#### **CCDSC 2016**

# On a Novel Method for High Performance Computational Fluid Dynamics

#### Christian Obrecht

Energy and Thermal Sciences Centre of Lyon (CETHIL)
Department of Civil Engineering and Urban Planning
National Institute of Applied Sciences of Lyon (INSA-Lyon)

October 6, 2016





## **Outline**

Motivation

2 Link-wise artificial compressibility method

Work in progress

# I – Motivation

## Areas of interest: Urban physics



Margheri and Sagaut, 2014

Urban micro-climate, pedestrian wind comfort, pollutant dispersion. . .

## Areas of interest: Thermal energy storage



Shell and tube heat exchanger

Latent heat storage (phase change materials).





Sorption and/or chemical heat storage.

## **Computational Fluid Dynamics**

The previous engineering applications rely heavily on CFD simulations.

- ► Multi-physics models.
- ► Complex geometries.
- ►  $\mathcal{O}(10^9)$  fluid cells.
- Physically relevant simulation times.

#### Technical issues:

- ▶ Multi-physics commercial codes (e.g. Fluent) are expensive and do not scale over  $\mathcal{O}(10^2)$  cores.
- ▶ Open CFD codes (e.g. code Saturne) are not designed for accelerators.

## Unstructured vs Cartesian meshes

#### Unstructured

- ▶ Body fitting mesh.
- ► Time consuming generation process.
- ► Isotropy is an issue.
- Irregular data access pattern.

#### Cartesian

- ► Trivial meshing.
- ► GPU-friendly data layout.
- ▶ Hierarchical structure is often needed.

### Lattice Boltzmann method

- ▶ Discretized version of the Boltzmann equation recovering the solutions of the Navier-Stokes equation.
- ▶ Regular Cartesian grid of mesh size  $\delta x$  with constant time step  $\delta t$ .
- Finite set of particular densities  $f_{\alpha}$  associated to particular velocities  $\xi_{\alpha}$ .
- ightharpoonup Collision operator  $\Omega$  (usually explicit).

$$|f_{\alpha}(\mathbf{x} + \delta t \boldsymbol{\xi}_{\alpha}, t + \delta t)\rangle - |f_{\alpha}(\mathbf{x}, t)\rangle = \Omega |f_{\alpha}(\mathbf{x}, t)\rangle$$



$$\rho = \sum_{\alpha} f_{\alpha}$$

$$ho = \sum_{lpha} f_{lpha}$$
  $ho oldsymbol{u} = \sum_{lpha} f_{lpha} oldsymbol{\xi}_{lpha}$ 

#### Pull formulation of the LBM

Two-step formulation of LBM: propagation (1) followed by collision (2).

$$|f_{\alpha}(\mathbf{x}, t + \delta t)\rangle = |f_{\alpha}^{*}(\mathbf{x} - \delta t \boldsymbol{\xi}_{\alpha}, t)\rangle$$
 (1)

$$\left|f_{\alpha}^{*}(\mathbf{x}, t + \delta t)\right\rangle = \left|f_{\alpha}(\mathbf{x}, t + \delta t)\right\rangle + \Omega\left|f_{\alpha}(\mathbf{x}, t + \delta t)\right\rangle \tag{2}$$



## Solid-fluid interface



Simple bounce-back boundary condition

## LBM pros and cons

#### Pros

- Explicitness, algorithmic simplicity.
- ► Easy solid boundary processing.
- ▶ Well-suited to GPUs.

#### Cons

- ▶ Large memory consumption (19 scalars vs 4 hydrodynamic variables).
- ▶ Impact on performance in memory bound context.

II – Link-wise artificial compressibility method

## Link-wise artificial compressibility method (LW-ACM)

- ▶ Novel formulation of the artificial compressibility method.
- ▶ Strong analogies with lattice Boltzmann schemes.

Updating rule:

$$f_{\alpha}(\mathbf{x}, t+1) = f_{\alpha}^{(e)}(\mathbf{x} - \boldsymbol{\xi}_{\alpha}, t) + 2\left(\frac{\omega - 1}{\omega}\right) \left(f_{\alpha}^{(e,o)}(\mathbf{x}, t) - f_{\alpha}^{(e,o)}(\mathbf{x} - \boldsymbol{\xi}_{\alpha}, t)\right)$$

where  $f_{\alpha}^{(e)}$  are local equilibria which only depend on local  $\rho$  and  $\boldsymbol{u}$ , and  $f_{\alpha}^{(e,o)}$  are the odd parts of the equilibrium functions:

$$f_{\alpha}^{(\mathrm{e,o})}(
ho, \mathbf{u}) = \frac{1}{2} \left( f_{\alpha}^{(\mathrm{e})}(
ho, \mathbf{u}) - f_{\alpha}^{(\mathrm{e})}(
ho, -\mathbf{u}) \right).$$

