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Motivation - the communication wall 
Time to move data >> time per flop 
•  Gap steadily and exponentially growing over time  

Annual improvements  
•  Time / flop                          59% (1995-2004) 34% (2006-2016) 
•  Interprocessor bandwidth  26% 
•  Interprocessor latency       15% 
•  DRAM latency                   5.5% 

DRAM latency:                                                                  
•  DDR2 (2007) ~ 120 ns                                                          1x 
•  DDR4 (2014) ~ 45 ns                                                         2.6x in 7 years 
•  Stacked memory ~ similar to DDR4 

Time/flop  
•  2006 Intel Yonah ~ 2GHz x 2 cores (32 GFlops/chip)            1x 
•  2015 Intel Haswell ~2.3GHz x 16 cores (588 GFlops/chip)  18x in 9 years 

Source: J. Shalf, LBNL 
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2D Parallel algorithms and communication bounds 

Algorithm Minimizing 
 #words (not #messages) 

Minimizing  
#words and #messages 

Cholesky ScaLAPACK  ScaLAPACK 

LU ScaLAPACK 
uses partial pivoting 

 [LG, Demmel, Xiang, 08] 
[Khabou, Demmel, LG, Gu, 12] 

uses tournament pivoting 

QR ScaLAPACK  [Demmel, LG, Hoemmen, Langou, 08]  
uses different representation of Q 

RRQR  ScaLAPACK [Demmel, LG, Gu, Xiang 13] 
uses tournament pivoting, 3x flops  

•   Only several references shown, block algorithms (ScaLAPACK) and  
   communication avoiding algorithms 
•   CA algorithms exist also for SVD and eigenvalue computation 

•   Memory per processor = n2 / P, the lower bounds on communication are 
    #words_moved ≥ Ω ( n2 / P1/2 ),    #messages ≥ Ω ( P1/2 )  
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Parallel write avoiding algorithms 
Need to avoid writing suggested by emerging memory technologies, as NVMs: 
•    Writes more expensive (in time and energy) than reads 
•    Writes are less reliable than reads 

Some examples: 
•  Phase Change Memory: Reads 25 us latency 
      Writes: 15x slower than reads (latency and bandwidth) 
                   consume 10x more energy 
•  Conductive Bridging RAM - CBRAM 
      Writes: use more energy (1pJ) than reads (50 fJ)      
•  Gap improving by new technologies such as XPoint and other FLASH 

alternatives, but not eliminated 
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Parallel write-avoiding algorithms 

•  Matrix A does not fit in DRAM (of size M), need to use NVM (of size n2 / P) 

•  Two lower bounds on volume of communication 
•  Interprocessor communication:     Ω (n2  / P1/2)  
•  Writes to NVM:                              n2 / P  

#words 
interprocessor comm. 

#writes NVM 

Left-looking O((n3 log2 P)  / (P M1/2))  O(n2 / P) 
Right-looking O((n2 log P)  / P1/2)  O((n2 log2 P)  /P1/2)  

•  Result: any three-nested loop algorithm (matrix multiplication, LU,..), must 
asymptotically exceed at least one of these lower bounds 
•  If Ω (n2 / P1/2) words are transferred over the network, then Ω (n2 / P2/3 ) words must be 

written to NVM ! 

•  Parallel LU: choice of best algorithm depends on hardware parameters 
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Low rank matrix approximation 

•  Problem: given m x n matrix A, compute rank-k approximation ZWT, where 
Z is m x k and WT is k x n. 

•  Problem with diverse applications 
•  from scientific computing: fast solvers for integral equations, H-matrices 
•  to data analytics: principal component analysis, image processing, … 

•  Used in iterative process by multiplication with a set of vectors 

€ 

A        ≈     Z       W T

€ 

               Ax        →          ZW T x
Flops :    2mn      →          2(m + n)k

€ 

A        ≈  C   U     R
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Low rank matrix approximation 
•  Problem: given m x n matrix A, compute rank-k approximation ZWT, where 

Z is m x k and WT is k x n. 

•  Best rank-k approximation                       is the rank-k truncated SVD of A 

€ 

Ak =UkΣkVk
T

Original image, 707x256 Rank-38 approximation, SVD 

€ 

rank( ˜ A k )≤k
min A − ˜ A k 2

= A − Ak 2
=σk +1(A)

Rank-75 approximation, SVD 

Image source: https://upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg 
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Low rank matrix approximation: trade-offs 
Accuracy

Communication

Flops

Truncated SVDTruncated CA-SVD

Lanczos Algorithm

(strong) QRCPCA rank revealing QR

LU with column, 
rook pivoting

LU with column/row
tournament pivoting
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A01 A11 

Select k cols using tournament pivoting  

A1 A2 A3 A4 

A00 A10 A20 A30 

A02 

Partition A=(A1 , A2 , A3 , A4). 
Select k cols from each column block, 
      by using QR with column pivoting                             

