

Finding and Optimizing Phases in Parallel Programs

Jeffrey K. Hollingsworth <hollings@cs.umd.edu>
Ray Chen <rchen@cs.umd.edu>

Phases of UMD CS

Computer & Space Sciences: 1962-1987

AV Williams: 1987-2018

Iribe Center: 2018-

CS@UMD: Future is Exciting

- Largest Major on campus (over 2,800 undergrads, plus 400+ Computer Engineering)
- New Building in 2018
- Hiring O(10) New Faculty in couple of years
- New Big Data Masters & Certificate Programs

Motivation

- HPC programs often contain "phases"
 - Dynamic execution context
 - Each have distinct performance traits
- Particularly problematic if inside a time-step loop
 - Short phases confound tools
 - Difficult to analyze a rapidly changing landscape
 - Worse if phases are nested

LULESH2 MPI Call Trace

Automatic Phase Identification

My Failed Prior Attempts

Guided Phase Identification

```
while (locDom->time() < locDom->stoptime())
{
    cali::Annotation region1("tuner.communication").begin();
    TimeIncrement(*locDom);
    region1.end();

    cali::Annotation region2("tuner.computation").begin();
    LagrangeLeapFrog(*locDom);
    region2.end()
}
```


Performance Landscape

Cross-Domain Analysis

- Utilize experts during development
 - Library writers specify tuning variables
 - Application writers specify code regions

• Even though the same function is being called

Integration Work

- Special annotation types identify:
 - Tunable variables
 - Code regions that should enable tuning
- New Caliper tuning service
 - Listens for and reacts to special annotations
 - Calls Active Harmony to perform search

3D Fast Fourier Transform

- FFT in 3 dimensions
 - Composed of three 1 dimensional FFT's
 - Data is redistributed among processes between FFT's

Computation/Communication Overlap

Auto-tuning Opportunities

Online Auto-Tuning

Phase Aware Tuning

- Improvements over offline (non-phase) tuning
 - Reduce search dimensions from 24 to 16
 - 40% fewer search steps needed to converge
 - Equivalent performance after convergence
- Eliminates need for training runs
 - Don't allocate thousands of nodes to train

Offline Auto-Tuning Cost

Conclusion

- Phases are key for HPC analysis tools
 - Rely on human guidance through annotations
 - Virtualizing repeated phases helps many types of tools
- Annotations unite cross-domain expertise
 - Libraries annotate variables to analyze
 - Application annotate regions to analyze
- Currently analyzing other HPC codes