P. Asinari, T. Ohwada, E. Chiavazzo, and A. F. Di Rienzo. Link-wise artificial compressibility method.

## First GPU implementation: TheLMA\*

Two-step updating rule:

$$f_{\alpha}(\mathbf{x}, t+1) = f_{\alpha}^{*}(\mathbf{x} - \boldsymbol{\xi}_{\alpha}, t) + 2\left(\frac{\omega - 1}{\omega}\right) f_{\alpha}^{(e,o)}(\mathbf{x}, t)$$

$$f_{\alpha}^{*}(\mathbf{x}, t+1) = f_{\alpha}^{(e)}(\mathbf{x}, t+1) - 2\left(\frac{\omega - 1}{\omega}\right) f_{\alpha}^{(e,o)}(\mathbf{x}, t+1)$$

- ▶ LW-ACM very similar to LBM, with additional cost of loading and storing  $\rho$  and  $\boldsymbol{u}$  at each time step.
- First GPU implementation of LW-ACM: slightly modified version of a TheLMA based single-GPU CUDA LBM solver.

C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux.
The TheLMA project: Multi-GPU implementation of the lattice Boltzmann method.
International Journal of High Performance Computing Applications, 25(3):295–303, 2011.

## Second GPU implementation: Louise

- ▶ Sufficient to have access to  $\rho$  and u at node x and its neighbours  $x \xi_{\alpha}$ .
- $\blacktriangleright$  Reduction of read redundancy: use CUDA blocks of 8  $\times$  8  $\times$  8 threads, store  $\rho$  and  $\boldsymbol{u}$  in an array of  $10^3$  float4 structures in shared memory.





C. Obrecht, P. Asinari, F. Kuznik, and J.-J. Roux.

High-performance Implementations and Large-scale Validation of the Link-wise ACM. Journal of Computational Physics, 275:143-153, 2014.

## Data throughput and memory footprint

## Louise data throughput per time step

- ▶ 992 float4 structures read per CUDA block (41% of LBM).
- ▶ 512 written per block (21% of LBM).

## Test hardware: GTX Titan Black (single precision)

- ▶ LBM: 38 million nodes (e.g. 320³ cubic cavity).
- ▶ LW-ACM: 201 million nodes (e.g. 576³ cubic cavity).



## Local bounce-back boundary condition

- ▶ Bounce-back boundary condition:  $f_{\alpha}^*(\mathbf{x} \boldsymbol{\xi}_{\alpha}, t) = f_{\bar{\alpha}}(\mathbf{x}, t 1)$  where  $\mathbf{x} \boldsymbol{\xi}_{\alpha}$  is a wall node and  $\bar{\alpha}$  is such that  $\boldsymbol{\xi}_{\bar{\alpha}} = -\boldsymbol{\xi}_{\alpha}$ .
- ▶ Louise does not keep  $f_{\alpha}^*$  variables: finite difference boundary conditions (cumbersome for complex geometries).
- ▶ Louise\* variant: *local* bounce-back  $f_{\bar{\alpha}}^{(e)}(\mathbf{x}, t) = f_{\alpha}^{(e)}(\rho, -\mathbf{u})$ .

Updating rule at boundary node:

$$f_{\alpha}(\mathbf{x}, t+1) = f_{\bar{\alpha}}^{(e)}(\mathbf{x}, t) + 2\left(\frac{\omega-1}{\omega}\right) \left(f_{\alpha}^{(e,o)}(\mathbf{x}, t) - f_{\bar{\alpha}}^{(e,o)}(\mathbf{x}, t)\right).$$

## Runtime video (Louise)



Lid-driven cubic cavity at Re  $=1000,\,160^3\approx4.1$  million nodes, 20320 time steps, computation time 37.1 s on the GTX Titan, 2259 MLUPS.

## Performance comparison: lid-driven cavity in single precision



GPU start temperature: 60  $^{\circ}\text{C},$  runtime per resolution  $\approx$  30 s. For long term computations, performance is about 15% less.

## Velocity discrepancy with respect to spectral element data



III – Work in progress

## OpenCL Link-wise ACM on Many-core Processors (OpenCLAMP)

- OpenCLAMP: newly developed OpenCL program based on the same principles as Louise\*.
- Performance portability: execution parameters specified in a JSON configuration file loaded at runtime.
- ▶ Performance on GTX Titan Black: similar than for Louise\* code, i.e. higher than 2000 MLUPS, using 8 × 8 × 8 work-groups.
- ▶ Performance on octocore Xeon (E5-2687W v2 at 3.40GHz): up to 40 MLUPS using  $32 \times 1 \times 1$  work-groups.

#### **Conclusions**

- LW-ACM promising approach for CFD on GPUs.
- ▶ Device memory consumption divided by up to 5.25 with respect to LBM.
- ▶ Performance on Kepler GPUs increased by 1.8×.
- OpenCLAMP: to be released soon as a free software.
- ► Future work: extension to thermal flows, MPI-based multi-device.

# Thank you for listening!



"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"