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CHANGES IMPACTING HPC DATA AND STORAGE 



MORE STORAGE/MEMORY LAYERS… 

§ Why 
–  BB: Economics (disk bw/iops too expensive) 
–  PFS: Maturity and BB capacity too small 
–  Campaign: Economics (tape bw too expensive) 
–  Archive: Maturity and we really do need a “forever” 
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SIMULATION WORKFLOW 
APEX Workflows, LANL, NERSC, SNL, 
SAND2015-10342 O, LA-UR-15-29113 



Application Data 

SPECIALIZATION OF DATA SERVICES 
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COMPOSING DATA SERVICES 



OUR GOAL 

§ Application-driven 
– Identify and match to science needs 
– Traditional data roles (e.g., checkpoint, data migration) 
– New roles (e.g., equation of state/opacity databases) 

§ Develop/adapt building blocks 
– Communication 
– Concurrency 
– Local Storage 
– Resilience 
– Authentication/Authorization 

Enable composition of data services for DOE science and systems 
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COMMUNICATION: MERCURY 

Mercury is an RPC system for use in the development of high performance 
system services. Development is driven by the HDF Group with Argonne 
participation. 
 
§ Portable across systems and network technologies 
§ Efficient bulk data movement to complement control messages 
§ Builds on lessons learned from IOFSL, Nessie, lnet, and others 

 
 
 
 
 
 

https://mercury-hpc.github.io/ 
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Overview

Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes

Bulk data (more later) transferred using separate and dedicated API
– One-sided model that exposes RMA semantics

Network Abstraction Layer
– Allows definition of multiple network plugins
– Currently MPI, BMI (TCP/IB/GM), SSM (TCP/MPI/IB)
– More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)
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CONCURRENCY: ARGOBOTS 

Argobots is a lightweight threading/tasking framework. 
§ Features relevant to I/O services: 

–  Flexible mapping of work to hardware  
resources 

–  Ability to delegate service work with  
fine granularity across those resources 

–  Modular scheduling 
§ We developed asynchronous bindings to: 

–  Mercury 
–  LevelDB 
–  POSIX I/O 

§ Working with Argobots team to identify 
needed functionality (e.g., idling) 

https://collab.cels.anl.gov/display/argobots/ 
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THREE EXAMPLE SERVICES 



1. REMOTELY ACCESSIBLE OBJECTS 
§ API for remotely creating, reading, writing, destroying fixed-size objects/extents 
§  libpmem (http://pmem.io/nvml/libpmemobj/) for management of data on device 
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1. REMOTELY ACCESSIBLE OBJECTS: 
    HOW MUCH LATENCY IN THE STACK? 
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Figure 4: Median aggregate bandwidth with 8 servers.

3 Preliminary evaluation

All experiments presented in this paper were conducted
on the Cooley Linux cluster operated by the Argonne
Leadership Computing Facility. Each node contains two
2.4 GHz Intel Haswell E5-2620 v3 processors (12 cores
total) and 384 GiB of RAM, and the nodes are connected
via an FDR InfiniBand network fabric. All software was
compiled with GCC 4.4.7 and O3 optimizations. The
libpmem libraries were configured to use tmpfs volumes
(i.e., conventional DRAM) as the backing store for ex-
perimental purposes in lieu of true NVM devices. Fig-
ure 3 shows the baseline asynchronous point-to-point
network bandwidth for a logarithmic range of message
sizes as measured using the mpptest benchmark [9] and
the MVAPICH2 MPI implementation, version 2.1. This
benchmark also exhibited a one-way latency of 1.3 mi-
croseconds for the smallest message sizes.

3.1 Aggregate concurrent bandwidth

We augmented the IOR benchmark [19] to use our proto-
type object storage API in order to evaluate aggregate I/O
throughput. This action necessitated two key changes
to IOR: adding an “aiori” module for our storage ser-
vice and modifying the core benchmark to allow modules
other than the POSIX module to issue fsync() operations.

