
Moustafa AbdelBaky, Javier Diaz, Manish Parashar

Rutgers Discovery Informatics Institute (RDI2)
parashar@rutgers.edu

CCDSC 2016

Exploring Software-Defined
Environments for Science

Service Compositions for IoT / Emerging
Data Ecosystems

Online approximation Computing in the continuum Living workflows

Evolving workflows
in science

•  Unprecedented amounts of data from
experiments, observations, simulations,
devices, etc.
–  Large size, heterogeneous in nature, and

distributed across geographic locations

•  Application workflows
–  Heterogeneous and dynamic
–  Dynamic demands for resources
–  Various (and changing) QoS requirements

•  Throughput, budget, time

•  Use cases span climate, precision medicine,
smart infrastructure, instrumented oilfields,
disaster management, etc.

OOI by the Numbers

6	

Arrays	
4	Global,	Pioneer,	Endurance,	Cabled	
	

Sites	
Moorings,	Pro:ilers,	Nodes	
	

Mobile	Assets	
Gliders,	AUVs	
	

Instruments	
	
Science	Data	Products	
	
Science/Engineering	Data	
Products	

7	
50	
33	
833	

>2500	
>100K	

ooinet.oceanobservatories.org

Evolving workflows
in science

•  Unprecedented amounts of data from
experiments, observations, simulations,
devices, etc.
–  Large size, heterogeneous in nature, and

distributed across geographic locations

•  Application workflows
–  Heterogeneous and dynamic
–  Dynamic demands for resources
–  Various (and changing) QoS requirements

•  Throughput, budget, time

•  Use cases span climate, precision medicine,
smart infrastructure, instrumented oilfields,
disaster management, etc.

Software-Defined Environments (SDE)
•  Software can be used to adjust the entire infrastructure to match the workload

through defined policies that control the configuration of compute, storage, and
networking components, and optimize application execution
–  Integrated: Built on open standards, making it quicker and easier to adapt
–  Modular: Cost-effective - scale up, down, or out as needed
–  Automated: Simplifies IT operations and service delivery

Li, C.; Brech, B.L.; Crowder, S.; Dias, D.M.; Franke, H.; Hogstrom, M.; Lindquist, D.; Pacifici, G.; Pappe, S.; Rajaraman, B.; Rao, J.; Ratnaparkhi, R.P.;
Smith, R.A.; Williams, M.D., "Software defined environments: An introduction," in IBM Journal of Research and Development , vol.58, no.2/3, 2014

Picture source:

Software-Defined Environments for Science
•  Combine cloud/service abstractions

with concepts from software-defined
environments

•  Create a nimble and programmable
environment that autonomously evolves
in time and space, adapting to:
–  Changes in the infrastructure
–  Application requirements

•  Enable efficient data processing

–  Allocate computation close to data
sources

–  Process data in-situ and/or in-transit

•  Independent management of
applications and resources

Builds on CometCloud

http://cometcloud.org
13

Software-Defined Service Composition

Overview of the Approach (Using Infra. Services)

14

All heterogeneous, dynamic,
distributed infrastructures

Users Resource
Providers

Rule Engine or
CP Solver

User/Resource providers
rules and constraints

properties

Step 1
Resource filtering

availabilities

Scheduler

Large-scale dynamic
applications, services, or

workflows

Repeat if properties, availabilities,
rules or constraints change

Application
requirements

QoS objectives

Repeat if workload size, objectives or
current available resources change

Current
available
resources

Step 2
Workload Allocation

Federated Cyber-infrastructure
Resources

Provision resources
& run workloads

create
customized

view

create

Resources that satisfy
all constraints/rules

All/subset of
resources from the
available resources

to provision

Workload
placement

+ Workload size

Software-Defined Service Composition

Prototype CP-based Architecture �
(with IBM, UCC Challenge’15 Winner)

