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Sunway TaihuLight: an Overview

Homegrown many-core processor: SW26010

• 260 cores per chip
• 3 Tflops

The first system in the world that provides over 100 Pflops
performance with over 10 million cores

• theoretical peak 125 Pflops, 2.5 times improvement over before
• LINPACK performance 93 Pflops, 3 times improvement over before

High efficiency of the overall system

• 6.05 Gflops/Watt, 3 to 6 times improvement over Tianhe-2, Titan, and K

Three full-scale applications elected as 2016 Gordon Bell finalists



SW26010: General Architecture
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Earth System Modeling and HPC:
the Current Computational Challenges
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Increase in Spatial and Temporal Resolution to 
be Cloud-Resolving and Eddy-Resolving



Simulation of more and more detailed physics processes

Simulation of Cloud Droplet 
Formation



Online Ensembles

Simulation of Cloud Droplet 
Formation

TH240_CAM

TH240_BCC

TH240_N_111

TH240_ATMP3





The Gap between Software and Hardware
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China’s supercomputers
• heterogeneous systems

with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or

thousands of cores

100T

• millions lines of legacy
code

• poor scalability
• written for multi-core,

rather than many-core

100P



Our Research Goals
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China’s supercomputers
• heterogeneous systems

with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or

thousands of cores

100T~1P

• highly scalable framework that can efficiently utilize
many-core processors

• automated tools to deal with the legacy code
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Example: Highly-Scalable Atmospheric Simulation Framework
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The “Best” Computational Solution

Architecture

Algorithm
Application

cloud resolving

explicit, implicit, or 
semi-implicit 

method

cube-sphere grid or 
other grid

Sunway, GPU, MIC, 
FPGA

C/C++, Fortran, MPI, 
CUDA, Java, … 

Wang, Lanning
Beijing Normal University
climate modeling

Yang, Chao
Institute of Software, CAS
computational mathematics

Xue, Wei
Tsinghua University
computer science

Fu, Haohuan
Tsinghua University
geo-computing



[2013 PPoPP]: 
2D SWE model
0.8m CPU-GPU cores
0.8 Pflops on Tianhe-1A

[2013 FPL]:
2D SWE on one FPGA chip
a further 6~10x improvement
on performance and power
efficiency

[2014 IPDPS]: 
2D SWE model
1.6m CPU-MIC cores
1.63 Pflops on Tianhe-2

[2014 TC]: 
3D Nonhyd model
1.2m CPU-MIC cores
1.74 Pflops on Tianhe-2

[2016 SC]:
3D Nonhyd model
10.6m Sunway cores
8 Pflops on TiahuLight



Our Research Goals
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China’s supercomputers
• heterogeneous systems

with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or

thousands of cores

100T~1P

• highly scalable framework that can efficiently utilize
many-core accelerators

• automated tools to deal with the legacy code



Earth System Modeling and HPC:
Our Efforts on Refactoring CAM



Tsinghua + BNU

F算例（大气+陆面） G算例（海洋+海冰） B算例（全耦合）

• Four component models, millions lines of code

• Large-scale run on
Sunway TaihuLight

• 24,000 MPI processes
• Over one million cores
• 10-20x speedup for
kernels

• 2-3x speedup for the
entire model

THE CESM PROJECT



Major Challenges

a high complexity in application, and a heavy
legacy in the code base (millions lines of code)

an extremely complicated MPMD program
with no hotspots (or hundreds of hotspots)

misfit between the in-place design philosophy
and the new architecture

lack of people with interdisciplinary
knowledge and experience



CAM 
initial Dyn_run Phy_run

1
Phy_run

2
Pass state 
variables

Pass state 
variables and  

tracers

Pass tracers (u, v) to 
dynamics

Workflow of CAM

After initialization, the physics and the dynamics are 
executed in turn during each simulation time-step.



