
Finding and Optimizing Phases

in Parallel Programs

Jeffrey K. Hollingsworth <hollings@cs.umd.edu>

Ray Chen <rchen@cs.umd.edu>



Phases of UMD CS

Computer & Space Sciences: 1962-1987 AV Williams: 1987-2018 Iribe Center: 2018-

� CS@UMD: Future is Exciting

� Largest Major on campus (over 2,800 undergrads, plus 400+ Computer Engineering)

� New Building in 2018

� Hiring O(10) New Faculty in couple of years

� New Big Data Masters & Certificate Programs



Motivation

3

• HPC programs often contain “phases”

– Dynamic execution context 

– Each have distinct performance traits

• Particularly problematic if inside a time-step loop

– Short phases confound tools

– Difficult to analyze a rapidly changing landscape

– Worse if phases are nested



LULESH2 MPI Call Trace

4

while (locDom->time() < locDom->stoptime())

{

TimeIncrement(*locDom);

LagrangeLeapFrog(*locDom);

} 



Automatic Phase Identification

5

• My Failed Prior Attempts

– IPS-2

– Paradyn’s Performance Consultant

– Solution

• Automatic identification is hard, rely on experts for annotations

• Create virtual phases by stitching short ones together

(c. 1990)

(c. 1995)



while (locDom->time() < locDom->stoptime())

{

TimeIncrement(*locDom);

LagrangeLeapFrog(*locDom);

} 

while (locDom->time() < locDom->stoptime())

{

cali::Annotation region1(“tuner.communication”).begin();

TimeIncrement(*locDom);

region1.end();

cali::Annotation region2(“tuner.computation”).begin();

LagrangeLeapFrog(*locDom);

region2.end()

}

Guided Phase Identification

6



Performance Landscape

7

Actual

Timeline

Contextual

Timeline

Contextual

Timeline

2.5KB

Per Iteration

3,700KB

Per Iteration



Cross-Domain Analysis

8

• Utilize experts during development

– Library writers specify tuning variables

– Application writers specify code regions

– Phase dictates different performance context

• Even though the same function is being called

My application 

has three phases

I know what 

variables affect 

MPI 

performance

I know what 

variables affect 

BLAS 

performance

I know what 

variables affect 

FFTW 

performance



Integration Work

9

• Special annotation types identify:

– Tunable variables

– Code regions that should enable tuning

• New Caliper tuning service

– Listens for and reacts to special annotations

– Calls Active Harmony to perform search



3D Fast Fourier Transform

10

• FFT in 3 dimensions

– Composed of three 1 dimensional FFT’s

– Data is redistributed among processes between FFT’s

FFTz FFTy FFTxA2A1 A2A2

0 2

1 3

0

2

1

30

1 3

2

(blocking) (blocking)



Computation/Communication Overlap

11

0

1 3

0 2

1 3

0

2

1

32 0

1 3

2

FFTz FFTy1 FFTxA2A1
(non-blocking)

A2A2
(non-blocking)

FFTy2

FFTz FFTy FFTxA2A1
(blocking)

A2A2
(blocking)

0 2

1 3

0

2

1

30

1 3

2



Auto-tuning Opportunities

12

T1

0 2

1 3

FFTz & Pack

0

1 3

2

Unpack & FFTy1

Px1

Py1

x

y
T1

Ny / p2
Ux1

Uz1

x

z
T1

Nz / p2
T1

T1
T2

0

1 3

0 2

1 3

0

2

1

32 0

1 3

2

FFTz FFTy1 FFTxA2A1 A2A2
(non-blocking) (non-blocking)

FFTy2



Online Auto-Tuning

13



Phase Aware Tuning

14

• Improvements over offline (non-phase) tuning

– Reduce search dimensions from 24 to 16

– 40% fewer search steps needed to converge

– Equivalent performance after convergence

• Eliminates need for training runs

– Don’t allocate thousands of nodes to train



Offline Auto-Tuning Cost

15



Conclusion

16

• Phases are key for HPC analysis tools

– Rely on human guidance through annotations

– Virtualizing repeated phases helps many types of tools

• Annotations unite cross-domain expertise

– Libraries annotate variables to analyze

– Application annotate regions to analyze

• Currently analyzing other HPC codes