Resource(&(Constraint(Description(
API(&(RESTful Web(Service

Federation(
API(&(RESTful Web(Service

Workflow(
Manager

Federation(Execution(Engine

Constraint(
Solver

report(status(
start/stop(federation(agents

Resource(
Enactor

Autonomic(
Scheduler

Current(Resources(&(Constraints

Customized
View

Federated(Infrastructure

CometCloud

Resource(&
(

Constraint
Description(

Layer

Federation
Execution
Engine

Federation(
Abstraction(

Layer

Federated(
Infrastructure

Layer

Users
Resource(providers

Application(workflows(

CDE

report(status(

start/stop(
resources within(
federation(agents

Cu
rre

nt
(W

or
klo

ad
(&

Q
oS

O
bj
ec
tiv
es

•  Use CP to describe the
environment state
–  Specify the min. requirements

for a resource class/site to be
included

–  Reduce the search space for
the scheduling step

•  The AS decides the number/
type of resources based on
application QoS objectives

•  The entire process is
continuous to allow for
dynamic reconfiguration

•  Leverages Docker containers
15

Software-Defined Service Composition

Constraints Formulation

16

79

Table 4.5: Resource Class Properties

Property Description

Availability (av) Whether a resource class is operational

Capacity (cp) Number of instances (e.g. nodes, VMs) in a resource

class

Allocation (al) Number of compute hours available for a shared re-

source class

Performance (pf) Average performance of an instance of a resource class

Utilization (u) Load of a resource class as a percentage of available

capacity (0-100%)

Cost (c) Price per hour for an instance of a resource class. We

assume the cost per instance includes both CPU and

memory costs

Power (pw) Power consumption of a resource class

Overhead (o) Time required to allocate an instance of a resource

class

Security (sc) Whether a resource class is secure or not

Always-on (ao) Whether a resource class is provisioned on demand or

always on

4.4.3.3 Mathematical Model

In this section, we present the details of the CP-based approach for generating a virtual

slice of resources based on user, application, and/or resource provider constraints. We also

present a heuristics-based approach that will be used as a baseline for the performance

evaluation of the CP approach.

83

Hence, the complete constraint programming mathematical model becomes:

for i = {1, 2, . . . , n} and j = {1, 2, . . . ,mi}

maximize
n,miX

i=1,j=1

xij subject to

xij  avij 8j 8i

xij · CP  cpij 8j 8i

xij ·AL  alij 8j 8i

xij · PF  pfij 8j 8i

xij · uij  U 8j 8i

xij · cij  C 8j 8i

xij · pwij  PW 8j 8i

xij · oij  O 8j 8i

xij  (1� scij) · (1� SC) + (SC · scij) 8j 8i

xij  (1� aoij) · (1�AO) + (AO · aoij) 8j 8i

xij 2 {0, 1}

Heuristic-Based Resource Filtering

An alternate approach for selecting resources is using heuristics. In the heuristic approach

we are only interested in a single solution that includes all resource classes that satisfy

all constraints – in contrast, the CP solver provides every possible combination. While the

heuristic approach performs better as compared to the CP-based approach, a key limitation

of the heuristic approach is that adding or removing constraints can be cumbersome. Our

heuristic approach iterates over all resource classes across all sites, and filters out resource

classes that do not satisfy all constraints. The algorithm for the heuristic approach is

shown in Algorithm 1. The algorithm uses the same notations defined for the constraint

programming approach.

80

Constraint Programming-Based Resource Filtering

Constraint Programming (CP) [129] is an approach for (1) modeling the relations between

variables in the form of constraints and (2) identifying feasible solutions out of a large

set of candidate solutions based on these constraints. In our model, these variables are

the resources that a user has access to, combined with the constraints imposed by the

user and/or resource providers. Using these two sets of constraints, we identify a subset

of resources that satisfy all of the constraints. A key advantage of this approach is the

ability to easily add or remove properties and constraints without modifying the rest of

the framework. We chose CP as opposed to linear [159] or integer [170] programming (LP,

IP) since CP does not require an objective function and therefore can (1) obtain a solution

relatively quicker (2) discover infeasible solutions faster. This enables our framework to

respond to changes more e↵ectively and adapt the system accordingly. In addition to these

three approaches (CP, LP, IP), resource selection can be based on multi-criteria optimization

algorithms [9, 87, 125,128], or using advanced reservation mechanisms [147].