Figure 4 shows the write and read bandwidth reported
by IOR as we hold the number of server nodes (and
thus the number of server daemons) fixed at 8 and vary
the number of client nodes from 2 to 16. There are 12
processes per client node in all cases. Each experiment
was repeated 30 times; box-and-whiskers plots show the
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Figure 5: Median sequential access latency with one
client and one server.

minimum, maximum, median, first quartile, and third
quartile for each set of measurements. IOR was config-
ured with the following parameters: a block size (total
data volume per process) of 6 GiB, a transfer size of 16
MiB, fsync enabled (to flush data at the conclusion of
each write phase), data validation enabled, and file-per-
process mode (which in our service equates to one object
per process).

Our initial experiments, labeled “general node alloca-
tion,” exhibited a high degree of variability. This phe-
nomenon can be attributed to suboptimal routing within
the Infiniband switch, which is a multistage switch rather
than a true crossbar [12]. We repeated the experiments
on a set of 18 nodes explicitly chosen to be co-located
on a single leaf switch in order to confirm this behavior.
These results, labeled “leaf switch node allocation,” ex-
hibit comparatively little variability, but the switch topol-
ogy only allows us to scale up to 10 client nodes in
this configuration. We also plot the projected aggregate
bandwidth for comparison; this was calculated by mul-
tiplying the maximum baseline point-to-point bandwidth
from Figure 3 by the minimum of the number of server
or client nodes. Our prototype is capable of saturating
the network bandwidth in each tested configuration.

3.2 Single-client latency

We constructed a microbenchmark that performs a series
of sequential I/O operations from a single client to a sin-
gle object to measure latency. It does not include data
persistence or flush primitives, but each I/O access in-
cludes at least one round-trip network operation, at least
one user-level thread creation and tear-down, and at least
one libpmem memory access. The median access latency
with a 95% confidence interval (calculated using the non-
parametric method recommended in [10]) out of 10,000
samples for each access size is shown in Figure 5. We
also plot the round-trip latency of a noop request on the
left side of the x axis for comparison.

We also annotate two protocol crossover points in the

FDR IB, RAM disk, 2.6 usec round-trip (MPI) latency measured separately 

5.8 usec 
NOOP 



2. TRANSIENT FILE SYSTEM VIEWS: DELTAFS 
Supporting legacy POSIX I/O in a scalable way. 

App proc App proc Deltafs 
server proc 

Deltafs 
server proc 

ls -l 

Deltafs comm world 
All procs are user-space, and run on compute nodes 

tail -F 
…… … 

Deltafs lib Deltafs lib 

/deltafs 

load snapshot(s) dump snapshot(s) 1 5

2 RPC deltafs servers 
for metadata 

3 directly access 
file data 

Deltafs fuse 

4 monitor 
progress 
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3. CONTINUUM MODEL COUPLED WITH    
    VISCOPLASTICITY MODEL  

Lulesh continuum model:  
- Lagrangian hydro dynamics  
- Unstructured mesh  

Viscoplasticity model [1]:  
- FFT based PDE solver 
- Structured sub-mesh 

R. Lebensohn et al, Modeling void growth in polycrystalline materials, 
Acta Materialia, http://dx.doi.org/10.1016/j.actamat.2013.08.004. 
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§  Future applications are exploring the 
use of multi-scale modeling  

§  As an example: Loosely coupling 
continuum scale models with more 
realistic constitutive/response 
properties  
§  e.g., Lulesh from ExMatEx 

§  Fine scale model results can be 
cached and new values interpolated 
from similar prior model calculations 



3. FINE SCALE MODEL DATABASE 
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§ Goals 
–  Minimize fine scale model executions 
–  Minimize query/response time  
–  Load balance DB distribution 

§ Approach 
–  Start with a key/value store 
–  Distributed approx. nearest-neighbor query  
–  Data distributed to co-locate values for interpolation 
–  Import/export to persistent store 

§ Status 
–  Mercury-based, centralized in-memory DB service 
–  Investigating distributed, incremental 

nearest-neighbor indexing Import/export  
DB instances 

Distributed DB 

Application domain 

Query 6D space for 
nearest neighbors    



FINAL THOUGHTS 

§ Stage is set for distributed services in HPC 
–  Richer resource management 
–  Increasing emphasis on workflows 
–  Convergence of data intensive and computational science 

§  If we’re going to “get rid of POSIX”, we need alternative(s) 

§ Real opportunity to make life easier for applications 
–  And have fun doing it! 
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