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Phases of UMD CS

Computer & Space Sciences: 1962-1987 AV Williams: 1987-2018 Iribe Center: 2018-

� CS@UMD: Future is Exciting

� Largest Major on campus (over 2,800 undergrads, plus 400+ Computer Engineering)

� New Building in 2018

� Hiring O(10) New Faculty in couple of years

� New Big Data Masters & Certificate Programs



Motivation
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• HPC programs often contain “phases”

– Dynamic execution context 

– Each have distinct performance traits

• Particularly problematic if inside a time-step loop

– Short phases confound tools

– Difficult to analyze a rapidly changing landscape

– Worse if phases are nested



LULESH2 MPI Call Trace
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while (locDom->time() < locDom->stoptime())

{

TimeIncrement(*locDom);

LagrangeLeapFrog(*locDom);

} 



Automatic Phase Identification
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• My Failed Prior Attempts

– IPS-2

– Paradyn’s Performance Consultant

– Solution

• Automatic identification is hard, rely on experts for annotations

• Create virtual phases by stitching short ones together

(c. 1990)

(c. 1995)



while (locDom->time() < locDom->stoptime())

{

TimeIncrement(*locDom);

LagrangeLeapFrog(*locDom);

} 

while (locDom->time() < locDom->stoptime())

{

cali::Annotation region1(“tuner.communication”).begin();

TimeIncrement(*locDom);

region1.end();

cali::Annotation region2(“tuner.computation”).begin();

LagrangeLeapFrog(*locDom);

region2.end()

}

Guided Phase Identification
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Performance Landscape
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Cross-Domain Analysis
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• Utilize experts during development

– Library writers specify tuning variables

– Application writers specify code regions

– Phase dictates different performance context

• Even though the same function is being called

My application 

has three phases

I know what 

variables affect 

MPI 

performance

I know what 

variables affect 

BLAS 

performance

I know what 

variables affect 

FFTW 

performance



Integration Work
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• Special annotation types identify:

– Tunable variables

– Code regions that should enable tuning

• New Caliper tuning service

– Listens for and reacts to special annotations

– Calls Active Harmony to perform search



3D Fast Fourier Transform
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• FFT in 3 dimensions

– Composed of three 1 dimensional FFT’s

– Data is redistributed among processes between FFT’s
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Computation/Communication Overlap
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Auto-tuning Opportunities
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Online Auto-Tuning
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Phase Aware Tuning
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• Improvements over offline (non-phase) tuning

– Reduce search dimensions from 24 to 16

– 40% fewer search steps needed to converge

– Equivalent performance after convergence

• Eliminates need for training runs

– Don’t allocate thousands of nodes to train



Offline Auto-Tuning Cost
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Conclusion
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• Phases are key for HPC analysis tools

– Rely on human guidance through annotations

– Virtualizing repeated phases helps many types of tools

• Annotations unite cross-domain expertise

– Libraries annotate variables to analyze

– Application annotate regions to analyze

• Currently analyzing other HPC codes


