
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Embracing	
 Diversity:	
 OS	

Support	
 for	
 Integra9ng	
 High-­‐
Performance	
 Compu9ng	
 and	

Data	
 Analy9cs	

	

Ron	
 Brightwell	

Scalable	
 System	
 SoEware	
 Department	

	

	

Workshop	
 on	
 Clusters,	
 Clouds,	
 and	
 Data	
 for	
 Scien9fic	
 Compu9ng	

October	
 3-­‐6,	
 2016	

	

Hobbes	
 Project	
 	
 	

§  US	
 DOE/ASCR	
 project	
 in	
 OS/R	
 Program	
 started	
 in	
 2013	

§  Develop	
 prototype	
 OS/R	
 environment	
 for	
 R&D	
 in	
 extreme-­‐scale	
 scien9fic	

compu9ng	

§  Focus	
 on	
 applica9on	
 composi9on	
 as	
 a	
 fundamental	
 driver	

§  Develop	
 necessary	
 OS/R	
 interfaces	
 and	
 system	
 services	
 required	
 to	
 support	

resource	
 isola9on	
 and	
 sharing	

§  Evaluate	
 performance	
 and	
 resource	
 management	
 issues	
 for	
 suppor9ng	

mul9ple	
 soEware	
 stacks	
 simultaneously	

§  Support	
 complex	
 simula9on	
 and	
 analysis	
 workflows	

§  Provide	
 	
 a	
 lightweight	
 OS/R	
 environment	
 with	
 flexibility	
 to	
 build	
 custom	

run9mes	

§  Compose	
 applica9ons	
 from	
 a	
 collec9on	
 of	
 enclaves	
 (par99ons)	

§  Leverage	
 Ki[en	
 lightweight	
 kernel	
 and	
 Palacios	
 lightweight	
 virtual	

machine	
 monitor	

§  11	
 partner	
 ins9tu9ons	
 –	
 4	
 DOE	
 labs,	
 7	
 universi9es	

	

Applica9ons	
 and	
 Usage	
 Models	
 are	
 Diverging	
 	

§  Applica9on	
 composi9on	
 becoming	
 more	
 important	

§  Ensemble	
 calcula9ons	
 for	
 uncertainty	
 quan9fica9on	

§  Mul9-­‐{material,	
 physics,	
 scale}	
 simula9ons	

§  In-­‐situ	
 analysis	
 and	
 graph	
 analy9cs	

§  Performance	
 and	
 correctness	
 analysis	
 tools	

§  Applica9ons	
 may	
 be	
 composed	
 of	
 mul9ple	
 programming	
 models	

§  More	
 complex	
 workflows	
 are	
 driving	
 need	
 for	
 advanced	
 OS	
 services	
 and	

capability	

§  “Workflow”	
 overtaken	
 “Co-­‐Design”	
 as	
 top	
 US/DOE	
 buzzword	

§  Support	
 for	
 more	
 interac9ve	
 workloads	

§  Facili9es	
 need	
 to	
 find	
 a	
 new	
 charging	
 model	

§  Desire	
 to	
 support	
 “Big	
 Data”	
 applica9ons	

§  Significant	
 soEware	
 stack	
 comes	
 along	
 with	
 this	

	

Applica9ons	
 Workflows	
 are	
 Evolving	

§  More	
 composi9onal	
 approach,	
 where	
 overall	
 applica9on	
 is	
 a	

composi9on	
 of	
 coupled	
 simula9on,	
 analysis,	
 and	
 tool	

components	

§  Each	
 component	
 may	
 have	
 different	
 OS	
 and	
 Run9me	
 (OS/R)	

requirements,	
 in	
 general	
 there	
 is	
 no	
 “one-­‐size-­‐fits-­‐all”	

