Low rank approximation and write avoiding algorithms

Laura Grigori

Inria Paris - LJLL, UPMC

with A. Ayala, S. Cayrols, J. Demmel

Motivation - the communication wall

Time to move data >> time per flop

Gap steadily and exponentially growing over time

Annual improvements

• Time / flop **59%** (1995-2004) **34%** (2006-2016)

Interprocessor bandwidth 26%

Interprocessor latency 15%

DRAM latency
 5.5%

DRAM latency:

• DDR2 (2007) ~ 120 ns 1x

• DDR4 (2014) ~ 45 ns 2.6x in 7 years

Stacked memory ~ similar to DDR4

Time/flop

2006 Intel Yonah ~ 2GHz x 2 cores (32 GFlops/chip)

2015 Intel Haswell ~2.3GHz x 16 cores (588 GFlops/chip) 18x in 9 years

Source: J. Shalf, LBNL

2D Parallel algorithms and communication bounds

• Memory per processor = n^2 / P, the lower bounds on communication are #words_moved $\geq \Omega$ (n^2 / $P^{1/2}$), #messages $\geq \Omega$ ($P^{1/2}$)

Algorithm	Minimizing #words (not #messages)	Minimizing #words and #messages		
Cholesky	ScaLAPACK	ScaLAPACK		
LU	ScaLAPACK es partial pivoting	[LG, Demmel, Xiang, 08] [Khabou, Demmel, LG, Gu, 12] uses tournament pivoting		
QR	R ScaLAPACK	[Demmel, LG, Hoemmen, Langou, 08] uses different representation of Q		
RRQR	Q A(ib) ScaLAPACK	[Demmel, LG, Gu, Xiang 13] uses tournament pivoting, 3x flops		

- Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation

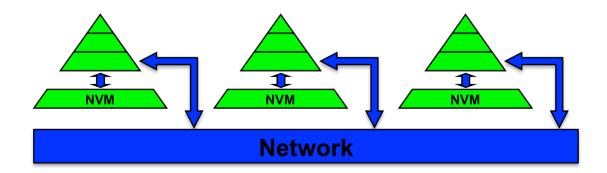
Parallel write avoiding algorithms

Need to avoid writing suggested by emerging memory technologies, as NVMs:

- Writes more expensive (in time and energy) than reads
- Writes are less reliable than reads

Some examples:

- Phase Change Memory: Reads 25 us latency
 Writes: 15x slower than reads (latency and bandwidth)
 consume 10x more energy
- Conductive Bridging RAM CBRAM
 Writes: use more energy (1pJ) than reads (50 fJ)
- Gap improving by new technologies such as XPoint and other FLASH alternatives, but not eliminated



Parallel write-avoiding algorithms

- Matrix A does not fit in DRAM (of size M), need to use NVM (of size n² / P)
- Two lower bounds on volume of communication

Interprocessor communication: Ω (n² / P¹/²)

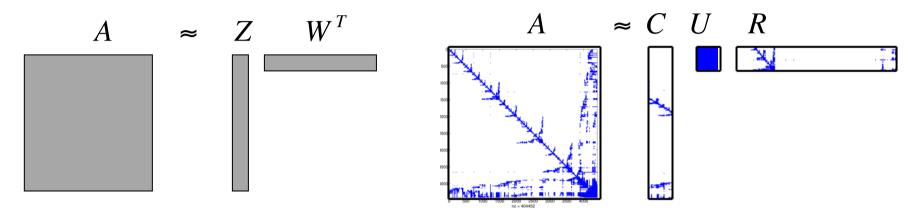
Writes to NVM: n² / P

- Result: any three-nested loop algorithm (matrix multiplication, LU,..), must asymptotically exceed at least one of these lower bounds
 - If Ω (n² / P^{1/2}) words are transferred over the network, then Ω (n² / P^{2/3}) words must be written to NVM!
- Parallel LU: choice of best algorithm depends on hardware parameters

	#words interprocessor comm.	#writes NVM
Left-looking	O((n ³ log ² P) / (P M ^{1/2}))	O(n ² / P)
Right-looking	O((n ² log P) / P ^{1/2})	O((n ² log ² P) /P ^{1/2})

Low rank matrix approximation

• Problem: given m x n matrix A, compute rank-k approximation ZW^T , where Z is m x k and W^T is k x n.



