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Evolving workflows 
in science 

 

•  Unprecedented amounts of data from 
experiments, observations, simulations, 
devices, etc. 
–  Large size, heterogeneous in nature, and 

distributed across geographic locations 

•  Application workflows  
–  Heterogeneous and dynamic 
–  Dynamic demands for resources 
–  Various (and changing) QoS requirements 

•  Throughput, budget, time 

•  Use cases span climate, precision medicine, 
smart infrastructure, instrumented oilfields, 
disaster management, etc. 



OOI by the Numbers 
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Software-Defined Environments (SDE) 
•  Software can be used to adjust the entire infrastructure to match the workload 

through defined policies that control the configuration of compute, storage, and 
networking components, and optimize application execution 
–  Integrated: Built on open standards, making it quicker and easier to adapt 
–  Modular: Cost-effective - scale up, down, or out as needed 
–  Automated: Simplifies IT operations and service delivery 

Li, C.; Brech, B.L.; Crowder, S.; Dias, D.M.; Franke, H.; Hogstrom, M.; Lindquist, D.; Pacifici, G.; Pappe, S.; Rajaraman, B.; Rao, J.; Ratnaparkhi, R.P.; 
Smith, R.A.; Williams, M.D., "Software defined environments: An introduction," in IBM Journal of Research and Development , vol.58, no.2/3, 2014 
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Software-Defined Environments for Science  
•  Combine cloud/service abstractions 

with concepts from software-defined 
environments 

•  Create a nimble and programmable 
environment that autonomously evolves 
in time and space, adapting to: 
–  Changes in the infrastructure 
–  Application requirements 

 
•  Enable efficient data processing 

–  Allocate computation close to data 
sources 

–  Process data in-situ and/or in-transit 

•  Independent management of 
applications and resources 



Builds on CometCloud

http://cometcloud.org
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Overview of the Approach (Using Infra. Services)
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Prototype CP-based Architecture �
(with IBM, UCC Challenge’15 Winner) 
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•  Use CP to describe the 
environment state
–  Specify the min. requirements 

for a resource class/site to be 
included 

–  Reduce the search space for 
the scheduling step

•  The AS decides the number/
type of resources based on 
application QoS objectives

•  The entire process is 
continuous to allow for 
dynamic reconfiguration

•  Leverages Docker containers
15 

Software-Defined Service Composition



Constraints Formulation
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Table 4.5: Resource Class Properties

Property Description

Availability (av) Whether a resource class is operational

Capacity (cp) Number of instances (e.g. nodes, VMs) in a resource

class

Allocation (al) Number of compute hours available for a shared re-

source class

Performance (pf) Average performance of an instance of a resource class

Utilization (u) Load of a resource class as a percentage of available

capacity (0-100%)

Cost (c) Price per hour for an instance of a resource class. We

assume the cost per instance includes both CPU and

memory costs

Power (pw) Power consumption of a resource class

Overhead (o) Time required to allocate an instance of a resource

class

Security (sc) Whether a resource class is secure or not

Always-on (ao) Whether a resource class is provisioned on demand or

always on

4.4.3.3 Mathematical Model

In this section, we present the details of the CP-based approach for generating a virtual

slice of resources based on user, application, and/or resource provider constraints. We also

present a heuristics-based approach that will be used as a baseline for the performance

evaluation of the CP approach.

83

Hence, the complete constraint programming mathematical model becomes:

for i = {1, 2, . . . , n} and j = {1, 2, . . . ,mi}

maximize
n,miX

i=1,j=1

xij subject to

xij  avij 8j 8i

xij · CP  cpij 8j 8i

xij ·AL  alij 8j 8i

xij · PF  pfij 8j 8i

xij · uij  U 8j 8i

xij · cij  C 8j 8i

xij · pwij  PW 8j 8i

xij · oij  O 8j 8i

xij  (1� scij) · (1� SC) + (SC · scij) 8j 8i

xij  (1� aoij) · (1�AO) + (AO · aoij) 8j 8i

xij 2 {0, 1}

Heuristic-Based Resource Filtering

An alternate approach for selecting resources is using heuristics. In the heuristic approach

we are only interested in a single solution that includes all resource classes that satisfy

all constraints – in contrast, the CP solver provides every possible combination. While the

heuristic approach performs better as compared to the CP-based approach, a key limitation

of the heuristic approach is that adding or removing constraints can be cumbersome. Our

heuristic approach iterates over all resource classes across all sites, and filters out resource

classes that do not satisfy all constraints. The algorithm for the heuristic approach is

shown in Algorithm 1. The algorithm uses the same notations defined for the constraint

programming approach.

