
Low rank approximation and write
avoiding algorithms

Laura Grigori

Inria Paris - LJLL, UPMC

with A. Ayala, S. Cayrols, J. Demmel

Page 2

Motivation - the communication wall
Time to move data >> time per flop
•  Gap steadily and exponentially growing over time

Annual improvements
•  Time / flop 59% (1995-2004) 34% (2006-2016)
•  Interprocessor bandwidth 26%
•  Interprocessor latency 15%
•  DRAM latency 5.5%

DRAM latency:
•  DDR2 (2007) ~ 120 ns 1x
•  DDR4 (2014) ~ 45 ns 2.6x in 7 years
•  Stacked memory ~ similar to DDR4

Time/flop
•  2006 Intel Yonah ~ 2GHz x 2 cores (32 GFlops/chip) 1x
•  2015 Intel Haswell ~2.3GHz x 16 cores (588 GFlops/chip) 18x in 9 years

Source: J. Shalf, LBNL

Page 3

2D Parallel algorithms and communication bounds

Algorithm Minimizing
 #words (not #messages)

Minimizing
#words and #messages

Cholesky ScaLAPACK ScaLAPACK

LU ScaLAPACK
uses partial pivoting

 [LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

QR ScaLAPACK [Demmel, LG, Hoemmen, Langou, 08]
uses different representation of Q

RRQR ScaLAPACK [Demmel, LG, Gu, Xiang 13]
uses tournament pivoting, 3x flops

•  Only several references shown, block algorithms (ScaLAPACK) and
 communication avoiding algorithms
•  CA algorithms exist also for SVD and eigenvalue computation

•  Memory per processor = n2 / P, the lower bounds on communication are
 #words_moved ≥ Ω (n2 / P1/2), #messages ≥ Ω (P1/2)

L	

U	

A(ib)	

Q	

R	

A(ib)	

Page 4

Parallel write avoiding algorithms
Need to avoid writing suggested by emerging memory technologies, as NVMs:
•  Writes more expensive (in time and energy) than reads
•  Writes are less reliable than reads

Some examples:
•  Phase Change Memory: Reads 25 us latency
 Writes: 15x slower than reads (latency and bandwidth)
 consume 10x more energy
•  Conductive Bridging RAM - CBRAM
 Writes: use more energy (1pJ) than reads (50 fJ)
•  Gap improving by new technologies such as XPoint and other FLASH

alternatives, but not eliminated

Page 5

Parallel write-avoiding algorithms

•  Matrix A does not fit in DRAM (of size M), need to use NVM (of size n2 / P)

•  Two lower bounds on volume of communication
•  Interprocessor communication: Ω (n2 / P1/2)
•  Writes to NVM: n2 / P

#words
interprocessor comm.

#writes NVM

Left-looking O((n3 log2 P) / (P M1/2)) O(n2 / P)
Right-looking O((n2 log P) / P1/2) O((n2 log2 P) /P1/2)

•  Result: any three-nested loop algorithm (matrix multiplication, LU,..), must
asymptotically exceed at least one of these lower bounds
•  If Ω (n2 / P1/2) words are transferred over the network, then Ω (n2 / P2/3) words must be

written to NVM !

•  Parallel LU: choice of best algorithm depends on hardware parameters

Page 6

Low rank matrix approximation

•  Problem: given m x n matrix A, compute rank-k approximation ZWT, where
Z is m x k and WT is k x n.

•  Problem with diverse applications
•  from scientific computing: fast solvers for integral equations, H-matrices
•  to data analytics: principal component analysis, image processing, …

•  Used in iterative process by multiplication with a set of vectors

€

A ≈ Z W T

€

 Ax → ZW T x
Flops : 2mn → 2(m + n)k

€

A ≈ C U R

Page 7

Low rank matrix approximation
•  Problem: given m x n matrix A, compute rank-k approximation ZWT, where

Z is m x k and WT is k x n.

•  Best rank-k approximation is the rank-k truncated SVD of A

€

Ak =UkΣkVk
T

Original image, 707x256 Rank-38 approximation, SVD

€

rank(˜ A k)≤k
min A − ˜ A k 2

= A − Ak 2
=σk +1(A)

Rank-75 approximation, SVD

Image source: https://upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg

Page 8

Low rank matrix approximation: trade-offs
Accuracy

Communication

Flops

Truncated SVDTruncated CA-SVD

Lanczos Algorithm

(strong) QRCPCA rank revealing QR

LU with column,
rook pivoting

LU with column/row
tournament pivoting

Page 9

A01 A11

Select k cols using tournament pivoting

A1 A2 A3 A4

A00 A10 A20 A30

A02

Partition A=(A1 , A2 , A3 , A4).
Select k cols from each column block,
 by using QR with column pivoting