In this model, we define a federation as a set of n sites {S1, S2..., Sn}. Each site is defined

as a collection of resources in a single physical location or region (e.g., datacenter, cloud

provider, or a single zone within a cloud). We consider that any given Si site is composed of

a set of mi resource classes, where a resource class is defined as the aggregation of resources

within such site that share the same properties (e.g., Amazon EC2 m4.large instances, or a

homogeneous cluster). Table 4.5 presents example resource class properties that we defined

in our model. We introduce linear constraints in the form of (ax  b). Finally, we define

the decision variable xij that we use for our CP model as follows:

xij =

8
>>>>><

>>>>>:

1 if ith site’s jth resource class

satisfies all the constraints

0 otherwise

where i = {1, 2, . . . , n} and j = {1, 2, . . . ,mi}

In what follows, we illustrate how to define four di↵erent types of constraints in our

model. Any new constraints can be modeled similar to these constraints.

Software-Defined Service Composition

Preliminary Evaluation of the CP-based Approach

•  Run across 5 different
clouds in 8 different
regions using 15
different types of
resource classes, 110
VMs

•  Deployed up to 7000
containers across the
federation

•  Varying workloads
•  Varying resource

availabilities &
constraints

Site Name & VM Type # Cores Max. VMs

†
Speedup Cost

*

AWS east t2.micro 1 10 2.39 0.013

AWS east t2.small 1 10 2.39 0.026

AWS east t2.medium 2 10 3.35 0.052

AWS east t2.large 2 10 3.47 0.104

AWS west t2.micro 1 10 2.52 0.013

AWS west t2.small 1 10 2.33 0.026

AWS west t2.medium 2 10 3.45 0.052

AWS west t2.large 2 10 3.47 0.104

Chameleon m1.small 1 8 2.49 0.026

Chameleon m1.medium 2 6 3.99 0.052

Chameleon m1.large 4 4 5.87 0.209

Azure east Standard-A1 1 3 1.00 0.044

Azure west Standard-D1 1 3 1.70 0.077

Google east n1-standard-1 1 3 2.40 0.05

IBM Bluemix N/A 3⇤ N/A 0.028

Dell cluster 8 12 N/A N/A

Note: The # of containers per instance = # of cores per instance.

⇤ Max number of containers for Bluemix.

† – Maximum number of available VMs per type.

* – Real cost ($) per hour for all cloud providers except Chameleon,

which was estimated base on AWS pricing.

18

Software-Defined Service Composition

add#one#constraint#(performance#=#2.4)
resource#on change#resource#availability#(google#off)
resource#off add#another#constraint#(cost#=#0.1)

change#existing#constraint#(performance#=#2.2)
change#resource#availability#(google#on)

workflow#starts change#resource#cost#(aws#east#large#=#0.09)
add#resource#(blue#mix) remove#one#constraint#(cost)

remove#resource#(aws#east#small) remove#all#constraints

AWS_East_Micro

AWS_East_Small

AWS_East_Medium

AWS_East_Large

AWS_West_Micro

AWS_West_Small

AWS_West_Medium

AWS_West_Large

Chameleon_Small

Chameleon_Medium

Chameleon_Large

Azure_East

Azure_West

Google

IBM_Bluemix

0 10 26 56 72 79 92 120

19�

��

���

���

���

���

� �� �� �� �� ��� ���

�
��

��
��
��

��
��

���� �����

��� �������
���������
���������

������� �����
������� ������
������� �����
������� �����
������� �����

������� ������
������� �����
������� �����
��������������

���������������
��������������

������

Triggering Event

Details

Available Resource
Classes

Selected Resource
Classes

Current Total
Number of Cores

Workflow starts

14

Ø  Stage one is
submitted for
execution
(1000
containers)

