxville. To appear in the 11th international meeting on high-
performance computing for computational science (VECPAR), 2014.

[22] I. Yamazaki and K. Wu. A communication-avoiding thick-restart Lanc-
zos method on a distributed-memory system. In Workshop on Algorithms
and Programming Tools for next-generation high-performance scientific
and software (HPCC), 2011.

77

