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Performance of various
computers using standard
techniques for solving sparse
linear equations

The benchmark program presenbed hiere is a first aftempd 16 consbrec a rep-
Fesenlative tesl prohlem oF sparse nkireoes on i varicly of machines, The
bt of the oode is a conjugate gradicnt (U0 erative solver For large, sparse,
symmetric amd positve definite lnear systems. The performnnee range and
difficaltics encountered on 2 specific nrchitecture, made visible by this sim-
plilied moedel problem, are more or loss representative Tor a class of iterdive
meChod (Lancess, Bi-COfr, OGS, elc.; see [1] for Torther details),

1. Introduetinn 2nd malivation

The LINPACK benchmark [2] bas becosee popular in the past few vears
as a means of messuring floatng-poine performance an compaters. The
benchosark shows inoa simple and dissct way e performuance 10 be
capezied for o range of machines when doing dense marrix compuiations.
Many people have discovered thar the sieaton for sperrse mamices is bess
clear, For wvery lnrge, structuned sparss sysiems, if one applics a densc
direct splver opemting on a banded mairix, ons may expect compuating
tnes sioalar 0 that of the dense case, In ather sifuaioms, howsayer, the
peclormuance strongly depemds on the non-rérm strocture of ihe mirix,
B slorage schame used, and the algorithm chogen.

The alporithim used in the LINFACK benchmark is a direct method.
Thar is, the original mawix = faciared o he prosdoct of bwa simpler
manrbces, a lower miangulas matrix L oand an upper wiangelar matriz £
ared these manrices ane osed o corstrect the solution. The [aciorizstion
requires O n*) operations and the solution O™, Thus, the solution
can be deermined in a fixed number of operations. A direct meihod can
be impracical, however, if the manrix is large and sparse, because the
soughl-afer factors can be dense and the twme o constouct he fcions
Inrge.

Many imporant pracical problems give rise 10 large sparsse Systems of
lincar equations. One resson for the great interest in sparss linear sgua-
tigns solvers and lesative metheds is the importance of being able o
abizin numerical selutions o parual differential equations. Such systems
appear in swuedies of elecirical metworks; models of sconomic SVEICMS;

The work wic suppdetal in pard by the Applicd Masdhematcal Sciences subprogrien of B
Cllice of Energy Rescanck, UE Depariment of Energy. undor Comract DE- D08 S8R 1400,
il i pert by the Sickling Nationale Compaior Faciliieit {NCTF), The Netherlonds
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and physical pmossses such as diffusion, radintion, and elasticity. Tter-
tive methods wark by continually refining an initial approximate solution
=0 that it comes eloger and closer to the eorrect selefion. With an e
five method a sequence of approximaze soluticns -Ia:':-f:'] is consineeed
which essendally tvolve the mariz A only in the coniest of matriz-
versor muliplization. Thas the sparsity can be exploissd sp that each
aleration repuires Ca) operations,

Ag a resule of the algoritlo, sparsity of the mamix, and the don stnge-
tures, the time-consuming elements of ierative methods can be quite
differant from she dme-consuming elemenis of a direct 2alver, Thus, the
performance of an irerative methad ean be compleely different from the
performance of i cirect selver,

The purpose of this repaer is o desoribe e performance of various eoom-
parers when executing o Fonman implementation of common algoritms
wsed in solving sparse matrix problems,

Wi ame not inneresied in comparing iterative schemes, o in measuring the
numier of iierations needad 10 converge, of even in oltining the solution.
Lhur intent here is 10 provida @ means for quickly wsting and comparing
the pesfonmance of o compater e commonly cccurming selulion meshads
for solvig sparse macris problems.

In Section 2 we provide an overview of the conjugare gracdient algo-
rithm and give poinsers w related approaches, Secdon 3 deseribes the
test problem, the simucture of the matrix wsed in chis evaluation, aml the
preconditioners used in the algorithm. Section £ describes the ests and
displays the performance for the variows machines and the approaches
used. In additon., instructions for running the test are provided, as well
23 1 desgription on how the software can be obeained. Secton 5 presents
some conclusions.

