
FROM FILE SYSTEMS TO SERVICES:
CHANGING THE DATA MANAGEMENT MODEL IN HPC

Simulation, Observation, and Software:
Supporting exascale storage and I/O

ROB ROSS, PHILIP CARNS, KEVIN HARMS,
JOHN JENKINS, AND SHANE SNYDER

GARTH GIBSON, GEORGE AMVROSIADIS,
CHUCK CRANOR, AND QING ZHENG
JEROME SOUMAGNE AND JOE LEE

GALEN SHIPMAN AND BRAD SETTLEMYER

Argonne National Laboratory

Carnegie Mellon University

The HDF Group
Los Alamos National Laboratory

CHANGES IMPACTING HPC DATA AND STORAGE

MORE STORAGE/MEMORY LAYERS…

§ Why
–  BB: Economics (disk bw/iops too expensive)
–  PFS: Maturity and BB capacity too small
–  Campaign: Economics (tape bw too expensive)
–  Archive: Maturity and we really do need a “forever”

Memory

Burst Buffer

Parallel File System

Campaign Storage

Archive

Memory

Parallel File System

Archive

HPC Before 2016

HPC After 2016 1-2 PB/sec
Residence – hours
Overwritten – continuous

4-6 TB/sec
Residence – hours
Overwritten – hours
1-2 TB/sec
Residence – days/weeks
Flushed – weeks
100-300 GB/sec
Residence – months-year
Flushed – months-year

10s GB/sec (parallel tape
Residence – forever

HPSS
Parallel
Tape

Lustre
Parallel File
System

DRAM

Slide from Gary Grider (LANL).

SIMULATION WORKFLOW
APEX Workflows, LANL, NERSC, SNL,
SAND2015-10342 O, LA-UR-15-29113

Application Data

SPECIALIZATION OF DATA SERVICES

5

Application

Checkpoints

Executables
and Libraries

Intermediate
Data Products

 SPINDLE SCR

FTI
DataSpaces

MDHIM
Kelpie

Pr
ov

is
io

ni
ng

C
om

m
.

Lo
ca

l S
to

ra
ge

Fa
ul

t M
gm

t.
an

d
G

ro
up

M

em
be

rs
hi

p

Se
cu

rit
y

ADLB
Data store and pub/sub. MPI ranks MPI RAM N/A N/A

DataSpaces
Data store and pub/sub. Indep. job Dart RAM

(SSD)
Under
devel. N/A

DataWarp
Burst Buffer mgmt.

Admin./
sched.

DVS/
lnet XFS, SSD Ext.

monitor
Kernel,

lnet
FTI
Checkpoint/restart mgmt. MPI ranks MPI RAM, SSD N/A N/A

Kelpie
Dist. in-mem. key/val store MPI ranks Nessie RAM

(Object) N/A Obfusc.
IDs

SPINDLE
Exec. and library mgmt.

Launch
MON TCP RAMdisk N/A Shared

secret

Rusty

Manish

Franck

COMPOSING DATA SERVICES

OUR GOAL

§ Application-driven
– Identify and match to science needs
– Traditional data roles (e.g., checkpoint, data migration)
– New roles (e.g., equation of state/opacity databases)

§ Develop/adapt building blocks
– Communication
– Concurrency
– Local Storage
– Resilience
– Authentication/Authorization

Enable composition of data services for DOE science and systems

8

COMMUNICATION: MERCURY

Mercury is an RPC system for use in the development of high performance
system services. Development is driven by the HDF Group with Argonne
participation.

§ Portable across systems and network technologies
§ Efficient bulk data movement to complement control messages
§ Builds on lessons learned from IOFSL, Nessie, lnet, and others

https://mercury-hpc.github.io/

9

Overview

Function arguments / metadata transferred with RPC request
– Two-sided model with unexpected / expected messaging
– Message size limited to a few kilobytes

Bulk data (more later) transferred using separate and dedicated API
– One-sided model that exposes RMA semantics

Network Abstraction Layer
– Allows definition of multiple network plugins
– Currently MPI, BMI (TCP/IB/GM), SSM (TCP/MPI/IB)
– More plugins to come