At each level i of the tree  
    At each node j do in parallel  

 Let Av,i-1 , Aw,i-1 be the cols selected by  
     the children of node j 
 Select b cols from (Av,i-1 , Aw,i-1), 

            by using QR with column pivoting 
Return columns in  Aji 

2k 2k 2k 2k 
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LU_CRTP: LU with column/row tournament pivoting 

•  The column and row permutations are chosen using TP based on QR, 

€ 

Given A of size m x n, compute a factorization

    Pr APc =
A 11 A 12

A 21 A 22

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

I
A 21A 11

−1 I
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A 11 A 12

S(A 11)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,

    S(A 11) = A 22 − A 21A 11
−1A 12,

where A 11 is k x k, Pr and Pc are chosen by using tournament pivoting

€ 

1≤ σi(A)
σi(A 11)

,  
σ j (S(A 11))
σk + j (A)

 ≤ 1+F2(n − k)( ) 1+ F 2(m − k)( ),

S(A 11) max
≤min 1+ F k( ) A max,F 1+ F 2(m − k)σk (A)( )

for any 1≤ i ≤ k and 1≤ j ≤min(m,n) − k,   F ≤
1
2k

(n /k)log2 (2 2k )

•  LU_CRTP factorization satisfies 
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LU_CRTP 

•    here 

•         is never formed, its factorization is used when      is applied to a vector 

•  In randomized algorithms, U = C+ A R+, where C+, R+ are Moore-Penrose 
generalized inverses   

€ 

Given LU_CRTP factorization

    Pr APc =
A 11 A 12

A 21 A 22
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⎠ 
⎟ ,

the rank - k CUR approximation is 

      ˜ A k =
I

A 21A 11
−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ A 11 A 12( ) =

A 11

A 21

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ A 11

−1 A 11 A 12( )

€ 

A 11
−1

€ 

˜ A k
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Results for image of size 256x707 

LU_CRTP: Rank-38 approx. LUPP: Rank-75 approximation 

Original image, 707x256 SVD: Rank-38 approximation 

LU_CRTP: Rank-75 approx. 

SVD: Rank-75 approximation 
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Tournament pivoting for sparse matrices 

€ 

flops(TPFT ) ≤ 2nnz(A)k
2

flops(TPBT ) ≤ 8
nnz(A)
P

k 2 log n
k

€ 

flops(TPFT ) ≤O nnz(A)k 3 / 2( )

flops(TPBT ) ≤O
nnz(A)
P

k 3 / 2 log n
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ € 

G(AT A) is an n1/ 2 - separable graph

€ 

A has arbitrary sparsity structure

•  Randomized algorithm by Clarkson and Woodruff, STOC’13 

•  Tournament pivoting is faster if 

     or if   
€ 

Given  n x n matrix A,  it computes LDW T ,  where D is k x k,  such that

A − LDW T
F
≤ (1+ε) A − Ak F

,       Ak is the best rank - k approximation.

flops ≤O(nnz(A)) + nε−4 logO(1)(nε−4 )

€ 

ε ≤
1

nnz(A) /n( )1/ 4

€ 

ε = 0.1 and nnz(A) /n ≤104
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Performance results 

Name/size Nnz 
A(:,1:K) 

Rank K Nnz QRCP/
LU_CRTP 

Nnz LU_CRTP/
LUPP 

Rfdevice 
74104 

633 128 10.0 1.1 
2255 512 82.6 0.9 
4681 1024 207.2 0.0 

Parab_fem 
525825 

896 128 - 0.5 
3584 512 - 0.3 
7168 1024 - 0.2 

Comparison of number of nonzeros in the factors L/U, Q/R. 
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Performance results 

Selection of 256 columns by tournament pivoting 
  Edison, Cray XC30 (NERSC) – 2x12-core Intel Ivy Bridge (2.4 GHz) 
  Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs 

Matrices:              n x n                                 n x n/32   
•  Parab_fem: 528825 x 528825          528825 x 16432 
•  Mac_econ:  206500 x 206500          206500 x 6453 

Time  
n x 2k  

Time 
n x n/32  

SPQR+GEQP3 
Number of MPI processes 

16       32       64       128      256      512   1024 

0.26 0.26+1129 46.7 24.5 13.7 8.4 5.9 4.8 4.4 
0.46 25.4+510 132.7 86.3 111.4 59.6 27.2 - - 

Parab_fem
Mac_econ
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Conclusions 

•  Deterministic low rank approximation algorithm 

•  Accuracy close to rank revealing QR factorization 

•  Complexity close to randomized algorithms 

•  Future work 

•  Design algorithms that do not need explicitly the matrix 

•  Do a thorough comparison with randomized algorithms 

Thanks to: EC H2020 NLAFET 

Further information: 
      http://www-rocq.inria.fr/who/Laura.Grigori/ 