2. Conjugate pradient algoriihm and relaled alperithms

Wi Begin with a discussion of the classical eonjugate gradient algorithm,
The clazsical conjugale gradient algoftm for the soluton of Ar = &
can be represenied By e Rellowing scheme:

o= inidal poess; rg = & — dxy
p_y=0E_; =1
oo = [ry, )
fora=0,1,2, ...

PP =1+ Doy

g = AR
i ffla:.]

Ti4n = 8 ok o
T4l = Fi = (0l
0 xpeq awearneg enough then guis
A1 = (regy,tizi)
i = ELEL
LT
ekl
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In this algorithm the vartables o, @, and p are scalars, #, ¢, p, and 4 are
vectors of lenmh o, (z,9) = 21y, and A iz a sparss 1 by n symmerric
pisitive definite mars.

The speed of convergence of she conjugate gracient meshesd depeni;
steongly on ihe specram of the mairix in the sysem. 1t is ofien advana-
Lo o select o marns, 5 & o preconditoner for the system that elus-
bers the gigenvialues of te system. The following compuiztional scheme
is f-:}l.' precarstitioned OF, for the solution of Ax = & with precongitaner
L

ap= inidal guess; ry = b — Axp
T 7/ B2 |:|;,l:3_| =10
aolve wy from Hwy = g
A= (1, g
fara=01,9.

pi =g g

g = Ap;
R .
Eiis TPiagel

Tit1 = Ty ok gy
Fitl = Tj — ooy
if #ppy accurale ensuph then guic
Solve wyppg froom Way oy = rigpq
P4l = (Tit1, Wig1)
ﬂ'r' _ |'|ﬁ1l
i
izl

An alernative would have been o trarsform the sysiem explizitly 10 the
symmeiric system with matrix L= AL~Ty — £=15, but then the solu-
oo mesids 10 be backtransformed 1o & = r,_T_u nfterwards. The above
Feemmulation has tlse advaniage that the presonditioner need o be =plin
into two factoes. Further, it avoids backiransform solutons and residuals,
3 is necessary when one applies elassical CG o L~ AL~ Ty = 1-14
(with i = LLT).

Perlormance of other ferative solvers. The Mflop rawe per itzriion Siep
of CG is almost entitely determined by the performance of the mariz-
wvector product (Ap ) and the preconditioner (solve wy oy from J Moy =
ris1) In hiconjugate-gradient (Bi-CG) methods, the compuiational wark
per iteration siep is almost double the work for conjugane-gradient (CG)
methils; cach pass of the feration loop now invelves & matx-vecros
procuct with A and AT fand the precorghitioned version involves salve
steps with & and 7). In the casc that the steps with wansposs operators
can be computed with similar Mfop rates as for the orginal operators,
faie iy expoct the same MAop rae for B-OG as for OO, In ALY
sulwations, however, one has o dasa strecture which faeilitates e efficlen
computation of products like Ap; (e, row-wise compressed), and then
& progluoce lixe .»lT.l'.-,- ofien requires indireca adddressing, This, of course,
may Jead e & reduced Miop rate for Bi-CG in comparison with CG.
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For the quasi-minimn residual (OMED alerithen [3], in wikch e bulk
of the compuanenal work is the same as for Bi-CG, a s:inn'Lar sitEation
holds, In other variants on Bi-CG the compuation of A7f; has been
a.t'cuu:ltd ared has been replaced by o product invelving A (alsa, the salve
with 7 has been replaced by a solve with 57 The more well-known
af these schemes are O0%, Bi-OO5TAD, and TROME. These schemes
Bl ter almost identical Mfop rawes & those Tor OO,

Far iterative schemes that ane besed en the genertion of a full enhegonal
bagis for the search space (eg., GMRES, ORTHODIR, ORTHORES,
ORETHOMIN, and GENCG), the sitoarion & more complicated. Typically,
in the full versions (ie., aob cruncated or resared) of these schames, we
seg that in the @t ieration step one marix-vector pradect with A, ans
solve with & (i e preconclitiones] versions), @ inner-peoducts, and i
werneT updates ane ivolved. For low values of 3 we therefore may expect
similar MAop raes as for O, while for itcreasing valves of 2 the wosk
in the inner-prochoces and the updates tesds 10 dominate, and henee the
Aleg mte is increasingly determined by these operations,