Ø All available
resources are
allocated

14

165

User registers a
new resource
class (IBM
Bluemix) 15

Ø  IBM resource
class is added
to the
federation

Ø AS reallocates
workload to
include IBM

15

168

Stage 1 workload
change

15

Ø  Remaining
containers <
total # cores

Ø AS reduces
allocated
cores to
match
workload

15-8

168-75

User removes an
existing resource
class
(aws_east_small) 14

Ø  aws_east_small is
removed from
the federation

Ø AS reschedules
remaining
containers on
available
resources

7

70

Stage 1 is
complete

14

Ø AS deallocates
all running
resources 0

0

Stage 2 is
submitted

14

Ø  Stage 2 has
6000
containers

Ø AS allocates
all available
resources

14

158

Add constraint
to use resources
with speed up > 2.4

10

Ø  Resource
classes with
p<2.4 are
removed

Ø AS reschedules
the workload
on available
resources

10

132

Time (min)

T=56
Google becomes
unavailable

9

Ø Google is
temporarily
removed from
the federation

Ø AS reschedules
the workload
on available
resources

9

129

T=61
Add second
constraint
cost<0.1 6

Ø  Resources
with cost >0.1
are removed

Ø AS reschedules
the workload
on available
resources

6

73

T=66T=0T=10T=22T=26T=38T=40
Change existing
constraint p>2.2

8

Ø  Resources
with 2.2>p>2.4
and c<0.1 are
added

Ø AS reschedules
the workload
on available
resources

8

93

T=69
Google becomes
available

9

Ø Google meets
current
constraints
∴added back

Ø AS reschedules
the workload
on available
resources

9

96

T=72
Change resource
property to
simulate dynamic
pricing cost =0.09 10

Ø  aws_east_large
now satisfies
constraints
and is added

Ø AS reschedules
the workload
on available
resources

10

116

T=75
Remove one
constraint (cost)

12

Ø All resources
with p>2.2
and c>0.1 are
added back

Ø AS reschedules
the workload
on available
resources

12

152

T=79
Stage 2 workload
change

12

Ø # remaining
containers <
available
cores

Ø AS reduces
running cores
to current
workload

9

125

T=86
Remove all
constraints

14

Ø All available
resources are
added to
federation

Ø AS reschedules
workload, only
uses cores
according to
workload size

9

125

T=92
Stage 2 workload
change

14

Ø AS deallocates
cores to
adjust to
workload size

8

115

T=100
Stage 2 complete

14

Ø AS releases all
resource

0

0

T=120

Software-Defined Service Composition

Summary

User/Resource Provider

Elastic Cyberinfrastructure

Synthesize a space-time ACI

Exposed as a cloud to
application/workflow

Autonomic ManagementApplications & Workflows

•  Workflow definition
•  QoS Objectives (deadline, budget)
•  App requirements (type of

resources, memory, I/O rate)
•  Defined in terms of science (e.g.,

precision, resolution)
- varies at runtime -

•  Identify utility of the
composition

•  Negotiate with application
•  Ensure applications

objectives and constraints are
always met

•  Adapt and reconfigure
resources on the fly

Define service composition
programmatically using rules and/or
constraints
•  Availability
•  Capacity & Capability
•  Cost
•  Location
•  Access policy

- varies at runtime -

20

Current & Future Work

Next steps

•  QoS Modeling & Quantification
–  Quantify the composition of services and model the collective performance

and behavior at any given time
–  Create models to translate resource/service capabilities and availabilities into

application-level utilities (e.g., throughput, performance, etc.)

•  Science as a Service Platform / Application Malleability
–  Allow information-driven applications to detect and adapt to changes in the

execution environment

–  Initiate a bidirectional negotiation between the workflow management
framework and the underlying software-defined service composition

21

The CometCloud Team

•  Ph.D. Students
–  Moustafa AbdelBaky, Dept. of Electrical & Computer Engr.
–  Mengsong Zou, Dept. of Computer Science
–  Ali Reza Zamani, Dept. of Computer Science

CometCloud: http://cometcloud.org

Omer Rana, Ion Petri, and many other collaborators….

•  Faculty
–  Javier Diaz-Montes, Ph.D. Rutgers Discovery Informatics Institute (RDI2)
–  Esma Yildirim, Ph.D. Rutgers Discovery Informatics Institute (RDI2)
–  Manish Parashar, Ph.D. Dept. of Computer Science and RDI

Thank You!�
�
PS: We are hiring�
- Postdocs/Research Associates �
- Research programmers

