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Introduction - LBM theory

The Lattice Boltzmann Method performs on a regular Cartesian grid:
@ mesh size dx
@ constant time step dt
e A node = {particle densities f,, velocities &, }
@ Nodes are linked by e.g the D3Q19 stencil and updated by [He, 1997]:

fa(x+5t§a,t+5t)> _ ‘fa(x, t)> :Q<’fa(x, t)>> (1)
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Introduction - Memory bound context

Given a 'square’ fluid represented as a grid of L x L x L lattice nodes in
D3Q19, evoluating throught T time steps.

OPAL MPPA Roofline

Simulating the whole domain requires: ’ &
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@ Power-efficient NoC-based many-core processors are very promising
for next HPC challenges (e.g Sunway, MPPA, PULP, STHORM ...).

Good latency, but low memory bandwidth (DDR3).
Lack of efficient programming model and optimization methods.

High {computing|data} predictability and fast-local-memory centric.

Enabling sophisticated optimizations, based on software-prefetching
and streaming.

These motivates us to study a pipelined 3D LBM algorithm on many-core
processors, using local memory and asynchronous communication.



Kalray MPPA-256 architecture

@ 16 x 16-core Compute Clusters

(CO)

@ 2 x 1/0O clusters with quad-core
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2 MB multi-banked shared memory per CC, 77 GB/s bandwidth
SMEM configurable as DDR L2 cache, or explicit user buffers
Support asynchronous data transfer by DMA engines

POSIX C/C++ programming or OpenCL offloading
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Domain decomposition and macro pipeline

o We take the lid-driven cavity example
from the OPAL solver [Obrecht, 2015],
originally implemented in OpenCL

@ The Ly x L, x L, domain is decomposed
to sub-domains of size C; x C, x C;



Domain decomposition and macro pipeline

Custero  Main idea:
async_copy_3D

@ A sub-domain is copied into CC’s local
memory by a 3D asynchronous copy
function

@ Computation is carried out on local
memory then data are copied back to
global memory (DDR)



Domain decomposition and macro pipeline

Cluster 0
async_copy_3D

@ Requires copying halo layers for each
sub-domain
@ In 1-order stencil, the copied

sub-domain S is at most
(Cc+2) x(C,+2) x(C,+2)

10/27



Domain decomposition and macro pipeline

16 computing clusters, each is working on
NB_CUBES_PER_CLUSTER sub-domains:

Cluster 0
async_copy_3D _ /* Prologue */
prefetch_cube(0); // non-blocking

/* Pipeline */

for i in O .. NB_CUBES_PER_CLUSTER-1
prefetch_cube(i+1); // non-blocking
wait_cube (i) ;
compute_cube (1) ;
put_cube (i) ;

done

/* Epilogue */
wait_cube (NB_CUBES_PER_CLUSTER-1) ;
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Sub-domain addressing

A : “Hey, don't touch my cube !"

B : “No, that’s mine.”

Cluster 0
async_copy_3D

2 Credit : 9gag
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Sub-domain addressing
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@ Such a curve that works for any configuration will be more complex
(octree, recursion, trailing handle)
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Sub-domain addressing
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e But, what if (sub-)domains are <] A 7 -
not cubic ? ! s T
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@ Such a curve that works for any configuration will be more complex
(octree, recursion, trailing handle)

@ Addressing sub-domains in ‘3D’ row-major style
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Sub-domain size and Halo bandwidth

@ We call "Halo bandwidth” the fraction between the number of halo
cells and the total number of copied cells.

Halo bandwidth
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Sub-domain size and Halo bandwidth

@ We call "Halo bandwidth” the fraction between the number of halo
cells and the total number of copied cells.

Halo bandwidth
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@ Which size for sub-domains, given a limited local memory 7

o E.g double buffering :
malloc(2 x (Cx + 2)3 x sizeof (float)) (Cx = C, = C,)

@ Sub-domains should be cubic and as big as possible.
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Results (1/2)

We compare original OPAL performance on Intel CPU, Intel MIC, NVIDIA
GPU and Kalray MPPA-256 (all OpenCL).
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Figure: Original OPAL OpenCL on GPU, CPU, MIC and MPPA

GPU-STREAM benchmark [Deakin, 2015]
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Results (2/2)

@ Asynchronous approach implemented in POSIX C on MPPA

@ Outperforms the OpenCL version by 33%

@ Twice better using two DDRs (MPPA OpenCL currently supports
only one DDR)

OPAL_async vs. OPAL OpenCL on MPPA OPAL_async vs. OPAL OpenCL on MPPA
Single DDR, duration = 1000 Double DDR, duration = 1000
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Figure: OPAL_async vs. OPAL OpenCL on MPPA

25 /27



Conclusions

@ 33% performance gain by actively streaming stencil domains on local
memories.

@ Software pipeline is not a trivial task, but essential to obtain good
performance on many-core processors.

@ DDR bandwidth is bottleneck.

e Halo copy is critical to performance, consumes up to 60% bandwidth
on small sub-domains.

@ Perspective : applying alternative method - Link-wise artificial
compressibility method [Obrecht, 2016] with 5x less memory traffic.
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