Improving 3D Lattice Boltzmann Method with

asynchronous transfers on many-core processors

Minh Quan HO 13, Bernard TOURANCHEAU 1, Christian OBRECHT 2,
Benoit DUPONT DE DINECHIN 3 and Julien HASCOET 3

1LIG UMR 5217 - Grenoble Alps University - Grenoble, France
2CETHIL UMR 5008 - INSA-Lyon - Villeurbanne, France
3Kalray S.A. - Montbonnot, France

CCDSC - October 03-06, 2016

. ’ o

LI G CETHIL KALRAY

UMR 5008

© Introduction
© Motivation
© Kalray MPPA-256 architecture

@ Pipelined 3D LBM stencil
@ Domain decomposition and macro pipeline
@ Sub-domain addressing
@ Sub-domain size and Halo bandwidth

e Results

@ Conclusions

Introduction - LBM theory

The Lattice Boltzmann Method performs on a regular Cartesian grid:
@ mesh size dx
@ constant time step dt
e A node = {particle densities f,, velocities &, }
@ Nodes are linked by e.g the D3Q19 stencil and updated by [He, 1997]:

fa(x+5t§a,t+5t)> _ ‘fa(x, t)> :Q<’fa(x, t)>> (1)

15

Introduction - Memory bound context

Given a 'square’ fluid represented as a grid of L x L x L lattice nodes in
D3Q19, evoluating throught T time steps.

OPAL MPPA Roofline

Simulating the whole domain requires: ’ &
@ 19 x 2 x L3 x T floating-point numbers = g’ﬁ&
T % & raw performance (634 GFLOPS SP)
. . H s> $
@ <400 x L3 x T floating-point ops. LV s
. . . 2) & performance 100 GFLOPS SP
Moving data is much slower than computing = §<”
today. 1 2
GPU is until now the most well-suited for e
LBM. N

Arithmetic intensity in log(flops/byte)

@ Power-efficient NoC-based many-core processors are very promising
for next HPC challenges (e.g Sunway, MPPA, PULP, STHORM ...).

Good latency, but low memory bandwidth (DDR3).
Lack of efficient programming model and optimization methods.

High {computing|data} predictability and fast-local-memory centric.

Enabling sophisticated optimizations, based on software-prefetching
and streaming.

These motivates us to study a pipelined 3D LBM algorithm on many-core
processors, using local memory and asynchronous communication.

Kalray MPPA-256 architecture

@ 16 x 16-core Compute Clusters

(CO)

@ 2 x 1/0O clusters with quad-core
EPUIZISDR& ENthér:et';CGl;/ L -------- L EEREEE i
e Dua -torus NoC for s 3 5
=2 oooEo ([
per link @ 600 MHz = eI %
o Peak 634 GFLOPS SP for 25W | |=e & (e o oooa g
@ 600 MHz - e o {*'—”—”—”—' L

= — = HEEE

2 MB multi-banked shared memory per CC, 77 GB/s bandwidth
SMEM configurable as DDR L2 cache, or explicit user buffers
Support asynchronous data transfer by DMA engines

POSIX C/C++ programming or OpenCL offloading

© Introduction
© Motivation
© Kalray MPPA-256 architecture

@ Pipelined 3D LBM stencil
@ Domain decomposition and macro pipeline

e Results

@ Conclusions

Domain decomposition and macro pipeline

o We take the lid-driven cavity example
from the OPAL solver [Obrecht, 2015],
originally implemented in OpenCL

@ The Ly x L, x L, domain is decomposed
to sub-domains of size C; x C, x C;

Domain decomposition and macro pipeline

Custero Main idea:
async_copy_3D

@ A sub-domain is copied into CC’s local
memory by a 3D asynchronous copy
function

@ Computation is carried out on local
memory then data are copied back to
global memory (DDR)

Domain decomposition and macro pipeline

Cluster 0
async_copy_3D

@ Requires copying halo layers for each
sub-domain
@ In 1-order stencil, the copied

sub-domain S is at most
(Cc+2) x(C,+2) x(C,+2)

10/27

Domain decomposition and macro pipeline

16 computing clusters, each is working on
NB_CUBES_PER_CLUSTER sub-domains:

Cluster 0
async_copy_3D _ /* Prologue */
prefetch_cube(0); // non-blocking

/* Pipeline */

for i in O .. NB_CUBES_PER_CLUSTER-1
prefetch_cube(i+1); // non-blocking
wait_cube (i) ;
compute_cube (1) ;
put_cube (i) ;

done

/* Epilogue */
wait_cube (NB_CUBES_PER_CLUSTER-1) ;

11/27

© Introduction
© Motivation
© Kalray MPPA-256 architecture

@ Pipelined 3D LBM stencil

@ Sub-domain addressing

e Results

@ Conclusions

12/27

Sub-domain addressing

A : “Hey, don't touch my cube !"

