Low rank approximation and write avoiding algorithms

Laura Grigori
Alpines
Inria Paris - LJLL, UPMC
with A. Ayala, S. Cayrols, J. Demmel

Motivation - the communication wall

Time to move data >> time per flop

- Gap steadily and exponentially growing over time

Annual improvements

- Time / flop 59\% (1995-2004) 34\% (2006-2016)
- Interprocessor bandwidth 26%
- Interprocessor latency 15\%
- DRAM latency 5.5\%

DRAM latency:

- DDR2 (2007) ~ $120 \mathrm{~ns} 1 x$
- DDR4 (2014) ~ 45 ns 2.6x in 7 years
- Stacked memory ~ similar to DDR4

Time/flop

- 2006 Intel Yonah ~ 2GHz x 2 cores (32 GFlops/chip) 1x
- 2015 Intel Haswell $\sim 2.3 \mathrm{GHz} \times 16$ cores (588 GFlops/chip) 18 x in 9 years

Source: J. Shalf, LBNL

2D Parallel algorithms and communication bounds

- Memory per processor $=n^{2} / P$, the lower bounds on communication are \#words_moved $\geq \Omega\left(\mathrm{n}^{2} / \mathrm{P}^{1 / 2}\right), \quad \# m e s s a g e s \geq \Omega\left(\mathrm{P}^{1 / 2}\right)$

Algorithm	Minimizing \#words (not \#messages)		Minimizing \#words and \#messages
Cholesky	ScaLAPACK		

- Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation

Parallel write avoiding algorithms

Need to avoid writing suggested by emerging memory technologies, as NVMs:

- Writes more expensive (in time and energy) than reads
- Writes are less reliable than reads

Some examples:

- Phase Change Memory: Reads 25 us latency

Writes: $15 x$ slower than reads (latency and bandwidth) consume 10x more energy

- Conductive Bridging RAM - CBRAM

Writes: use more energy (1pJ) than reads (50 fJ)

- Gap improving by new technologies such as XPoint and other FLASH alternatives, but not eliminated

Parallel write-avoiding algorithms

- Matrix A does not fit in DRAM (of size M), need to use NVM (of size n^{2} / P)
- Two lower bounds on volume of communication
- Interprocessor communication: $\quad \Omega\left(n^{2} / P^{1 / 2}\right)$
- Writes to NVM:
$\mathrm{n}^{2} / \mathrm{P}$
- Result: any three-nested loop algorithm (matrix multiplication, LU,..), must asymptotically exceed at least one of these lower bounds
- If $\Omega\left(n^{2} / P^{1 / 2}\right)$ words are transferred over the network, then $\Omega\left(n^{2} / P^{2 / 3}\right)$ words must be written to NVM !
- Parallel LU: choice of best algorithm depends on hardware parameters

	\#words interprocessor comm.	\#writes NVM
Left-looking	$\mathrm{O}\left(\left(\mathrm{n}^{3} \log ^{2} \mathrm{P}\right) /\left(\mathrm{P} \mathrm{M}^{1 / 2}\right)\right)$	$\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{P}\right)$
Right-looking	$\mathrm{O}\left(\left(\mathrm{n}^{2} \log \mathrm{P}\right) / \mathrm{P}^{1 / 2}\right)$	$\mathrm{O}\left(\left(\mathrm{n}^{2} \log ^{2} \mathrm{P}\right) / \mathrm{P}^{1 / 2}\right)$

Low rank matrix approximation

- Problem: given $m \times n$ matrix A, compute rank-k approximation ZW^{\top}, where Z is $m x k$ and W^{\top} is $k x n$.

- Problem with diverse applications
- from scientific computing: fast solvers for integral equations, H-matrices
- to data analytics: principal component analysis, image processing, ...
- Used in iterative process by multiplication with a set of vectors

$$
\begin{array}{rlll}
A x & \rightarrow & Z W^{T} x \\
\text { Flops: } & 2 m n & \rightarrow & 2(m+n) k
\end{array}
$$

Low rank matrix approximation

- Problem: given $m \times n$ matrix A, compute rank-k approximation ZW^{\top}, where Z is $m x k$ and W^{\top} is $k x n$.
- Best rank-k approximation $A_{k}=U_{k} \Sigma_{k} V_{k}^{T}$ is the rank-k truncated SVD of A

$$
\min _{\operatorname{rank}\left(\tilde{\mathrm{A}}_{\mathrm{k}}\right) \leq k}\left\|A-\tilde{A}_{k}\right\|_{2}=\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}(A)
$$

Original image, 707×256

Rank-75 approximation, SVD

Rank-38 approximation, SVD

Image source: https://upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg

Low rank matrix approximation: trade-offs

Page 8

Select k cols using tournament pivoting

Partition $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.