At each level i of the tree
 At each node j do in parallel

 Let Av,i-1 , Aw,i-1 be the cols selected by
 the children of node j
 Select b cols from (Av,i-1 , Aw,i-1),

 by using QR with column pivoting
Return columns in Aji

2k 2k 2k 2k

Page 10

LU_CRTP: LU with column/row tournament pivoting

•  The column and row permutations are chosen using TP based on QR,

€

Given A of size m x n, compute a factorization

 Pr APc =
A 11 A 12

A 21 A 22

⎛

⎝
⎜

⎞

⎠
⎟ =

I
A 21A 11

−1 I
⎛

⎝
⎜

⎞

⎠
⎟

A 11 A 12

S(A 11)
⎛

⎝
⎜

⎞

⎠
⎟ ,

 S(A 11) = A 22 − A 21A 11
−1A 12,

where A 11 is k x k, Pr and Pc are chosen by using tournament pivoting

€

1≤ σi(A)
σi(A 11)

,
σ j (S(A 11))
σk + j (A)

 ≤ 1+F2(n − k)() 1+ F 2(m − k)(),

S(A 11) max
≤min 1+ F k() A max,F 1+ F 2(m − k)σk (A)()

for any 1≤ i ≤ k and 1≤ j ≤min(m,n) − k, F ≤
1
2k

(n /k)log2 (2 2k)

•  LU_CRTP factorization satisfies

Page 11

LU_CRTP

•  here

•  is never formed, its factorization is used when is applied to a vector

•  In randomized algorithms, U = C+ A R+, where C+, R+ are Moore-Penrose
generalized inverses

€

Given LU_CRTP factorization

 Pr APc =
A 11 A 12

A 21 A 22

⎛

⎝
⎜

⎞

⎠
⎟ =

I
A 21A 11

−1 I
⎛

⎝
⎜

⎞

⎠
⎟

A 11 A 12

S(A 11)
⎛

⎝
⎜

⎞

⎠
⎟ ,

the rank - k CUR approximation is

 ˜ A k =
I

A 21A 11
−1

⎛

⎝
⎜

⎞

⎠
⎟ A 11 A 12() =

A 11

A 21

⎛

⎝
⎜

⎞

⎠
⎟ A 11

−1 A 11 A 12()

€

A 11
−1

€

˜ A k

Page 12

Results for image of size 256x707

LU_CRTP: Rank-38 approx. LUPP: Rank-75 approximation

Original image, 707x256 SVD: Rank-38 approximation

LU_CRTP: Rank-75 approx.

SVD: Rank-75 approximation

Page 13

Tournament pivoting for sparse matrices

€

flops(TPFT) ≤ 2nnz(A)k
2

flops(TPBT) ≤ 8
nnz(A)
P

k 2 log n
k

€

flops(TPFT) ≤O nnz(A)k 3 / 2()

flops(TPBT) ≤O
nnz(A)
P

k 3 / 2 log n
k

⎛

⎝
⎜

⎞

⎠
⎟ €

G(AT A) is an n1/ 2 - separable graph

€

A has arbitrary sparsity structure

•  Randomized algorithm by Clarkson and Woodruff, STOC’13

•  Tournament pivoting is faster if

 or if
€

Given n x n matrix A, it computes LDW T , where D is k x k, such that

A − LDW T
F
≤ (1+ε) A − Ak F

, Ak is the best rank - k approximation.

flops ≤O(nnz(A)) + nε−4 logO(1)(nε−4)

€

ε ≤
1

nnz(A) /n()1/ 4

€

ε = 0.1 and nnz(A) /n ≤104

Page 14

Performance results

Name/size Nnz
A(:,1:K)

Rank K Nnz QRCP/
LU_CRTP

Nnz LU_CRTP/
LUPP

Rfdevice
74104

633 128 10.0 1.1
2255 512 82.6 0.9
4681 1024 207.2 0.0

Parab_fem
525825

896 128 - 0.5
3584 512 - 0.3
7168 1024 - 0.2

Comparison of number of nonzeros in the factors L/U, Q/R.

Page 15

Performance results

Selection of 256 columns by tournament pivoting
 Edison, Cray XC30 (NERSC) – 2x12-core Intel Ivy Bridge (2.4 GHz)
 Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices: n x n n x n/32
•  Parab_fem: 528825 x 528825 528825 x 16432
•  Mac_econ: 206500 x 206500 206500 x 6453

Time
n x 2k

Time
n x n/32

SPQR+GEQP3
Number of MPI processes

16 32 64 128 256 512 1024

0.26 0.26+1129 46.7 24.5 13.7 8.4 5.9 4.8 4.4
0.46 25.4+510 132.7 86.3 111.4 59.6 27.2 - -

Parab_fem
Mac_econ

Page 16

Conclusions

•  Deterministic low rank approximation algorithm

•  Accuracy close to rank revealing QR factorization

•  Complexity close to randomized algorithms

•  Future work

•  Design algorithms that do not need explicitly the matrix

•  Do a thorough comparison with randomized algorithms

Thanks to: EC H2020 NLAFET

Further information:
 http://www-rocq.inria.fr/who/Laura.Grigori/