B : “No, that’s mine.”

Cluster 0
async_copy_3D

2 Credit : 9gag
13/27

Sub-domain addressing

iblockx
=2 0
8
@ Space filling curves like Morton < =7
or Hilbert are fast =9 3
l(ii—iﬂf, 141"—15
Y

14 /27

Sub-domain addressing

iblockx
>
g 0 77
8
@ Space filling curves like Morton < =7 | 7|7
or Hilbert are fast =[5 e 2 | 2
e But, what if (sub-)domains are <] A 7 -
not cubic ? ! s T
2022 2 2| 2
Y

15/27

Sub-domain addressing

iblockx
>
g 0 77
8
@ Space filling curves like Morton < =7 | 7|7
or Hilbert are fast =[5 e > | -
e But, what if (sub-)domains are <] A 7 -
not cubic ? ! 143
? 21 2| 2 2| 2
Y

@ Such a curve that works for any configuration will be more complex
(octree, recursion, trailing handle)

16 /27

Sub-domain addressing

iblockx
>
g 0 77
8
@ Space filling curves like Morton < =7 | 7|7
or Hilbert are fast =[5 e 2 | 2
e But, what if (sub-)domains are <] A 7 -
not cubic ? ! s T
2022 2 2| 2
Y

@ Such a curve that works for any configuration will be more complex
(octree, recursion, trailing handle)

@ Addressing sub-domains in ‘3D’ row-major style

17 /27

© Introduction
© Motivation
© Kalray MPPA-256 architecture

@ Pipelined 3D LBM stencil

@ Sub-domain size and Halo bandwidth

e Results

@ Conclusions

18/27

Sub-domain size and Halo bandwidth

@ We call "Halo bandwidth” the fraction between the number of halo
cells and the total number of copied cells.

Halo bandwidth

(C,+2)3-¢2
(Cx+2)°

9(C) =

Halo bandwidth ratio

00 02 04 06 08 1.0

T T T T T T
2 8 16 32 64 96

Cube size (Cx = Cy = Cz)

19/27

Sub-domain size and Halo bandwidth

@ We call "Halo bandwidth” the fraction between the number of halo
cells and the total number of copied cells.

Halo bandwidth

(C,+2)3-¢2

T T T T T T
2 8 16 32 64 96

Cube size (Cx = Cy = Cz)

Halo bandwidth ratio

00 02 04 06 08 1.0

@ Which size for sub-domains, given a limited local memory 7

20 /27

Sub-domain size and Halo bandwidth

@ We call "Halo bandwidth” the fraction between the number of halo
cells and the total number of copied cells.

Halo bandwidth

(C,+2)3-¢2

T T T T T T
2 8 16 32 64 96

Cube size (Cx = Cy = Cz)

Halo bandwidth ratio

00 02 04 06 08 1.0

@ Which size for sub-domains, given a limited local memory 7

o E.g double buffering :
malloc(2 x (Cx + 2)3 x sizeof (float)) (Cx = C, = C,)

21/27

Sub-domain size and Halo bandwidth

@ We call "Halo bandwidth” the fraction between the number of halo
cells and the total number of copied cells.

Halo bandwidth

(C,+2)3-¢2

T T T T T T
2 8 16 32 64 96

Cube size (Cx = Cy = Cz)

Halo bandwidth ratio

00 02 04 06 08 1.0

@ Which size for sub-domains, given a limited local memory 7

o E.g double buffering :
malloc(2 x (Cx + 2)3 x sizeof (float)) (Cx = C, = C,)

@ Sub-domains should be cubic and as big as possible.

22/27

e Results

23 /27

Results (1/2)

We compare original OPAL performance on Intel CPU, Intel MIC, NVIDIA
GPU and Kalray MPPA-256 (all OpenCL).

