
Refactoring and Optimizing the Community
Atmosphere Model (CAM) on the Sunway
TaihuLight Supercomputer

Haohuan Fu
haohuan@tsinghua.edu.cn
CESS, Tsinghua University

National Supercomputing Center in Wuxi

Oct 5th 2016 @ CCDSC

Sunway TaihuLight: an Overview

Homegrown many-core processor: SW26010

• 260 cores per chip
• 3 Tflops

The first system in the world that provides over 100 Pflops
performance with over 10 million cores

• theoretical peak 125 Pflops, 2.5 times improvement over before
• LINPACK performance 93 Pflops, 3 times improvement over before

High efficiency of the overall system

• 6.05 Gflops/Watt, 3 to 6 times improvement over Tianhe-2, Titan, and K

Three full-scale applications elected as 2016 Gordon Bell finalists

SW26010: General Architecture

Core Group 2

Data Transfer
Network

MPE 8*8 CPE
Mesh

PPU

iMC

Memory

Core Group 0

MPE8*8 CPE
Mesh

iMC

PPU

Memory

Core Group 1

MPE8*8 CPE
Mesh

PPU

Core Group 3 iMC

Memory

MPE
8*8 CPE

Mesh

PPU

iMC

Memory

NoC

Computing
Core

LDM

Column
Communication Bus

Control
Network

Registers

Row
Communication

Bus

Transfer Agent (TA)

Memory Level

LDM Level

Register Level

Computing Level

8*8 CPE Mesh

Earth System Modeling and HPC:
the Current Computational Challenges

More and more component models

marine
biology

dynamic ice

ocean
model

ice model

coupler

land model

hydrological
process

land
biology

atmospheric
chemistry

atmosphere
model

space
weather

solid earth

ocean-ice
boundary

land-atmosphere
boundary

ice-land
boundary

ocean-
atmosphere

boundary

Increase in Spatial and Temporal Resolution to
be Cloud-Resolving and Eddy-Resolving

Simulation of more and more detailed physics processes

Simulation of Cloud Droplet
Formation

Online Ensembles

Simulation of Cloud Droplet
Formation

TH240_CAM

TH240_BCC

TH240_N_111

TH240_ATMP3

The Gap between Software and Hardware

10

China’s supercomputers
• heterogeneous systems

with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or

thousands of cores

100T

• millions lines of legacy
code

• poor scalability
• written for multi-core,

rather than many-core

100P

Our Research Goals

11

China’s supercomputers
• heterogeneous systems

with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or

thousands of cores

100T~1P

• highly scalable framework that can efficiently utilize
many-core processors

• automated tools to deal with the legacy code

Our Research Goals

12

China’s supercomputers
• heterogeneous systems

with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or

thousands of cores

100T~1P

• highly scalable framework that can efficiently utilize
many-core processors

• automated tools to deal with the legacy code

Example: Highly-Scalable Atmospheric Simulation Framework

13

The “Best” Computational Solution

Architecture

Algorithm
Application

cloud resolving

explicit, implicit, or
semi-implicit

method

cube-sphere grid or
other grid

Sunway, GPU, MIC,
FPGA

C/C++, Fortran, MPI,
CUDA, Java, …

Wang, Lanning
Beijing Normal University
climate modeling

Yang, Chao
Institute of Software, CAS
computational mathematics

Xue, Wei
Tsinghua University
computer science

Fu, Haohuan
Tsinghua University
geo-computing

[2013 PPoPP]:
2D SWE model
0.8m CPU-GPU cores
0.8 Pflops on Tianhe-1A

[2013 FPL]:
2D SWE on one FPGA chip
a further 6~10x improvement
on performance and power
efficiency

[2014 IPDPS]:
2D SWE model
1.6m CPU-MIC cores
1.63 Pflops on Tianhe-2

[2014 TC]:
3D Nonhyd model
1.2m CPU-MIC cores
1.74 Pflops on Tianhe-2

[2016 SC]:
3D Nonhyd model
10.6m Sunway cores
8 Pflops on TiahuLight

Our Research Goals

15

China’s supercomputers
• heterogeneous systems

with many-core chips
• millions of cores

China’s models
• pure CPU code
• scaling to hundreds or

thousands of cores

100T~1P

• highly scalable framework that can efficiently utilize
many-core accelerators

• automated tools to deal with the legacy code

Earth System Modeling and HPC:
Our Efforts on Refactoring CAM

Tsinghua + BNU

F算例（大气+陆面） G算例（海洋+海冰） B算例（全耦合）

• Four component models, millions lines of code

• Large-scale run on
Sunway TaihuLight

• 24,000 MPI processes
• Over one million cores
• 10-20x speedup for
kernels

• 2-3x speedup for the
entire model

THE CESM PROJECT

Major Challenges

a high complexity in application, and a heavy
legacy in the code base (millions lines of code)

an extremely complicated MPMD program
with no hotspots (or hundreds of hotspots)

misfit between the in-place design philosophy
and the new architecture

lack of people with interdisciplinary
knowledge and experience

CAM
initial Dyn_run Phy_run

1
Phy_run

2
Pass state
variables

Pass state
variables and

tracers

Pass tracers (u, v) to
dynamics

Workflow of CAM

After initialization, the physics and the dynamics are
executed in turn during each simulation time-step.