80

Constraint Programming-Based Resource Filtering

Constraint Programming (CP) [129] is an approach for (1) modeling the relations between

variables in the form of constraints and (2) identifying feasible solutions out of a large

set of candidate solutions based on these constraints. In our model, these variables are

the resources that a user has access to, combined with the constraints imposed by the

user and/or resource providers. Using these two sets of constraints, we identify a subset

of resources that satisfy all of the constraints. A key advantage of this approach is the

ability to easily add or remove properties and constraints without modifying the rest of

the framework. We chose CP as opposed to linear [159] or integer [170] programming (LP,

IP) since CP does not require an objective function and therefore can (1) obtain a solution

relatively quicker (2) discover infeasible solutions faster. This enables our framework to

respond to changes more e↵ectively and adapt the system accordingly. In addition to these

three approaches (CP, LP, IP), resource selection can be based on multi-criteria optimization

algorithms [9, 87, 125,128], or using advanced reservation mechanisms [147].

In this model, we define a federation as a set of n sites {S1, S2..., Sn}. Each site is defined

as a collection of resources in a single physical location or region (e.g., datacenter, cloud

provider, or a single zone within a cloud). We consider that any given Si site is composed of

a set of mi resource classes, where a resource class is defined as the aggregation of resources

within such site that share the same properties (e.g., Amazon EC2 m4.large instances, or a

homogeneous cluster). Table 4.5 presents example resource class properties that we defined

in our model. We introduce linear constraints in the form of (ax  b). Finally, we define

the decision variable xij that we use for our CP model as follows:

xij =

8
>>>>><

>>>>>:

1 if ith site’s jth resource class

satisfies all the constraints

0 otherwise

where i = {1, 2, . . . , n} and j = {1, 2, . . . ,mi}

In what follows, we illustrate how to define four di↵erent types of constraints in our

model. Any new constraints can be modeled similar to these constraints.

Software-Defined Service Composition



Preliminary Evaluation of the CP-based Approach

•  Run across 5 different 
clouds in 8 different 
regions using 15 
different types of 
resource classes, 110 
VMs

•  Deployed up to 7000 
containers across the 
federation

•  Varying workloads
•  Varying resource 

availabilities & 
constraints

Site Name & VM Type # Cores Max. VMs

†
Speedup Cost

*

AWS east t2.micro 1 10 2.39 0.013

AWS east t2.small 1 10 2.39 0.026

AWS east t2.medium 2 10 3.35 0.052

AWS east t2.large 2 10 3.47 0.104

AWS west t2.micro 1 10 2.52 0.013

AWS west t2.small 1 10 2.33 0.026

AWS west t2.medium 2 10 3.45 0.052

AWS west t2.large 2 10 3.47 0.104

Chameleon m1.small 1 8 2.49 0.026

Chameleon m1.medium 2 6 3.99 0.052

Chameleon m1.large 4 4 5.87 0.209

Azure east Standard-A1 1 3 1.00 0.044

Azure west Standard-D1 1 3 1.70 0.077

Google east n1-standard-1 1 3 2.40 0.05

IBM Bluemix N/A 3⇤ N/A 0.028

Dell cluster 8 12 N/A N/A

Note: The # of containers per instance = # of cores per instance.

⇤ Max number of containers for Bluemix.

† – Maximum number of available VMs per type.

* – Real cost ($) per hour for all cloud providers except Chameleon,

which was estimated base on AWS pricing.

18 
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add#one#constraint#(performance#=#2.4)
resource#on change#resource#availability#(google#off)
resource#off add#another#constraint#(cost#=#0.1)

change#existing#constraint#(performance#=#2.2)
change#resource#availability#(google#on)

workflow#starts change#resource#cost#(aws#east#large#=#0.09)
add#resource#(blue#mix) remove#one#constraint#(cost)

remove#resource#(aws#east#small) remove#all#constraints

AWS_East_Micro

AWS_East_Small

AWS_East_Medium

AWS_East_Large

AWS_West_Micro

AWS_West_Small

AWS_West_Medium

AWS_West_Large

Chameleon_Small

Chameleon_Medium

Chameleon_Large

Azure_East

Azure_West

Google

IBM_Bluemix

0 10 26 56 72 79 92 120
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Triggering Event

Details

Available Resource 
Classes

Selected Resource 
Classes

Current Total 
Number of Cores

Workflow starts

14

Ø  Stage one is 
submitted for 
execution 
(1000 
containers)

