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Areas of interest: Urban physi

Margheri and Sagaut, 2014

Urban micro-climate, pedestrian wind comfort, pollutant dispersion. ..



Areas of interest: Thermal energy storage

Shell and tube heat exchanger

Latent heat storage (phase change materials).

Air outlet/

Zeolite beads

Sorption and/or chemical heat storage.



Computational Fluid Dynamics

The previous engineering applications rely heavily on CFD simulations.
» Multi-physics models.
» Complex geometries.
» O(10°) fluid cells.
» Physically relevant simulation times.
Technical issues:

» Multi-physics commercial codes (e.g. Fluent) are expensive and do not
scale over O(10?) cores.

» Open CFD codes (e.g. code Saturne) are not designed for accelerators.



Unstructured vs Cartesian meshes

Unstructured

» Body fitting mesh.

» Time consuming generation process.

» |sotropy is an issue.

» Irregular data access pattern.
Cartesian

» Trivial meshing.

» GPU-friendly data layout.

» Hierarchical structure is often needed.



Lattice Boltzmann method

» Discretized version of the Boltzmann equation recovering the solutions of
the Navier—Stokes equation.

> Regular Cartesian grid of mesh size dx with constant time step dt.
» Finite set of particular densities f, associated to particular velocities &, .

» Collision operator Q (usually explicit).

[fo(x + 0t€,, t + 6t)) — |fa(x, t)) = Q|fa(x, 1))
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Pull formulation of the LBM

Two-step formulation of LBM: propagation (1) followed by collision (2).

|fa(x,t 4 0t)) = |fi(x — 6t&,, 1)) (1)
|fx(x,t+6t)) = |fu(x, t +6t)) + Q|fa(x, t + 6t)) (2)
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Solid-fluid interface

Simple bounce-back boundary condition
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LBM pros and cons

Pros
» Explicitness, algorithmic simplicity.
» Easy solid boundary processing.

> Well-suited to GPUs.
Cons
» Large memory consumption (19 scalars vs 4 hydrodynamic variables).

» Impact on performance in memory bound context.
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Link-wise artificial compressibility method (LW-ACM)

» Novel formulation of the artificial compressibility method.

» Strong analogies with lattice Boltzmann schemes.

Updating rule:

w-—1

e 0 2) = 90— €0, 1)+ 2 (220 (19900 0 - 789 - €., 1)

where £ are local equilibria which only depend on local p and u, and £ a

the odd parts of the equilibrium functions:

re

€,0 1 e e
£, u) = 5 (£9(p, ) — £9(p, —u)) .

P. Asinari, T. Ohwada, E. Chiavazzo, and A. F. Di Rienzo.
Link-wise artificial compressibility method.
Journal of Computational Physics, 231(15), 5109-5143, 2012.
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First GPU implementation: TheLMA*

Two-step updating rule:

fulx, t+1) = £ (x—€,, t) +2 (%1) (20) (&, t)

fr(x, t+1) = f9(x, t+1) -2 (‘”; 1) £ (x, t +1)
> LW-ACM very similar to LBM, with additional cost of loading and storing
p and u at each time step.

» First GPU implementation of LW-ACM: slightly modified version of a
TheLMA based single-GPU CUDA LBM solver.

C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux.
The TheLMA project: Multi-GPU implementation of the lattice Boltzmann method.
International Journal of High Performance Computing Applications, 25(3):295-303, 2011.
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Second GPU implementation: Louise

» Sufficient to have access to p and u at node x and its neighbours x — &

ar

» Reduction of read redundancy: use CUDA blocks of 8 x 8 x 8 threads,
store p and u in an array of 10® float4 structures in shared memory.

C. Obrecht, P. Asinari, F. Kuznik, and J.-J. Roux.
High-performance Implementations and Large-scale Validation of the Link-wise ACM.
Journal of Computational Physics, 275:143-153, 2014
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Data throughput and memory footprint

Louise data throughput per time step

> 992 float4 structures read per CUDA block (41% of LBM).

» 512 written per block (21% of LBM).
Test hardware: GTX Titan Black (single precision)

» LBM: 38 million nodes (e.g. 320° cubic cavity).

» LW-ACM: 201 million nodes (e.g. 576° cubic cavity).
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Local bounce-back boundary condition

» Bounce-back boundary condition: f;(x — &, t) = fa(x, t — 1) where
x — &, is a wall node and & is such that §{; = —§

ar

» Louise does not keep f; variables: finite difference boundary conditions
(cumbersome for complex geometries).

» Louise* variant: local bounce-back £%(x, t) = £9(p, —u).

Updating rule at boundary node:

fulx, t+1) = f19(x, t) + 2 (w; 1) (A9, 1) = £99(x, 1) .
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Runtime video (Louise)

Lid-driven cubic cavity at Re = 1000, 160% ~ 4.1 million nodes, 20320 time
steps, computation time 37.1 s on the GTX Titan, 2259 MLUPS.
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Performance comparison: lid-driven cavity in single precision
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GPU start temperature: 60 °C, runtime per resolution = 30 s. For long term
computations, performance is about 15% less.
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Velocity discrepancy with respect to spectral element data
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OpenCL Link-wise ACM on Many-core Processors (OpenCLAMP)

» OpenCLAMP: newly developed OpenCL program based on the same
principles as Louise*.

» Performance portability: execution parameters specified in a JSON
configuration file loaded at runtime.

» Performance on GTX Titan Black: similar than for Louise* code, i.e.
higher than 2000 MLUPS, using 8 x 8 x 8 work-groups.

» Performance on octocore Xeon (E5-2687W v2 at 3.40GHz): up to
40 MLUPS using 32 x 1 x 1 work-groups.
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Conclusions

v

LW-ACM promising approach for CFD on GPUs.
» Device memory consumption divided by up to 5.25 with respect to LBM.

» Performance on Kepler GPUs increased by 1.8x.

v

OpenCLAMP: to be released soon as a free software.

» Future work: extension to thermal flows, MPIl-based multi-device.
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Thank you for listening!
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