Select k cols from each column block,
by using QR with column pivoting
At each level i of the tree
At each node j do in parallel
Let $A_{\nu, i-1}, A_{w, i-1}$ be the cols selected by the children of node j
Select b cols from ($A_{v, i-1}, A_{w, i-1}$), by using QR with column pivoting
Return columns in $A_{j i}$

Page 9

LU_CRTP: LU with column/row tournament pivoting

- Given A of size $m \times n$, compute a factorization

$$
\begin{aligned}
& P_{r} A P_{c}=\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \\
\bar{A}_{21} & \bar{A}_{22}
\end{array}\right)=\left(\begin{array}{cc}
I & \\
\bar{A}_{21} \bar{A}_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
& S\left(\bar{A}_{11}\right)
\end{array}\right), \\
& S\left(\bar{A}_{11}\right)=\bar{A}_{22}-\bar{A}_{21} \bar{A}_{11}^{-1} \bar{A}_{12},
\end{aligned}
$$

where \bar{A}_{11} is k x k, P_{r} and P_{c} are chosen by using tournament pivoting

- LU_CRTP factorization satisfies

$$
\begin{aligned}
& 1 \leq \frac{\sigma_{i}(A)}{\sigma_{i}\left(\bar{A}_{11}\right)}, \frac{\sigma_{j}\left(S\left(\bar{A}_{11}\right)\right)}{\sigma_{k+j}(A)} \leq \sqrt{\left(1+\mathrm{F}^{2}(n-k)\right)\left(1+F^{2}(m-k)\right)}, \\
& \left\|S\left(\bar{A}_{11}\right)\right\|_{\max } \leq \min \left((1+F \sqrt{k})\|A\|_{\max }, F \sqrt{1+F^{2}(m-k)} \sigma_{k}(A)\right)
\end{aligned}
$$

for any $1 \leq i \leq k$ and $1 \leq j \leq \min (m, n)-k, F \leq \frac{1}{\sqrt{2 k}}(n / k)^{\log _{2}(2 \sqrt{2} k)}$

LU_CRTP

- Given LU_CRTP factorization

$$
P_{r} A P_{c}=\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \\
\bar{A}_{21} & \bar{A}_{22}
\end{array}\right)=\left(\begin{array}{cc}
I & \\
\bar{A}_{21} \bar{A}_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
& S\left(\bar{A}_{11}\right)
\end{array}\right),
$$

the rank-k CUR approximation is

$$
\tilde{A}_{k}=\binom{I}{\bar{A}_{21} \bar{A}_{11}^{-1}}\left(\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12}
\end{array}\right)=\binom{\bar{A}_{11}}{\bar{A}_{21}} \bar{A}_{11}^{-1}\left(\bar{A}_{11} \quad \bar{A}_{12}\right)
$$

- \bar{A}_{11}^{-1} is never formed, its factorization is used when \tilde{A}_{k} is applied to a vector
- In randomized algorithms, $\mathrm{U}=\mathrm{C}^{+} \mathrm{A} \mathrm{R}^{+}$, where $\mathrm{C}^{+}, \mathrm{R}^{+}$are Moore-Penrose generalized inverses

Results for image of size 256x707

Original image, 707×256

LUPP: Rank-75 approximation

SVD: Rank-38 approximation

LU_CRTP: Rank-38 approx.

SVD: Rank-75 approximation

Page 12

Tournament pivoting for sparse matrices

A has arbitrary sparsity structure
flops $\left(T P_{F T}\right) \leq 2 n n z(A) k^{2}$
$\operatorname{flops}\left(T P_{B T}\right) \leq 8 \frac{n n z(A)}{P} k^{2} \log \frac{n}{k}$
$G\left(A^{T} A\right)$ is an $n^{1 / 2}$ - separable graph

$$
\begin{aligned}
& \text { flops }\left(T P_{F T}\right) \leq O\left(n n z(A) k^{3 / 2}\right) \\
& \text { flops }\left(T P_{B T}\right) \leq O\left(\frac{n n z(A)}{P} k^{3 / 2} \log \frac{n}{k}\right)
\end{aligned}
$$

- Randomized algorithm by Clarkson and Woodruff, STOC'13

Given $n \times n$ matrix A, it computes $L D W^{T}$, where D is $k \times k$, such that $\left\|A-L D W^{T}\right\|_{F} \leq(1+\varepsilon)\left\|A-A_{k}\right\|_{F}, \quad A_{k}$ is the best rank -k approximation. flops $\leq O(n n z(A))+n \varepsilon^{-4} \log ^{O(1)}\left(n \varepsilon^{-4}\right)$

- Tournament pivoting is faster if $\varepsilon \leq \frac{1}{(n n z(A) / n)^{1 / 4}}$ or if $\varepsilon=0.1$ and $n n z(A) / n \leq 10^{4}$

Performance results

Comparison of number of nonzeros in the factors $L / U, Q / R$.

Name/size	Nnz A(:,1:K)	Rank K	Nnz QRCP/ LU_CRTP	Nnz LU_CRTP/			
LUPP					$	$	1.1
:---							
Rfdevice							
74104							

Performance results

Selection of 256 columns by tournament pivoting
Edison, Cray XC30 (NERSC) - 2x12-core Intel Ivy Bridge (2.4 GHz)
Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices: $\mathrm{n} \times \mathrm{n} \quad \mathrm{n} \times \mathrm{n} / 32$

- Parab_fem: $528825 \times 528825 \quad 528825 \times 16432$
- Mac_econ: $206500 \times 206500206500 \times 6453$

Conclusions

- Deterministic low rank approximation algorithm
- Accuracy close to rank revealing QR factorization
- Complexity close to randomized algorithms
- Future work
- Design algorithms that do not need explicitly the matrix
- Do a thorough comparison with randomized algorithms

Thanks to: EC H2020 NLAFET
Further information:
http://www-rocq.inria.fr/who/Laura.Grigori/