solu9on	

§  Co-­‐loca9ng	
 applica9on	
 components	
 can	
 be	
 used	
 to	
 reduce	

data	
 movement,	
 but	
 may	
 introduce	
 cross	
 component	

performance	
 interference	

§  Need	
 system	
 soEware	
 infrastructure	
 for	
 applica9on	
 composi9on	

§  Need	
 to	
 maintain	
 performance	
 isola9on	

§  Need	
 to	
 provide	
 cross-­‐component	
 data	
 sharing	
 capabili9es	

§  Need	
 to	
 fit	
 into	
 vendor’s	
 produc9on	
 system	
 soEware	
 stack	

Node	
 Architecture	
 is	
 Diverging	

Systems	
 Are	
 Converging	
 to	
 Reduce	
 Data	
 Movement	

§  External	
 parallel	
 file	
 system	
 is	
 being	
 subsumed	

§  Near-­‐term	
 capability	
 systems	
 using	
 NVRAM-­‐based	
 burst	
 buffer	

§  Future	
 extreme-­‐scale	
 systems	
 will	
 con9nue	
 to	
 exploit	
 persistent	

memory	
 technologies	

§  In-­‐situ	
 and	
 in-­‐transit	
 approaches	
 for	
 visualiza9on	
 and	
 analysis	

§  Can’t	
 afford	
 to	
 move	
 data	
 to	
 separate	
 systems	
 for	
 processing	

§  GPUs	
 and	
 many-­‐core	
 processors	
 are	
 ideal	
 for	
 visualiza9on	
 and	
 some	

analysis	
 func9ons	

§  Less	
 differen9a9on	
 between	
 advanced	
 technology	
 and	

commodity	
 technology	
 systems	

§  On-­‐chip	
 integra9on	
 of	
 processing,	

	
 	
 	
 	
 	
 memory,	
 and	
 network	

§  Summit/Sierra	
 using	
 InfiniBand	

Exascale
System

Capability
System

Analytics
Cluster

Parallel File
System Visualization

Cluster

Capacity
Cluster

HPC	
 and	
 Big	
 Data	
 SoEware	
 Stacks	

“Big	
 Data”	
 Environment	

We	
 Should	
 Embrace	
 Divergence	

§  Func9onal	
 par99oning	
 based	
 on	
 soEware	
 stack	
 will	
 con9nue	

§  Service	
 nodes,	
 I/O	
 nodes,	
 network	
 nodes,	
 compute	
 nodes,	
 etc.	

§  Nodes	
 are	
 becoming	
 too	
 big	
 to	
 be	
 smallest	
 unit	
 of	
 alloca9on	

§  Provide	
 infrastructure	
 to	
 manage	
 diverse	
 soEware	
 stacks	

§  Node-­‐level	
 par99oning	
 of	
 resources	
 with	
 different	
 stacks	

§  Support	
 for	
 improved	
 resource	
 isola9on	

§  Mechanisms	
 that	
 provide	
 sharing	
 to	
 reduce	
 data	
 movement	

§  Enable	
 applica9ons	
 and	
 workflows	
 to	
 define	
 their	
 own	

soEware	
 environment	

Applica9on	
 Composi9on	
 in	
 Hobbes	

Component A Component B

Component C

Enclave 1

Enclave 2

Logical Structure
(logical enclaves)

Physical Structure
(physical enclaves)

Global OS
Mapping

Hobbes	
 Using	
 a	
 Co-­‐Kernel	
 Architecture	

§  Mul9-­‐stack	
 architecture	
 tools	

	
 	
 	
 	
 	
 	
 implemented	
 and	
 func9onal	

§  Host	
 boots	
 Linux	

§  Cores	
 and	
 memory	
 can	
 be	
 taken	
 from	

Linux,	
 forming	
 one	
 or	
 more	
 containers	

§  Ki[en	
 can	
 be	
 launched	
 in	
 each	
 container	

§  Each	
 Ki[en	
 instance	
 operates	
 coopera9vely	
 with	
 Linux	
 as	
 a	
 co-­‐kernel	

§  Each	
 co-­‐kernel	
 can	
 run	
 a	
 different	
 applica9on	

§  Or	
 guest	
 OS	
 via	
 Palacios	
 VMM	

§  Containers	
 can	
 be	
 dynamically	
 resized	
 without	
 reboo9ng	

§  Number	
 of	
 cores	
 and	
 size	
 of	
 memory	
 can	
 grow	
 and	
 shrink	

§  Shared	
 memory	
 communica9on	
 between	
 any	
 OS	
 using	
 XEMEM	

§  Ported	
 to	
 Cray	
 Linux	
 Environment	

§  Mul9-­‐enclave	
 launch	
 working	
 on	
 XK7	
 testbed	
 at	
 Sandia	

Linux

Hardware

Isolated Virtual
Machine

Applications
+

Virtual Machines
Palacios VMM

Kitten (1) Kitten (2)