& Test probdem aml comjugate gradient solver

For this benchmark, the st problemn is pererated by discretizing 2 3-
I ellipiic pamial differentiz] equation by the sandard 7-point centsal
diffarence schems over a 3-D rectangular grid, =0 thar we have 1080
unknowns in each direction. This procedure reselis in a svsiem of onsder
TOHMMANIO, The sysiem is scaled swels that it has o unit dingonal {whiclh
15 camen practice: for many iecaive schemes). Fos our sest probiem,
the OF method ilzrates on o well-sorucmred 7-disgorsal wesdel proklem:
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There s even more souctune in the mamix A. The morrix A can be seen
as o symimetae bleck ridiagenal marrix;

Ay ik
iy ds s
A= T

r

in which the I} are diagonal mamices, and the A are again symmelric
Block ridizgonal marices:

Cia Ain Cig

The ¢ ¢ are diagonal mamices, and the Az oare symmeiric ridisganal
T I,

Admivedly, the penerated problem mught be solved meene efficiently by
ozher methods (so (3] lor a survey of methaods), We have med o aviid
companng fterative schemes. In fact, we are not interested even in the
solution of the system. W ignore progerties of the given sysieny, ather
than i1 symmetry and its non-zero disponal sructure, Ouwr ahjeciivis i5 to
nbiain & quick impression of the performance of 3 BENesic Sparse matrix
solver (sze the Appendix for our examples).

W have also avoided discussion of suitalble =iopping criterin, Thus, we
stmply carry out 50 iteraton steps of the OG method (we have imgple-
mended an inexpensive wst i avedd oxcessive iteration sweps if ong solves
smitller systems). These S0 iteration sweps allow for a suflicientdy aocu-
rate CPLU timing, and they also enabls some realisti optimization of the
dlgacithm — for exampls, by grouping ireracan sleps in order o reduce
daty Iransfer (see (1)) Morcover, this numbes is represcniative of many
aerul situnrions and is not oo large tht ronning e code is umecessarily
SEpensive.

Conjugate gradient schames, W report performance rases For three difer-
ent solution schemes: sealed CG (e, with diagonal scaling of the ma-
wrix], standand [CCG, and ICCG with dizponal arderi ng, Of these thnes
solution schemes scaled CG will ofien require the most itertions 1o con.
verge, On the other hand. it is ensily vectorizahle and parallzlizable, and
il is cheaper in terms of floating-point operations par ileration sep,
Since CO s wsuplly combined with some kind of precondiusming, we
bave also carried out 50 iteration sieps of CG with seandard incamplele
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Chalesky facierization & a preconditonern. The CPU wine for the con-
strugion of teat precamditioner has nor been included in gur timing,
The performances for these (preconditioned) O algorithims are theughs
0 ke representative of a class of well-srrucwred problen. For less well-
struciured problems, the peslommance for scaled CG b5 more o less deter-
mingd by the performance for the sparse mamix-veoror praslest {usmally
determinest by indirecy addressing). In such coses, the standasd lexico-
graphical endering precenditioned OO0 gives o repsonable impression of
U pecformance of preconditoned TG, Diagonal ordering is net feasible
for mare gEnenl] non-zene SrociuTes tlough in Soms cases some int-
provement can be abiziced by reordering the unknowns; see Radicani e
al 4]

The ramber of operations or the scaled CG methed iz about 225 Bops
per igrtion for our model problem, whersas the preconditioned versions
take 25n flaps per ireraton. (We count Both sklitons and multiglicaizems
as distingt Reating-poine operations.)

In pedging the performance of the algedithms, it is importan 1w take
o account net enly the execution rate for the mathods, bor also ke
number of operations per iteration and the number of izrations Tequired
o converge. As an example, in Figore 1 we see that O35 with diagonal
sealing has the highest execution rawe; however, singe more flerations
usually will be required for convergence, the everall solutinn time may
be longer,

Diher preconditioners. A varizty of preconditoners ase supsesiesd in the
literaturs, The MAop rates for these preconditioners may vasy widsly (s
weell 2 their effect on the pumber of deration steps). Some of thess pre-
conditioners are specifically desigrad for vecior computers fe.g., thass
based on truneased Neumann series) of for pardle] computers fegs., the
preconditionars constmecied o averlapping domains). Alss, some incam-
et block decompositions bend thenselves more 0 veclar eospuiars,
when applied to matrices with regular sparsity pacerns. The success of
et block decompoesitions szems more apparent for 2-1 prablems; far
310 problems their effect seems 10 be less significant with nespect 10
poinl incomplete decomprsitions,