Client Server

RPC proc

Network Abstraction Layer

RPC proc

Metadata (unexpected
+ expected messaging)

Bulk Data (RMA transfer)

4

CONCURRENCY: ARGOBOTS

Argobots is a lightweight threading/tasking framework.
§ Features relevant to I/O services:

–  Flexible mapping of work to hardware
resources

–  Ability to delegate service work with
fine granularity across those resources

–  Modular scheduling
§ We developed asynchronous bindings to:

–  Mercury
–  LevelDB
–  POSIX I/O

§ Working with Argobots team to identify
needed functionality (e.g., idling)

https://collab.cels.anl.gov/display/argobots/

10

S

Scheduler	 Pool	

U

ULT	

T
Tasklet	

E

Event	

ES1 Sched

U

U

E

E

E

E

U

S

S

T
T
T

T

T

Argobots Execution Model

...

ESn

THREE EXAMPLE SERVICES

1. REMOTELY ACCESSIBLE OBJECTS
§ API for remotely creating, reading, writing, destroying fixed-size objects/extents
§  libpmem (http://pmem.io/nvml/libpmemobj/) for management of data on device

12

Argobots

Mercury
CCI

IB/verbs

Argobots

Mercury
CCI

libpmem RAM,
NVM,
SSD

Client app
Object API

Target

Margo Margo

P. Carns et al. “Enabling NVM for Data-Intensive Scientific Services.” INFLOW 2016, November 2016.

1. REMOTELY ACCESSIBLE OBJECTS:
 HOW MUCH LATENCY IN THE STACK?

 0

 10

 20

 30

 40

 50

B
a
n
d
w

id
th

 (
G

iB
/s

)

Read

general node allocation median
leaf switch node allocation median

projected

 0

 10

 20

 30

 40

 50

24(2)

48(4)

72(6)

96(8)

120(10)

144(12)

168(14)

192(16)

B
a
n
d
w

id
th

 (
G

iB
/s

)

Client procs (client nodes)

Write

general node allocation median
leaf switch node allocation median

projected

Figure 4: Median aggregate bandwidth with 8 servers.

3 Preliminary evaluation

All experiments presented in this paper were conducted
on the Cooley Linux cluster operated by the Argonne
Leadership Computing Facility. Each node contains two
2.4 GHz Intel Haswell E5-2620 v3 processors (12 cores
total) and 384 GiB of RAM, and the nodes are connected
via an FDR InfiniBand network fabric. All software was
compiled with GCC 4.4.7 and O3 optimizations. The
libpmem libraries were configured to use tmpfs volumes
(i.e., conventional DRAM) as the backing store for ex-
perimental purposes in lieu of true NVM devices. Fig-
ure 3 shows the baseline asynchronous point-to-point
network bandwidth for a logarithmic range of message
sizes as measured using the mpptest benchmark [9] and
the MVAPICH2 MPI implementation, version 2.1. This
benchmark also exhibited a one-way latency of 1.3 mi-
croseconds for the smallest message sizes.

3.1 Aggregate concurrent bandwidth

We augmented the IOR benchmark [19] to use our proto-
type object storage API in order to evaluate aggregate I/O
throughput. This action necessitated two key changes
to IOR: adding an “aiori” module for our storage ser-
vice and modifying the core benchmark to allow modules
other than the POSIX module to issue fsync() operations.

Figure 4 shows the write and read bandwidth reported
by IOR as we hold the number of server nodes (and
thus the number of server daemons) fixed at 8 and vary
the number of client nodes from 2 to 16. There are 12
processes per client node in all cases. Each experiment
was repeated 30 times; box-and-whiskers plots show the

 1

 10

 100

 1000

noop
 1 2 4 8 16

 32
 64

 128
 256

 512
1 KiB

2 KiB
4 KiB

8 KiB
16 KiB

32 KiB

64 KiB

128 KiB

256 KiB

512 KiB

1 M
iB

C1 C2

L
a
te

n
cy

 (
u
s)

Access size (bytes)

Write
Read

Figure 5: Median sequential access latency with one
client and one server.

minimum, maximum, median, first quartile, and third
quartile for each set of measurements. IOR was config-
ured with the following parameters: a block size (total
data volume per process) of 6 GiB, a transfer size of 16
MiB, fsync enabled (to flush data at the conclusion of
each write phase), data validation enabled, and file-per-
process mode (which in our service equates to one object
per process).