Porting of CAM: General Idea

n Entire code base: 530, 000 lines of code

n Components with regular code patterns
q e.g. the CAM-SE dynamic core
q manual OpenACC parallelization and optimization on code

and data structures

n Components with irregular and complex code
patterns
q e.g. the CAM physics schemes
q loop transformation tool to expose the right level of

parallelism and code size
q memory footprint analysis and reduction tool



Euler_step:

do ie = nets, nete
compute Q min/max values for lim8
compute Biharmonic mixing term f

end do

do ie = nets, nete
2D advection step
data packing

end do

Bonundary exchange

Data extracting

do ie = nets, nete
do k = 1, nlev

dp(k) = func_1()
do q = 1, qsize

Qtens(k,q,ie) = func_2(dp(k))
end do

end do
end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

dp0 = func_3()
dpdiss = func_4()
do q = 1, qsize

Qtens(k,q,ie) = 
func_5(dp0, dpdiss)

end do
end do

end do
do ie = nets, nete

do k = 1, nlev
dp(k) = func_5()
Vstar(k) = func_6()

end do

do q = 1, qsize
do k = 1, nlev

Qtens(k,q,ie) = 
func_7(dp(k), Vstar(k))

end do     

do k = 1, nlev
dp_star(k) = func_8(dp(k))

end do         

do k = 1, nlev
Qtens(k,q,ie) = 

func_9(dp_star(k))
end do

end do
Data packing

end do

1

2

Refactoring the Euler Step



do ie = nets, nete
do k = 1, nlev

dp(k) = func_1()
do q = 1, qsize

Qtens(k,q,ie) = 
func_2(dp(k))

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

dp0 = func_3()
dpdiss = 

func_4()
do q = 1, qsize

Qtens(k,q,ie) 
= func_5(dp0, dpdiss)

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

dp(k) = func_5()
Vstar(k) = func_6()

end do

do q = 1, qsize
do k = 1, nlev

Qtens(k,q,ie) = 
func_7(dp(k), Vstar(k))

end do     

do k = 1, nlev
dp_star(k) = 

func_8(dp(k))
end do         

do k = 1, nlev
Qtens(k,q,ie) 

= 

func_9(dp_star(k))
end do

end do
Data packing

end do

optimized:

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) = 
func_2(func_1())

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) =

func_5(func_3(),func_4())
end do

end do
end do

do ie = nets, nete    
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) = 

func_7(func_5(),func_6())
end do     

do k = 1, nlev
Qtens(k,q,ie) = 

func_9(func_8(func_5())) 
end do

end do
Data packing

end do
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Refactoring the Euler Step



do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

end do

do ie = nets, nete 
do k = 1, nlev   

do q = 1, qsize
Qtens(k,q,ie) = …        

end do     
end do

end do
Data packing

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) = …        

end do     
end do

end do
Data packing

!$ACC PARALLEL LOOP
do ie_q = 1, qsize*(nete-
nets)

do k = 1, nlev
q = func(ie_q)
ie = func(ie_q)
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

!$ACC PARALLEL LOOP
do ie_q = 1, qsize*(nete-
nets)    

do k = 1, nlev      
q = func(ie_q)
ie = func(ie_q)
Qtens(k,q,ie) = …        

end do     
end do
!$ACC PARALLEL LOOP
Data packing

optimized:

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) = 
func_2(func_1())

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) =

func_5(func_3(),func_4())
end do

end do
end do

do ie = nets, nete    
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) = 

func_7(func_5(),func_6())
end do     

do k = 1, nlev
Qtens(k,q,ie) = 

func_9(func_8(func_5())) 
end do

end do
Data packing

end do
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Refactoring the Euler Step



column (col) …
…

chunk

……

pver

Refactoring of the Physics Schemes



A Loop Transformation Tool: Typical Scenario
Do i = 1, m
    call F(A, B(i), C(i,:))
End do

Subroutine F(A, B, C)
    !parameter declaration
    real :: A, B
    real, dimension(:) :: C 
  
    !local variable declaration
    real :: X, Y
    
    !execution    
    X = 1
    Y = 1
    call lower1(X, C)
    call lower2(Y, C)  
    B = X+Y
    C(:) = C(:) + X*Y  
End