- Problem with diverse applications
 - from scientific computing: fast solvers for integral equations, H-matrices
 - to data analytics: principal component analysis, image processing, ...
- Used in iterative process by multiplication with a set of vectors

$$Ax \rightarrow ZW^T x$$
Flops: $2mn \rightarrow 2(m+n)k$

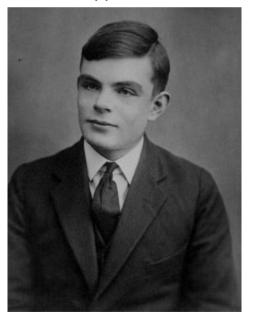
Low rank matrix approximation

- Problem: given m x n matrix A, compute rank-k approximation ZW^T , where Z is m x k and W^T is k x n.
- Best rank-k approximation $A_k = U_k \Sigma_k V_k^T$ is the rank-k truncated SVD of A $\min_{\text{rank}(\tilde{\mathbf{A}}_k) \leq k} \left\| A \tilde{A}_k \right\|_2 = \left\| A A_k \right\|_2 = \sigma_{k+1}(A)$

Original image, 707x256



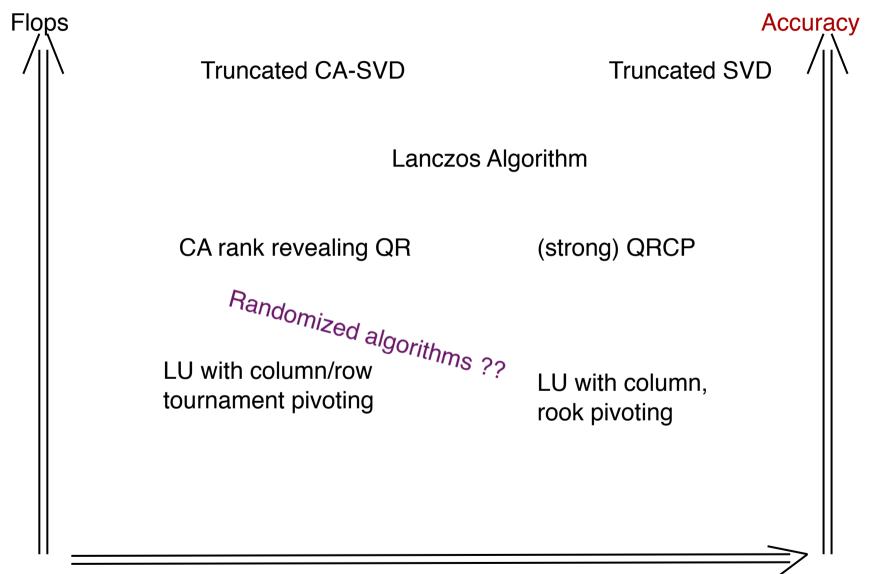
Rank-75 approximation, SVD



Rank-38 approximation, SVD

Image source: https://upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg

Low rank matrix approximation: trade-offs



Select k cols using tournament pivoting

Partition $A=(A_1, A_2, A_3, A_4)$. Select k cols from each column block, by using QR with column pivoting

At each level i of the tree

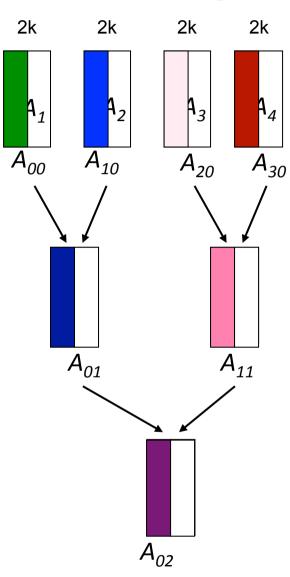
At each node j do in parallel

Let $A_{v,i-1}$, $A_{w,i-1}$ be the cols selected by

the children of node jSelect b cols from $(A_{v,i-1}, A_{w,i-1})$,

by using QR with column pivoting

Return columns in A_{ii}



LU_CRTP: LU with column/row tournament pivoting

• Given A of size m x n, compute a factorization

$$P_{r}AP_{c} = \begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} \\ \overline{A}_{21} & \overline{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \overline{A}_{21}\overline{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} \\ & S(\overline{A}_{11}) \end{pmatrix},$$

$$S(\overline{A}_{11}) = \overline{A}_{22} - \overline{A}_{21}\overline{A}_{11}^{-1}\overline{A}_{12},$$

where \overline{A}_{11} is k x k, P_r and P_c are chosen by using tournament pivoting

LU CRTP factorization satisfies

$$1 \le \frac{\sigma_{i}(A)}{\sigma_{i}(\overline{A}_{11})}, \frac{\sigma_{j}(S(\overline{A}_{11}))}{\sigma_{k+j}(A)} \le \sqrt{(1 + F^{2}(n-k))(1 + F^{2}(m-k))},$$

$$\|S(\overline{A}_{11})\|_{\max} \le \min((1 + F\sqrt{k})\|A\|_{\max}, F\sqrt{1 + F^{2}(m-k)}\sigma_{k}(A))$$
for any $1 \le i \le k$ and $1 \le j \le \min(m,n) - k$, $F \le \frac{1}{\sqrt{2k}}(n/k)^{\log_{2}(2\sqrt{2}k)}$