Anpiber appreach i woapply the preconditioners n conbinaiion with
soane calering scheme, for example, red-black ordering. Whils chis may
bead to higher Mflop razes, ot oflen also leads 1w signilieant increases
il wumber of ieration seps, 5o thet CPU ime or wall clock time
may nat decrease. For more complicated coloring schemes (fram 30 o
LAY coloes), she number of deration steps is reporied o incrse only
mazgimally ai mast

Finally, ome may apply preconditioning with o polynomial in A itself,
Moedless b sy, in this case the MAop rz of the preconditionesd ierative
scheme i largely determtined by ithe MAop rate for the matrix-vecoos
product.



Conirbulizns

SUPERCOMPUTER SEFTEMEER 1892

4. Results

In Figure 1 we show the regalis for the various machines. The linear
sysem is generaied by discretzing o 3-[k second-order, ellipic pariial
differaniinl equaion by Anise differences over o meciangular equidistn:
mesh, with Dirichlet boundary conditicns, We do oot specify the PDE
here, sings the performeamoe of the methadd shauald o depend an knowl-
edie of the POE: one is not allowed w0 take any advanage of the PDE
ofluer than tlee strecture oF e reseling sysum.

The four diagonals of 1he upper wiangular pan of 1he symmese mairs
that contain nan-zerd alaments ame stored o e Gest Toor columng of an
array hf *; 10 }.

adoi, 104 the eleseem on the meain diaganal {on the :-th mow),
Aaf i, 20 the element an the first codizgonal {on the a-1h row),

ad i, 3 ) the clement onbe (rex + 1)-1h codiagonal (i-th row,
pr = 100},
Ry L, 4 1 the clement on the (raony 4+ 1]-1th codingonal (e-th row,
arny = L0, 000}
The 5™ column of & is used 1w swore the right-hand side of the lin-
ear sysiem, the 67 colurn contains the diagonal of the preconditioner,
eolumns 7 through 9 are used as working space for CG, and the 107
column coneing ecaling information for the marix A (this s necessary
for backscaling the solution).
For unpreconditioned OG the marrix A has been scaled so thar B 5,
1 1 = 1 forall ¢, This prepermy hos been exploited in the compuimtion
of the mamix-vector prodect. The ingompleie Cholesky precondifioning
mairiz & {for preconditioned CG) can be writlen s

K= L+ DD~ YD+ L"),

in which £7 is the smicily upper rriangular part of the mamix A In this
caae the matrin A has been scaled symmemrically in suech a way tal
1} = I. Thizs is, of course, exploiied in the preconditioning pare In this
came, the aff, 1] are not necessarily equal o 1,

The Block sinacre of A has nat been exploited in our cods; the block
strpciure ol f has been exploited in the Sdingomalwize umh-.ring" yirnmni

The paris of the code for the computation of the matrix-vector priviuct
[aloag with & required imes=peddduct Foe CO8) and 1he preconditioning part
are iven 1 e Appendi.

The infoemaction in Figure | was compiled over a peried ol several
months, Subsequent sysems sofltware and hardware clanges may alser
the Limings 1o some cxisn.

Qe farcher moce: I muliprogramering enviromments it is often il

cult o reliokly mensure the execution time of a single program. Anyone
cvplunting machines and operaing syswems should gaher additonal dam.
The column labeled "Siandard ICOG™ refers o the sz of the stadand
lexicographical ardering of e unknowns. This approach lesds o recur-
tence relaions. These relations can be panby vectosized by loop splitting,