Isolated
Application

“Combined	
 OS”	
 Approach	
 is	
 Not	
 New	

IBM FusedOS (2011)

Intel mOS (2013)

MAHOS (2013)

IBM/Bell Labs NIX (2012)
TU Dresden L4Linux (2010)

Leviathan	
 Node	
 Manager	

§  Compute	
 node	
 resources	
 tracked	
 via	
 an	
 in-­‐memory	
 NoSQL	

database	
 (WhiteDB)	

§  Records	
 for	
 cores,	
 memory,	
 NICs,	
 NUMA	
 info,	
 …	

§  Records	
 for	
 system	
 service	
 state,	
 name	
 services,	
 enclave	
 state,	
 ...	

§  User-­‐level	
 given	
 explicit	
 control	
 of	
 physical	
 resources	

§  Resources	
 space	
 par99oned	
 into	
 mul9ple	
 enclaves	

§  Libhobbes.a	
 provides	
 C	
 API,	
 translates	
 under	
 covers	
 to	
 DB	
 opera9ons	

§  Provides	
 flexibility	
 vs.	
 tradi9onal	
 OS	
 “one-­‐size-­‐fits-­‐all”	
 approach	

§  Mechanisms	
 for	
 inter-­‐enclave	
 composi9on	

§  XEMEM	
 for	
 cross-­‐enclave	
 memory	
 sharing	
 (extended	
 version	
 of	
 XPMEM)	

§  XASM	
 provides	
 memory	
 snapshot	
 sharing	
 via	
 COW	
 (extends	
 XEMEM)	

§  Libhobbes.a	
 provides	
 global	
 ID	
 alloca9on,	
 name	
 services,	
 command	

queues,	
 and	
 generic	
 RPC	
 mechanisms	

§  Host	
 I/O	
 layer	
 allows	
 flexible	
 rou9ng	
 of	
 system	
 calls	
 between	
 enclaves	

(e.g.,	
 Ki[en	
 app	
 rou9ng	
 its	
 system	
 calls	
 to	
 a	
 Linux	
 driver	
 VM)	

Leviathan	
 On-­‐Node	
 Manager	

Ties	
 Things	
 Together	

	

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
E
M

E
M

X
E
M

E
M

X
E
M

E
M

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
E
M

E
M

X
E
M

E
M

X
E
M

E
M

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
E
M

E
M

X
E
M

E
M

X
E
M

E
M

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
E
M

E
M

X
E
M

E
M

X
E
M

E
M

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

State of all resources tracked in
in-memory NoSQL database

User-level has explicit control of physical
resources managed by Leviathan

The Leviathan shell provides commands to
form enclaves and launch applications

Built-in services for command queues,
discovery, global IDs, and generic RPC

The	
 Hobbes	
 Node	
 Virtualiza9on	
 Layer	

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
E
M

E
M

X
E
M

E
M

X
E
M

E
M

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

A
D

IO
S

X
A

S
M

M
P

I

Li
b

-
H

o
b

b
e
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

§  Leverages	
 experience	
 with	
 Ki[en	
 Lightweight	

Kernel	
 and	
 Palacios	
 Virtual	
 Machine	
 Monitor	

§  Provides	
 Infrastructure	
 for	
 applica9on	
 composi9on	

§  Complement’s	
 vendor’s	
 Linux	
 stacks,	
 adds	
 capability	
 to	
 it	

§  Enables	
 OS/R	
 stack	
 func9onality	
 through	
 enclaves	

§  Provides	
 low-­‐level	
 mechanisms	
 for	
 cross-­‐enclave	
 composi9on	

§  Team:	
 U.	
 Pi[sburgh,	
 Northwestern,	
 UNM,	
 LANL,	
 ORNL	
 	

h[p://xstack.sandia.gov/hobbes	