Subroutine F(A, B, C, m)
    !parameter declaration
    real :: A
    real, dimension(:) :: B
    real, dimension(:,:) :: C
    integer :: m 
  
    !local variable declaration
    real, dimension(m) :: X, Y
    
    !execution
    do i = 1, m    
        X(i) = 1
        Y(i) = 2
        call lower1(X(i), C(i, :))
    end do
    do i = 1, m 
        call lower2(Y(i), C(i, :))
        B(i) = X(i)+Y(i)
        C(i, :) = X(i)*Y(i)
    end do  
End

call F(A, B(:), C(:,:), m)



do begin_chunk to end_chunk
tphysbc()
{
convect_deep_tend(6.47%)
convect_shallow_tend(15.57%)
macrop_driver_tend(8.38%)
microp_aero_run(4.29%)
microp_driver_tend(7.13%)
aerosol_wet_intr(4.29%)
convect_deep_tend_2(0.51%)
radiation_tend(54.07%)

}
enddo

tphysbc()
{
do begin_chunk to end_chunk
convect_deep_tend(6.47%)
convect_shallow_tend(15.57%)
macrop_driver_tend(8.38%)
microp_aero_run(4.29%)
microp_driver_tend(7.13%)
aerosol_wet_intr(4.29%)
convect_deep_tend_2(0.51%)
radiation_tend(54.07%)

enddo
}

tphysbc()
{
do begin_chunk to end_chunk
convect_deep_tend(6.47%)

enddo
……
do begin_chunk to end_chunk

microp_driver_tend(7.13%)
enddo
……
do begin_chunk to end_chunk

radiation_tend(54.07%)
enddo

}

do begin_chunk to end_chunk
convect_deep_tend(6.47%)
{
zm_conv_tend(6.47%)
{
zm_convr(2.03%)
zm_conv_evap()
montran()
convtranc(0.06%)

}
}

enddo

convect_deep_tend(6.47%)
{
zm_conv_tend(6.47%)
{

do begin_chunk to end_chunk
zm_convr(2.03%)

enddo
do begin_chunk to end_chunk
zm_conv_evap()

enddo
do begin_chunk to end_chunk
montran()

enddo
do begin_chunk to end_chunk

convtranc(0.06%)
enddo

}
}

1 2
3
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Loop Transformation for Phys_run1



Variable Storage Space Analysis and 
Reduction Tool

• Estimate the storage requirements of 
the variable and arrays

• Identify the lifespan of the variables 
and arrays

• Determine whether the variables and 
arrays of each CPE thread can fit into 
the 64KB SPM.

Basic functions

• The original Fortran function accesses 7 
intermediate arrays (A to G) during the 
computation process. By analyzing the 
lifespan of these 7 arrays, which are 
annotated by the lines above these arrays, 
we can determine that 4 arrays would provide 
sufficient space to store these 7 arrays in 
different stages of the execution process.

Example Explanation



Speedup of Major Kernels in CAM-SE

7x to 22x speedup for computing intensive kernels; 
2x to 7x speedup for memory-bound kernels



Speedup of Major Kernels in CAM-PHY
The microp_mg1_0 kernel demonstrates a 
significant speedup of 14x, as the 
intermediate variables and arrays provide 
a nice fit to the SPM of the CPE clusters 
after the automated optimizations.



CAM model: scalability and speedup
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• million core scale, 2.81 SYPD
• many-core refactoring for the
entire model

• competitive simulation speed to
the same model on NCAR
Yellowstone



Future Work

Further improvement from 2.81
SYPD to 5~8 SYPD

dynamic core: by
another factor of 2

computation-
communication

overlapping

data sharing among
CPEs by register
communication

physics schemes: by
another factor of 2~4

further improvement
on the loop

transformation and
variable storage

space reduction tool

20x speedup for
most physics

schemes



Sunway TaihuLight

太湖之光



Thank you.

haohuan@tsinghua.edu.cn