23
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Machime Standard Niag-order Sealed FPeak
ICCG 10O Cl per T i
MEC 53327 (2.9 ns, 1 proe.) 0,4 07 1124 17501
Cray YSMP OO0 (42 ns, 1 proc,) 5.0 444 ET) 053
BB D00 Mede] 330000 proc.) 455 F0.6 4.6 A4
Cray Y-MPM& (6 ng, 1 proc.) 380 175 261 733
Cray 2 (4.1 2, 1 peoc) 275 6.0 149 SIH)
IEA 30D Midel 5 (1 proc.) 19,1 15.5 123 153
1B BS/AH00-550 {24 ng) 18.8 15.3 21.1 =1
IBA 9121 {15 n8) (1 proc.) 1£.1 10L& 254 133
DEC Wax/0H (14 ns, 1 proc.) 1.2 Q.45 17.1 125
Corves CI2L0(1 proe) G405 15.5 149.1 A0
Corvex C-220 (1 proc.) A5 117 15,8 a0
Alliant FARM {1 proc.) 264 R L it 4
DEC Vixsiadon SO0/ 200 157 1M 284
DEC Vaxsinton S000/125 1.449 1.33 1.58
Figure'1. Spest Thiz has not been coded expliciily in the body of the precenditioner (see

tn Mdops for 50
itcratiors: of to
ilcralive icckniqecs,

the Appendix routing precis), bul we bave included an example in this
document CAppendix fouline precipd.

The column labeled “Ddag-ceder ICOG™ refers o the use of diagonal
ordering of i unknowns aver the x, y planes of the grid [5], [1]. The
compiler should Be insrucied that there are o recurrences in his gose
by mexns of compiler direcoves; see the Appendiz oul ine precid)
Dizganal ordering lends 10 vecior code withowr indisect addressing, bag
wilh oy midest vecor lengths (nbour 20, on the averape). Longer vecior
kengihs can be abiaised by te so-called hyperplane erdering ésee [1]%
Dhiaining the sware. Tl 2ollwase used o gensrmie the doca for this me-
port con be obiained by sending eleciranic mail 1o net Lit8ornl gov

To receive the single-precizsion software for this benchmask in the mail
message 0 net Libdcrnl . gov  and wvpe send sparses from Beach-
merk .

T receive the doeuble-precizion software for ihis benchmark, sype send
srdrred from berchmerk |

Roales for ranming tha fests, The software inwentionally has bean kept simpls
a0 Ml 2l will be easy for o progammer w0 adapl the progesm, or pans of
i, to A specilie aschikectar with anly a modest effoot. In romming the sesis,
the user is allowed to rearganize the CG algorithm or pans of it (e,
grouping updates o combining inner-producs with siher epertions);
calls o the BLAS may be reploced by optimized code, and compiler
oprimization directives may be added, Howsever, ihe user @may nal chirge
ihz basic algorithm.

E. Conclashkons
The stale of opimization for sparse matrix algorithms is much diffarent
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from that of dense problems. This facr can be readily verified from the
rzsulis in Figars L. For dense problems ane can pypically exploil fefures
o the archinzcrune by uzing block versions of the algorithn (for cachs ami
diglzibuied memaory], by combining soccessive updaws (vector ragisier
machines), or by exploidng both methods. In fach, many dense linear
algetiry algariihms can be orgonized =0 thar Gw) aribmetic opesaions
can b dooe per dats imnsfer from moin memery e the faseess menss.
In comtragt, the ratio of compatational work o dan wansfer 4 wsuaally
rather lowe {CH 1)) for itemtive sporse mamix solvess, and e veclors
are usually much 100 long o be kepo in any local memory. Theselece,
expocoed performance really depercds on the architestre and the compiler.
I the memory bandwidih s large, as for the Cray Y-MP, we may expect
close o peak performance. Smaller barclwidihs are almos: immediaely
and inevitably reflected by smaller fractions of the peak performance. I
then depends on the compaler how much advaniage cn be taken from
o possible combination of operations in order oo reduce the necessity of
data mansfer.

1

Dangarra. LR, L5, Dodl, 00, Soressen and
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e Vet amd Fhosed Memary Campatars
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3

Frouwd, LW, GUHL Golub and MM Machii-
gal, deratie solrion of s pomams, Aeta
Mamersea I, 37100 19500,

5
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condiviening, SLAM 1, Sl Siyder. Comepal.
L0, 11T4-11E5, 1939,

K}

Donparra, L I, Parformance of varioas caes-
paters auing mandand finear aqeations st
Wi i o Fostran envircononend, Compter
o Techeical Repost OF-B2-55, Univer-
rity of Termessoe, March 15560,