OPAL OpenCL. Duration = 1000, = OPAL OpenCL. Duration = 1000, ‘OPAL OpenCL. Duration = 1000,
= 32xix1 g = 32x1x1 = 32x1x1
8 s
8 = Tesacao70 " % | Tesacaomo = _ | Tesacaom R
2 Xeon E5-2667 3 o W 842 XeonE5-2667v3 § 1= xenEs2e7v o
@ g |-+ XeonPhi3i00 o = - Xeon Phi 3100 = ~+- Xeon Phi 3100 —
& 7 |- MPPA-256Bostan | @ g J-x- MPPA-256 Bostan 1 X MPPA-256Bostan | -~
3 o E 5 e o
S g & oo XX o =
3 ° S 8- / N e £ e
e d 4 St o] Cy
g 8 o 2 s+ S et o :
5 goui ¥ £ ; +] E .
g L & ; o £ et
2. E, + 5 o4 ; s Bt
5 8 & 3 g4 % L s KT
& ® /e 2= / 3 /a
o iR -~ e] o € o 8
— 5 — ° —
© e % 12 0 s 2 2 ° © e % 1z e s 2 2 2 e s e 10 192 2 2%
Cavity size Cavity size Cavity size

(a) Performance in (b) Relative throughput (c) Power efficiency
MLUPS to GPU-STREAM (%) (MLUPS/W)

Figure: Original OPAL OpenCL on GPU, CPU, MIC and MPPA

GPU-STREAM benchmark [Deakin, 2015]

24 /27

Results (2/2)

@ Asynchronous approach implemented in POSIX C on MPPA

@ Outperforms the OpenCL version by 33%

@ Twice better using two DDRs (MPPA OpenCL currently supports
only one DDR)

OPAL_async vs. OPAL OpenCL on MPPA OPAL_async vs. OPAL OpenCL on MPPA
Single DDR, duration = 1000 Double DDR, duration = 1000
o 0]
' Tl—e— OPAL_async inplace 3-depth : 29 % halo BW ~ "|—e— OPAL _async inplace 3-depth : 29 % halo BW
-4-- OPAL_async inplace 4-depth : 36 % halo BW _|-#- OPAL_async inplace 4-depth : 36 % halo BW
%) @ + OPAL_async outplace 3—depth : 36 % halo BW n +- OPAL_async outplace 3-depth : 36 % halo BW
% -»-- OPAL_async outplace 4-depth : 43 % halo BW % _|->- OPAL_async outplace 4-depth : 43 % halo BW
Q @ == * * +
2 e X-=
§ = § &4
£ £
L £ b
2 ¢ 2
$QPAL OpenCL, WG - 32x1x1, single DDR
E e M

64 96 128 160 64 96 128 160 192 224
Cavity size Cavity size
(a) Single-DDR (b) Double-DDR

Figure: OPAL_async vs. OPAL OpenCL on MPPA

25 /27

Conclusions

@ 33% performance gain by actively streaming stencil domains on local
memories.

@ Software pipeline is not a trivial task, but essential to obtain good
performance on many-core processors.

@ DDR bandwidth is bottleneck.

e Halo copy is critical to performance, consumes up to 60% bandwidth
on small sub-domains.

@ Perspective : applying alternative method - Link-wise artificial
compressibility method [Obrecht, 2016] with 5x less memory traffic.

26 /27

References

ﬁ He, Xiaoyi, and Li-Shi Luo (1997)
Theory of the lattice Boltzmann method: From the Boltzmann equation to the
lattice Boltzmann equation.
Physical Review E 56.6 (1997): 6811.

[§ Obrecht, Christian, Bernard Tourancheau, and Frdric Kuznik (2015)

Performance Evaluation of an OpenCL Implementation of the Lattice Boltzmann
Method on the Intel Xeon Phi.

Parallel Processing Letters 25.03 (2015): 1541001.

[3 Deakin, Tom, and Simon MclIntosh-Smith (2015)

GPU-STREAM: Benchmarking the achievable memory bandwidth of Graphics
Processing Units.

Supercomputing Poster Austin, Texas (2015).

[3 Obrecht, Christian, et al. (2016)

Thermal link-wise artificial compressibility method: GPU implementation and
validation of a double-population model.

Computers & Mathematics with Applications 72.2 (2016): 375-385.

27 /27

	Introduction
	Motivation
	Kalray MPPA-256 architecture
	Pipelined 3D LBM stencil
	Domain decomposition and macro pipeline
	Sub-domain addressing
	Sub-domain size and Halo bandwidth

	Results
	Conclusions

