
Computational 
Significance
(and its implications for HPC)

Dimitrios S. Nikolopoulos
CCDSC
Dareizé, Oct. 5 2016



Challenge
• Transistors

ü Aggressive shrinking
ü Variation in performance, data retention times

• Two approaches
ü Mitigate it, lose performance
ü Embrace it, gain performance, introduce errors

• Best effort computing
ü Where algorithms are inherently approximate
ü Where algorithms or systems can mitigate errors



Significance-Driven Computing
• Not every line of code or variable are equal

ü Each has a unique contribution to the output
ü Estimating this contribution needs domain expertise

• Computational significance
ü Value of contribution to output

• Disciplined approximation
• Abstraction for software

ü Selectively protect execution 
q memory objects, tasks, threads

ü Control error in the compiler, runtime, language
ü Algorithm complexity control



GMRES Resilience

Gscwandtner et al., CSR&D, 2015



Significance-driven GMRES

Vassiliadis et al., IJPP, 2016
Chalios et al., CDT, 2015



Self-stabilizing CG

Aliaga et al., PARCO, 2015

• Algorithmic fault correction
ü Periodic step correcting 

state of algorithm
ü Guaranteed convergence 

with accurate healing step
ü No assumptions about 

convergence rate
• Heterogeneous architecture

ü 1-N reliable-unreliable cores
ü Designed with iso-efficiency 

metrics
ü Healing step on reliable 

core



Language & runtime support
• Disciplined approximation

ü User controls significance, error, performance
• Significance abstraction of code & data

ü Binary
ü Continuous

• Approximate alternatives of code blocks
• Examples

ü OpenMP tasks
q Significance ‘score’, task alternatives

ü Dataflow annotations
q Data criticality

ü App-specific error checks



Programming Model

Aliaga et al., PARCO, 2015



Simple example: Convolution

Aliaga et al., PARCO, 2015



Significance-driven runtime
• On-the-fly task versioning

ü Controlled approximation & error checking
• Quality-aware synchronization

ü Flimsy barriers
• Significance propagation

ü Track & tune significance of task groups & chains
• Multi-dimensional Optimization

ü Performance, Power, Energy, Quality

Vassiliadis et al., IJPP, 2016



Convolution trade-off’s

Vassiliadis et al., CF, 2015 
Vassiliadis et al., IJPP, 2016



Some HPC app results

Vassiliadis et al., CF, 2015 
Vassiliadis et al., IJPP, 2016



Lulesh error

Vassiliadis et al., CF, 2015 
Vassiliadis et al., IJPP, 2016



Variable-reliability memory
• DRAM refresh consumes significant power

ü Projected to 40%-50% in future large-memory systems
• Refresh-free memories

ü Additional errors
ü Many mitigation options (ECC, application)

• Significance-driven memory management
ü Data placement & migration
ü Memory reliability control



Variable-reliability memory



Relaxing refresh on an HPC server

ü Divide	physical	
memory	to	Reliable	
and	Variably-Reliable	
Domains

ü Allocate	kernel	to	RD
ü Allocate	critical	App	

data	to	RD
ü Allow	programmer	to	

allocate	heap	to	VRD



Application resilience

ü Applications	are	
naturally	resilient,	
just	by	accessing	
data

ü Potential	for	
significant	
performance	&	
energy	gains



Application-level resilience methods
• Data classification based on criticality

ü E.g. low/high-frequency coefficients
• Refresh by access

ü Exploit the natural refresh
ü Spread accesses to variably-reliable memory
ü Iterative algorithms (e.g. k-means)
ü Controlled anti-locality techniques (e.g. stencils)

• Access-aware scheduling
ü Postpone writes to variably-reliable memory
ü Prioritize reads to variably-reliable memory



Refresh-by-data-access

ü Accesses	during	
window	of	
vulnerability	act	as	
natural	refresh

ü Move	writes	late,	
move	reads	early

ü Scheduling	controls	
data	refresh	time

ü Anti-locality	
optimization	
problem



Refresh-by-access

ü Scheduling	parallel	
tasks	to	control	
refresh	time

ü Improved	resilience	
at	no	performance	
cost



HPC in a different context

	



Acknowledgments 
• The team

ü Charalampos Chalios
ü Kostas Tovletoglou
ü Giorgis Georgakoudis
ü George Karakonstantis
ü Hans Vandierendonck

• The support
ü EPSRC (SERT)
ü EU (SCoRPiO, UniServer)
ü Royal Society (Wolfson Award)