Porting of CAM: General Idea

n Entire code base: 530, 000 lines of code

n Components with regular code patterns
q e.g. the CAM-SE dynamic core
q manual OpenACC parallelization and optimization on code

and data structures

n Components with irregular and complex code
patterns
q e.g. the CAM physics schemes
q loop transformation tool to expose the right level of

parallelism and code size
q memory footprint analysis and reduction tool

Euler_step:

do ie = nets, nete
compute Q min/max values for lim8
compute Biharmonic mixing term f

end do

do ie = nets, nete
2D advection step
data packing

end do

Bonundary exchange

Data extracting

do ie = nets, nete
do k = 1, nlev

dp(k) = func_1()
do q = 1, qsize

Qtens(k,q,ie) = func_2(dp(k))
end do

end do
end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

dp0 = func_3()
dpdiss = func_4()
do q = 1, qsize

Qtens(k,q,ie) =
func_5(dp0, dpdiss)

end do
end do

end do
do ie = nets, nete

do k = 1, nlev
dp(k) = func_5()
Vstar(k) = func_6()

end do

do q = 1, qsize
do k = 1, nlev

Qtens(k,q,ie) =
func_7(dp(k), Vstar(k))

end do

do k = 1, nlev
dp_star(k) = func_8(dp(k))

end do

do k = 1, nlev
Qtens(k,q,ie) =

func_9(dp_star(k))
end do

end do
Data packing

end do

1

2

Refactoring the Euler Step

do ie = nets, nete
do k = 1, nlev

dp(k) = func_1()
do q = 1, qsize

Qtens(k,q,ie) =
func_2(dp(k))

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

dp0 = func_3()
dpdiss =

func_4()
do q = 1, qsize

Qtens(k,q,ie)
= func_5(dp0, dpdiss)

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

dp(k) = func_5()
Vstar(k) = func_6()

end do

do q = 1, qsize
do k = 1, nlev

Qtens(k,q,ie) =
func_7(dp(k), Vstar(k))

end do

do k = 1, nlev
dp_star(k) =

func_8(dp(k))
end do

do k = 1, nlev
Qtens(k,q,ie)

=

func_9(dp_star(k))
end do

end do
Data packing

end do

optimized:

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) =
func_2(func_1())

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) =

func_5(func_3(),func_4())
end do

end do
end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) =

func_7(func_5(),func_6())
end do

do k = 1, nlev
Qtens(k,q,ie) =

func_9(func_8(func_5()))
end do

end do
Data packing

end do

2
3

Refactoring the Euler Step

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) = …

end do
end do

end do
Data packing

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) = …

end do
end do

end do
Data packing

!$ACC PARALLEL LOOP
do ie_q = 1, qsize*(nete-
nets)

do k = 1, nlev
q = func(ie_q)
ie = func(ie_q)
qmin(k,q,ie) = …
qmax(k,q,ie) = …
Qtens(k,q,ie) = …

end do
end do

!$ACC PARALLEL LOOP
do ie_q = 1, qsize*(nete-
nets)

do k = 1, nlev
q = func(ie_q)
ie = func(ie_q)
Qtens(k,q,ie) = …

end do
end do
!$ACC PARALLEL LOOP
Data packing

optimized:

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) =
func_2(func_1())

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
qmin(k,q,ie) = …
qmax(k,q,ie) = …

end do
end do

end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
….

end do
end do

end do

do ie = nets, nete
do k = 1, nlev

do q = 1, qsize
Qtens(k,q,ie) =

func_5(func_3(),func_4())
end do

end do
end do

do ie = nets, nete
do q = 1, qsize

do k = 1, nlev
Qtens(k,q,ie) =

func_7(func_5(),func_6())
end do

do k = 1, nlev
Qtens(k,q,ie) =

func_9(func_8(func_5()))
end do

end do
Data packing

end do

3

4

5

6

Refactoring the Euler Step

column (col) …
…

chunk

……

pver

Refactoring of the Physics Schemes

A Loop Transformation Tool: Typical Scenario
Do i = 1, m
 call F(A, B(i), C(i,:))
End do

Subroutine F(A, B, C)
 !parameter declaration
 real :: A, B
 real, dimension(:) :: C