4
Badicwi di Drozole, G, end B Willens,
Sporre matriz-vwector praducl gad amorase
Fiprestnidiians on e M 30N wand Vecier
Fazinry, Technicel Repert 5134008, TN
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Appendix: delzils of the relevant parts of ihe sollwars
Al Bandard TOCG
The standard incamplete Cholesky preconditioning is cambed aut by sub-
ToAONG precis,
sybronbine procisd ®, pX, &, auay, ax, kel
implizit double preciailon [a-h.o-g)
imeneion ximnd, pxinl
semmen Smatrixs a{lo&1208, 140)

¥ Stacdard proconditioning TGOS {0
PRIl = 21
As 10 4 = 3, nx
PR ld) = x{id - afi-1,2) = pmil-1]
10 coacisie
axl = qx + 1
de Z0 1= nxl, nxny
PEAL) = Xill = ali=3.2F % pwii-1) - adl-nx, 3} * peil-nx)
24 zootinue
eyl = nxny + 1L
de 35 1 = mxnyl: n
Prdd) = ®(1p - afi-1.2} = pxil=-1] afi=nx.3} " pxil-nx) - afl-nxny, 41 *
& p L =nany]
235  cpesblisius

= Lower trxiangula® gack hax baop molvad
" Computatian of {C,wh, Wherd W 1a the precondibioned cosidoal

she = ddat (o m, px, 1, px: 1 |
i1y = n L
de 30 L = 2, nx
FRll gy = pxil]) - afij2h * peEiliytl}
o e e Rt
20 goatinica
des 40 L = nxl, neny
PRI = mrlddl - dafliZ) " peilitly ¢ mldd. 30 % pxili+nxd]
i3 = i - 1
80 continiza
da 50 L = nenyi. n
pelldd = pxdidl - (aril.2l * peiifell ¢ Adid.3) ¢ prilifend) afiy 4]
5 pdiennay] |
iim=i4-1
50 continia

* Diagomal and upper trisngular part Bas besn sclved
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H. Diagonal-order TOCG
For the J-point stencil, the moompleee Cholesky preconditboner can be
vectarized Ly reardering the unknowns diggonalwiss over x, y plancs of
the grid. The subroutine prec3d carmies oo the preconditioning siep
over the whole grid and beaves 1he pans comesporading o &, w plonzs 1o
the sulbpouting precd. Thess codes connin comment ditectives (in our
cxample for Convex compilers) that inswuct the compiler 10 ignore the
apparenr recurmrence, These ditectives should be adjusted o the respective
UM RIS,

pubroutine procdd( X, P, N, hE, B¥. NZ. TETD ¥

inplicit dounle procision (a-h,o-zh

dimansian xinl. pEink

coTman Smatrizd alldolzog, 100

logical lafs

& proconditioning for IC0G
* Yegtorlzation by diagenalwiss ocdering of computasicne
“ ip {x.¥F plane ([2]: Chapter Y.3.4)

NAEY = ox * oy
% Salwing Ehe lownr briangular pazt of Ebha prescocliticnec

lafLe L4,
s 10 L o= 1, neay
PRl o= BLY
10 continua
call pracdf pxdl), mxny, &(1,2), arl,3), aox, lafc }
da 30 1 = 2, nz
A = (1 - 1) * mxeEy + 1
qu= 4 & nxny
<Fdir ne,rHcuT Eanan
de 10 4 = 41, du
pHlil o= i) Afbenzay, 41 opxlienxnyl
20 continoa
call pracdd pe(ily, neay, aljl,2), afjl,.3}. ax, lafe )
30 contilsog
rky = ddac [ a, p¥,. 1, px, L 1]
Baft = Calad.