Our initial experiments, labeled “general node alloca-
tion,” exhibited a high degree of variability. This phe-
nomenon can be attributed to suboptimal routing within
the Infiniband switch, which is a multistage switch rather
than a true crossbar [12]. We repeated the experiments
on a set of 18 nodes explicitly chosen to be co-located
on a single leaf switch in order to confirm this behavior.
These results, labeled “leaf switch node allocation,” ex-
hibit comparatively little variability, but the switch topol-
ogy only allows us to scale up to 10 client nodes in
this configuration. We also plot the projected aggregate
bandwidth for comparison; this was calculated by mul-
tiplying the maximum baseline point-to-point bandwidth
from Figure 3 by the minimum of the number of server
or client nodes. Our prototype is capable of saturating
the network bandwidth in each tested configuration.

3.2 Single-client latency

We constructed a microbenchmark that performs a series
of sequential I/O operations from a single client to a sin-
gle object to measure latency. It does not include data
persistence or flush primitives, but each I/O access in-
cludes at least one round-trip network operation, at least
one user-level thread creation and tear-down, and at least
one libpmem memory access. The median access latency
with a 95% confidence interval (calculated using the non-
parametric method recommended in [10]) out of 10,000
samples for each access size is shown in Figure 5. We
also plot the round-trip latency of a noop request on the
left side of the x axis for comparison.

We also annotate two protocol crossover points in the

FDR IB, RAM disk, 2.6 usec round-trip (MPI) latency measured separately

5.8 usec
NOOP

2. TRANSIENT FILE SYSTEM VIEWS: DELTAFS
Supporting legacy POSIX I/O in a scalable way.

App proc App proc Deltafs
server proc

Deltafs
server proc

ls -l

Deltafs comm world
All procs are user-space, and run on compute nodes

tail -F
…… …

Deltafs lib Deltafs lib

/deltafs

load snapshot(s) dump snapshot(s) 1 5

2 RPC deltafs servers
for metadata

3 directly access
file data

Deltafs fuse

4 monitor
progress

14

3. CONTINUUM MODEL COUPLED WITH
 VISCOPLASTICITY MODEL

Lulesh continuum model:
- Lagrangian hydro dynamics
- Unstructured mesh

Viscoplasticity model [1]:
- FFT based PDE solver
- Structured sub-mesh

R. Lebensohn et al, Modeling void growth in polycrystalline materials,
Acta Materialia, http://dx.doi.org/10.1016/j.actamat.2013.08.004.
 S

ho
ck

w
av

e

§  Future applications are exploring the
use of multi-scale modeling

§  As an example: Loosely coupling
continuum scale models with more
realistic constitutive/response
properties
§  e.g., Lulesh from ExMatEx

§  Fine scale model results can be
cached and new values interpolated
from similar prior model calculations

3. FINE SCALE MODEL DATABASE

16

§ Goals
–  Minimize fine scale model executions
–  Minimize query/response time
–  Load balance DB distribution

§ Approach
–  Start with a key/value store
–  Distributed approx. nearest-neighbor query
–  Data distributed to co-locate values for interpolation
–  Import/export to persistent store

§ Status
–  Mercury-based, centralized in-memory DB service
–  Investigating distributed, incremental

nearest-neighbor indexing Import/export
DB instances

Distributed DB

Application domain

Query 6D space for
nearest neighbors

FINAL THOUGHTS

§ Stage is set for distributed services in HPC
–  Richer resource management
–  Increasing emphasis on workflows
–  Convergence of data intensive and computational science

§  If we’re going to “get rid of POSIX”, we need alternative(s)

§ Real opportunity to make life easier for applications
–  And have fun doing it!

17

THIS WORK IS SUPPORTED BY THE DIRECTOR, OFFICE OF
ADVANCED SCIENTIFIC COMPUTING RESEARCH, OFFICE OF
SCIENCE, OF THE U.S. DEPARTMENT OF ENERGY UNDER
CONTRACT NO. DE-AC02-06CH11357.