Ø All available 
resources are 
allocated

14

165

User registers a 
new resource 
class (IBM 
Bluemix) 15

Ø  IBM resource 
class is added 
to the 
federation

Ø AS reallocates 
workload to 
include IBM

15

168

Stage 1 workload 
change

15

Ø  Remaining 
containers < 
total # cores

Ø AS reduces 
allocated 
cores to 
match 
workload

15-8

168-75

User removes an 
existing resource 
class 
(aws_east_small) 14

Ø  aws_east_small is 
removed from 
the federation

Ø AS reschedules 
remaining 
containers on 
available 
resources

7

70

Stage 1 is 
complete

14

Ø AS deallocates 
all running 
resources 0

0

Stage 2 is 
submitted

14

Ø  Stage 2 has 
6000 
containers

Ø AS allocates 
all available 
resources

14

158

Add constraint 
to use resources 
with speed up > 2.4

10

Ø  Resource 
classes with 
p<2.4 are 
removed

Ø AS reschedules 
the workload 
on available 
resources

10

132

Time (min)

T=56
Google becomes 
unavailable

9

Ø Google is 
temporarily 
removed from 
the federation

Ø AS reschedules 
the workload 
on available 
resources

9

129

T=61
Add second 
constraint 
cost<0.1 6

Ø  Resources 
with cost >0.1 
are removed

Ø AS reschedules 
the workload 
on available 
resources

6

73

T=66T=0T=10T=22T=26T=38T=40
Change existing 
constraint p>2.2

8

Ø  Resources 
with 2.2>p>2.4 
and c<0.1 are 
added 

Ø AS reschedules 
the workload 
on available 
resources

8

93

T=69
Google becomes 
available

9

Ø Google meets 
current 
constraints 
∴added back

Ø AS reschedules 
the workload 
on available 
resources

9

96

T=72
Change resource 
property to 
simulate dynamic 
pricing cost =0.09 10

Ø  aws_east_large 
now satisfies 
constraints 
and is added

Ø AS reschedules 
the workload 
on available 
resources

10

116

T=75
Remove one 
constraint (cost)

12

Ø All resources 
with p>2.2 
and c>0.1 are 
added back

Ø AS reschedules 
the workload 
on available 
resources

12

152

T=79
Stage 2 workload 
change

12

Ø # remaining 
containers < 
# available 
cores

Ø AS reduces 
running cores 
to current 
workload 

9

125

T=86
Remove all 
constraints

14

Ø All available 
resources are 
added to 
federation

Ø AS reschedules 
workload, only 
uses cores 
according to 
workload size

9

125

T=92
Stage 2 workload 
change

14

Ø AS deallocates 
cores  to 
adjust to 
workload size

8

115

T=100
Stage 2 complete

14

Ø AS releases all 
resource

0

0

T=120
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Summary

User/Resource Provider

Elastic Cyberinfrastructure

Synthesize a space-time ACI 

Exposed as a cloud to 
application/workflow 

Autonomic ManagementApplications & Workflows

•  Workflow definition
•  QoS Objectives (deadline, budget)
•  App requirements  (type of 

resources, memory,  I/O rate)
•  Defined in terms of science (e.g., 

precision, resolution)
- varies at runtime - 

•  Identify utility of the 
composition

•  Negotiate with application
•  Ensure applications 

objectives and constraints are 
always met

•  Adapt and reconfigure 
resources on the fly 

Define service composition 
programmatically using rules and/or 
constraints
•  Availability 
•  Capacity & Capability
•  Cost
•  Location
•  Access policy

- varies at runtime -

20
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Next steps 

•  QoS Modeling & Quantification
–  Quantify the composition of services and model the collective performance 

and behavior at any given time
–  Create models to translate resource/service capabilities and availabilities into 

application-level utilities (e.g., throughput, performance, etc.)

•  Science as a Service Platform / Application Malleability
–  Allow information-driven applications to detect and adapt to changes in the 

execution environment

–  Initiate a bidirectional negotiation between the workflow management 
framework and the underlying software-defined service composition

21 



The CometCloud Team

•  Ph.D. Students
–  Moustafa AbdelBaky,              Dept. of Electrical & Computer Engr.
–  Mengsong Zou,    Dept. of Computer Science
–  Ali Reza Zamani,    Dept. of Computer Science

CometCloud: http://cometcloud.org 

Omer Rana, Ion Petri, and many other collaborators…. 

•  Faculty
–  Javier Diaz-Montes, Ph.D.     Rutgers Discovery Informatics Institute (RDI2)
–  Esma Yildirim, Ph.D.             Rutgers Discovery Informatics Institute (RDI2)
–  Manish Parashar, Ph.D.         Dept. of Computer Science and RDI



Thank You!�
�
PS: We are hiring�
- Postdocs/Research Associates �
- Research programmers 