* Golwing the wpper celangulae parxc of cha praccadiclening

3L = fnzx - 1} * axny + 1
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«all presd| pxiil), nxny, aijl,.2), &di41.3b, nx. Left ]
da &0 9 = mz-1, 1, -1
11 = {4 - 1} * nxny + 1
Ja = 1 * nany
eidic pa.cocurconce de 40 1 = 41, ju
Felll = pxill — afi.4) * peilinzny]
40 oantinun
all precd( pxIlh, nxey, adil.2d, aljl,3), ==, lafe 3
50 oantinan
I@Lisen
ased
aubifeutine precd( px, neny, aZ, a3, nx, laft |
ipplicit doubla praciaian (a=h,a-zk
dimansion pEi*l, &2 (%), al(")
legical lade

* Di leizn computation in procondicioning awar x,y-plann
¥ OL[Z): Chapmar 7.3,4)

ny = nxny S nx
if {.nok,loft] go Eo 15
da L0 L4 = 2, ;g 4+ omy - 1
Jigdsn = max| 1, L4 = nz + 1 }
jimax = min( 1%, ay b
12 = {4dmin - 1% * pax o= 15 4 44
cHdir na.CooUTEaRoS
e ] = dimin, dimaw
P i) = pxdial - al(la-1] * px(da-1]1 - adils-nx) * pe{ia-nx}
im = 18 + nx - 1
5 cantinne
10 cantinuoe
10 cantinoe
rkarn . 15 ecantinoe
tga 30 i1 = mx + 0y - k. 2, -1
Jimin = maxl 1, 1i - ax + 1 §
jimax = minl 12, oy )
ia = (jimdn - B} * [a% = 33 + 44
“5dir ne.rscUIronoo
de 20 ] = Jimis, jjas:
prlisl = peils) - &2{ds] * pxiis+1] - a3iis} = pxiiménxl
ir = ip + ax - 1
30 zesbings
3D zeabinge
pedl)l = pxill - alZ(ll * px(d} - ali(ll * peinx+l)
ok uIn
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L PMartly vectorized stnndard DCCG

The subroutine preclis can be panly vecorized. This appeoach leagds
w code a3 in precdp for which the compiler may detect that there is o
recurrence 1eft only in the first index (ie., in the z-direction of the grid).
The call 10 prec3s in the calling routine fceg should be changed
accordingly i a call 19 precip,

The motvation for providing this version is the following, In seme sita-
tiens, when ihe maris A has 3 different non-zero soructare, vecioriziion
by different ordering {as in precid) i not possible. In such cases piir-
tial vecworizaton might be approprisie. Comparing the performances of
precip and precis then will give an iden of the effect: of pinrmial
vertoTization that one may expect in mare general sinations.

3e{ x. px. a2, a3, ad, n¥, n¥, nx, TEC }

implicic doublea jrecisicn (a-k,o-I)

SObEcUTLisa g

diransics xinx.ny.nz), pEIOX.EV,0I), af{ss,ay,nxl, adins, ny,nzd. ad (nx, ny,.oxh
prdl,1.1) = %(1,1.Lh
do i = 2, A
PEgl,1,1] = {i. 1.1} = p2(1-1,1,1} * pecgl-1,3,L%
anddo
@ o= 2, ay
do 1 = 1, nx
el 3.y = =mid. 3,10 - a2ii-1,71,1) * pxid=i.4.11 - a3ql, §-1.1% =
5 podd, 4=1,1}
anddo
aeddo
de k = 2, ng
dr ] =1, ny
d3a i = 1, nx
PEIL f E] = %4L. 3.kl - a2i-0. 4. K} * peil-1,3.k) — &34, 4=1,K] &
4 Pl J=1.k) = adid, 3 k=11 * puii, 3, k=1]
anddo
enddo
enddo

" Lioenr Erlangolar part haz besn molved
* Compatation of (r,Wl,. Wwhate @ i the proconditioned =esidual

FExr = dedab [ px * ny * nz, @, 1, P 11
da i = ey, 1, -1
pril.op.nzl = pail.ay, nzl = a2 i, ny.nzb * pxii+l,ny.nad
wnden
da o= my-i. 1, -1
ds L = nx. 1, -1
pelicodonzt = pil, J.n2) = A2 (1, J.mz] * peiitd, d.nz) - ad(i, 5.2z} *
3 prll. d+, nz)
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anckde
aoddo
do k = nr=1, 1, =1
de ] = sy, 1, =k
da 1 = ax; 1, -I
pHdL. k] = pail, 3.y - a2di;1-k) ¢ pxli+l.i-Kl - a%(l-3.k) &
5 prdi, 41kl - 8401, 3.8 " pmOLl-], B+00
andde
asddo
andda
kS
* Diagonal and upper tciangular pazt haas baen salvad
B
cetrn

and