 !local variable declaration
 real :: X, Y

 !execution
 X = 1
 Y = 1
 call lower1(X, C)
 call lower2(Y, C)
 B = X+Y
 C(:) = C(:) + X*Y
End

Subroutine F(A, B, C, m)
 !parameter declaration
 real :: A
 real, dimension(:) :: B
 real, dimension(:,:) :: C
 integer :: m

 !local variable declaration
 real, dimension(m) :: X, Y

 !execution
 do i = 1, m
 X(i) = 1
 Y(i) = 2
 call lower1(X(i), C(i, :))
 end do
 do i = 1, m
 call lower2(Y(i), C(i, :))
 B(i) = X(i)+Y(i)
 C(i, :) = X(i)*Y(i)
 end do
End

call F(A, B(:), C(:,:), m)

do begin_chunk to end_chunk
tphysbc()
{
convect_deep_tend(6.47%)
convect_shallow_tend(15.57%)
macrop_driver_tend(8.38%)
microp_aero_run(4.29%)
microp_driver_tend(7.13%)
aerosol_wet_intr(4.29%)
convect_deep_tend_2(0.51%)
radiation_tend(54.07%)

}
enddo

tphysbc()
{
do begin_chunk to end_chunk
convect_deep_tend(6.47%)
convect_shallow_tend(15.57%)
macrop_driver_tend(8.38%)
microp_aero_run(4.29%)
microp_driver_tend(7.13%)
aerosol_wet_intr(4.29%)
convect_deep_tend_2(0.51%)
radiation_tend(54.07%)

enddo
}

tphysbc()
{
do begin_chunk to end_chunk
convect_deep_tend(6.47%)

enddo
……
do begin_chunk to end_chunk

microp_driver_tend(7.13%)
enddo
……
do begin_chunk to end_chunk

radiation_tend(54.07%)
enddo

}

do begin_chunk to end_chunk
convect_deep_tend(6.47%)
{
zm_conv_tend(6.47%)
{
zm_convr(2.03%)
zm_conv_evap()
montran()
convtranc(0.06%)

}
}

enddo

convect_deep_tend(6.47%)
{
zm_conv_tend(6.47%)
{

do begin_chunk to end_chunk
zm_convr(2.03%)

enddo
do begin_chunk to end_chunk
zm_conv_evap()

enddo
do begin_chunk to end_chunk
montran()

enddo
do begin_chunk to end_chunk

convtranc(0.06%)
enddo

}
}

1 2
3

4

5

Loop Transformation for Phys_run1

Variable Storage Space Analysis and
Reduction Tool

• Estimate the storage requirements of
the variable and arrays

• Identify the lifespan of the variables
and arrays

• Determine whether the variables and
arrays of each CPE thread can fit into
the 64KB SPM.

Basic functions

• The original Fortran function accesses 7
intermediate arrays (A to G) during the
computation process. By analyzing the
lifespan of these 7 arrays, which are
annotated by the lines above these arrays,
we can determine that 4 arrays would provide
sufficient space to store these 7 arrays in
different stages of the execution process.

Example Explanation

Speedup of Major Kernels in CAM-SE

7x to 22x speedup for computing intensive kernels;
2x to 7x speedup for memory-bound kernels

Speedup of Major Kernels in CAM-PHY
The microp_mg1_0 kernel demonstrates a
significant speedup of 14x, as the
intermediate variables and arrays provide
a nice fit to the SPM of the CPE clusters
after the automated optimizations.

CAM model: scalability and speedup

0.04
0.15

0.24 0.25

0.6

0.78
0.87

1.54

1.2

1.62
1.75

2.81

0

0.5

1

1.5

2

2.5

3

1024 2400 4096 5120 7350 9600 12000 24000

Si
m
ul
at
io
n	
Sp
ee
d	
(D
es
cr
ib
ed
	in
	M

od
el
	Ye

ar
	P
er
	D
ay
(M

YP
D)
)

Number	of	CGs	(each	CG	includes	1	MPE	and	64	CPEs)

MPE	only MPE+CPE	for	dynamic	core MPE+CPE	for	both	dynamic	core	and	physics	schemes

• million core scale, 2.81 SYPD
• many-core refactoring for the
entire model

• competitive simulation speed to
the same model on NCAR
Yellowstone

Future Work

Further improvement from 2.81
SYPD to 5~8 SYPD

dynamic core: by
another factor of 2

computation-
communication

overlapping

data sharing among
CPEs by register
communication

physics schemes: by
another factor of 2~4

further improvement
on the loop

transformation and
variable storage

space reduction tool

20x speedup for
most physics

schemes

Sunway TaihuLight

太湖之光

Thank you.

haohuan@tsinghua.edu.cn