LU_CRTP

Given LU_CRTP factorization

$$P_{r}AP_{c} = \begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} \\ \overline{A}_{21} & \overline{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \overline{A}_{21}\overline{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} \\ & S(\overline{A}_{11}) \end{pmatrix},$$

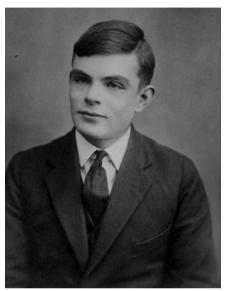
the rank - k CUR approximation is

$$\tilde{A}_{k} = \begin{pmatrix} I \\ \overline{A}_{21}\overline{A}_{11}^{-1} \end{pmatrix} (\overline{A}_{11} \quad \overline{A}_{12}) = \begin{pmatrix} \overline{A}_{11} \\ \overline{A}_{21} \end{pmatrix} \overline{A}_{11}^{-1} (\overline{A}_{11} \quad \overline{A}_{12})$$

- \overline{A}_{11}^{-1} is never formed, its factorization is used when \tilde{A}_k is applied to a vector
- In randomized algorithms, U = C⁺ A R⁺, where C⁺, R⁺ are Moore-Penrose generalized inverses

Results for image of size 256x707

Original image, 707x256

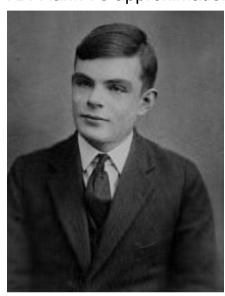


LUPP: Rank-75 approximation

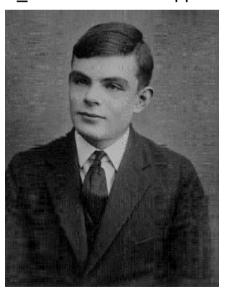
SVD: Rank-38 approximation SVD: Rank-75 approximation

LU_CRTP: Rank-38 approx.





LU_CRTP: Rank-75 approx.



Page 12

Tournament pivoting for sparse matrices

A has arbitrary sparsity structure

$$G(A^T A)$$
 is an $n^{1/2}$ - separable graph

$$flops(TP_{FT}) \le 2nnz(A)k^2$$

 $flops(TP_{BT}) \le 8\frac{nnz(A)}{P}k^2\log\frac{n}{k}$

$$flops(TP_{FT}) \le O\left(nnz(A)k^{3/2}\right)$$

$$flops(TP_{BT}) \le O\left(\frac{nnz(A)}{P}k^{3/2}\log\frac{n}{k}\right)$$

Randomized algorithm by Clarkson and Woodruff, STOC'13

Given $n \times n$ matrix A, it computes LDW^T , where D is $k \times k$, such that $\|A - LDW^T\|_F \le (1 + \varepsilon) \|A - A_k\|_F$, A_k is the best rank - k approximation. flops $\le O(nnz(A)) + n\varepsilon^{-4} \log^{O(1)}(n\varepsilon^{-4})$

• Tournament pivoting is faster if $\varepsilon \le \frac{1}{(nnz(A)/n)^{1/4}}$ or if $\varepsilon = 0.1$ and $nnz(A)/n \le 10^4$

Performance results

Comparison of number of nonzeros in the factors L/U, Q/R.

Name/size	Nnz A(:,1:K)	Rank K	Nnz QRCP/ LU_CRTP	Nnz LU_CRTP/ LUPP
Rfdevice	633	128	10.0	1.1
74104	2255	512	82.6	0.9
	4681	1024	207.2	0.0
Parab_fem	896	128	-	0.5
525825	3584	512	-	0.3
	7168	1024	-	0.2

Performance results

Selection of 256 columns by tournament pivoting

Edison, Cray XC30 (NERSC) – 2x12-core Intel Ivy Bridge (2.4 GHz)

Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices: $n \times n$ $n \times n/32$

• Mac_econ: 206500 x 206500 206500 x 6453

	Time n x 2k	Time n x n/32 SPQR+GEQP3	Number of MPI processes						
Parab_fem Mac_econ	0.26	0.26+1129	46.7	24.5	13.7	8.4	5.9	4.8	4.4
	0.46	25.4+510	132.7	86.3	111.4	59.6	27.2	-	_

Conclusions

- Deterministic low rank approximation algorithm
 - Accuracy close to rank revealing QR factorization
 - Complexity close to randomized algorithms
- Future work
 - Design algorithms that do not need explicitly the matrix
 - Do a thorough comparison with randomized algorithms

Thanks to: EC H2020 NLAFET

Further information:

http://www-rocq.inria.fr/who/Laura.Grigori/

