
IT – Portable Parallel
Performance

Andrew Grimshaw & Yan Yanhaona
CCDCS

Chateauform
La Maison des Contes

October 3-6, 2016

1

I come not to bury MPI
but to layer on top of it.

2

What is IT?
• IT is an language to experiment with

PCubeS (multi-space) parallel
language constructs and performance.

• IT is designed to address the
challenge of writing portable,
performant, parallel programs.

• IT is the brain-child of Yan Yanhaona.

3

Agenda
• The problem – the five P’s
• Current Practice
• The PCubeS Type Architecture
• IT – a PCubeS language
• Performance
• Conclusions and Future Work

4

The Problem

Productive, Portable,
Performing, Predictable,

Parallel Programs

5

Parallel programming is hard
• Seitz once said parallel programming is

no harder than sequential programming.
• Time spent dealing with parallelization,

parallel correctness, performance, and
porting is time not spent on the
application.

• Optimization is hardware dependent.
Memory hierarchies are deep and getting
deeper

• Increasingly heterogeneous
environments

6

The problem is not getting
any easier

Once solved for one machine
you then face the portability

problem

7

Problem identified by Snyder
• The salient features of an architecture

must be reflected in programming
languages or the programmer will be
misled.

• The language influences algorithms
and constrains how the programmer
can express the solution.

8

Lawrence Snyder. Annual review of computer science vol. 1, 1986.
chapter Type Architectures, Shared Memory, and the Corollary of
Modest Potential, pages 289–317. Annual Reviews Inc., Palo Alto, CA,
USA, 1986.

Von Neumann
• Fetch/execute over a flat random

access memory

9

Variable Definitions: Instructions Stream:
a: Integer …
b: Integer …
c: Real single-precision c = a / b

Variable Definitions: Instructions Stream:
a: Integer …
b: Integer …
c: Real single-precision c = a / b

• Very successful – the model provides an
abstraction that has been implemented over a
wide variety of physical machines.

• Imperative languages map easily to the model.
• The compilers job is relatively simple.

We have not found an analog
to the Von Neumann machine

10

Agenda
• The problem – the five P’s
• Current Practice
• The PCubeS Type Architecture
• IT – a PCubeS language
• Performance
• Conclusions and Future Work

11

• Hundreds of parallel languages from the 80’s to today
• Dominant life forms

– MPI
• Reflects a type architecture of communicating sequential

processes quite well. Clearly separates “local” from “remote”
communication and synchronization.

– Pthreads
– OpenMP

• Syntactic sugar for Pthreads. Reflects shared memory type
architecture with assumption of uniform access. Works well at
small scale, but fails as more and more cores are added.

– CUDA
• Modern attempts to solve the problem

– PGAS
– Fortress, X10 …

12

Programmer is responsible for
• Deciding where to perform

computations, e.g., cores, GPUs, SMs
• Deciding how to decompose and

distribute data structures
• Deciding where to place data structures,

including managing caches
• Managing the communication and

synchronization to ensure that the right
data is in the right place at the right time

• All in the face of asynchrony

13

14

Our Approach

1. Develop an abstraction to view different hardware architectures
in a uniform way.
– Abstraction must expose salient architectural features of a

hardware.
– Cost of using those features should be apparent.
– We call this Partitioned Parallel Processing Spaces - PCubeS
Type Architecture: Laurence Snyder, 1986

2. Then develop programming paradigms that work over that
abstraction.
– Paradigms should be easy to understand.
– IT is the first PCubeS language.

Objective: once you learn the fundamentals, you should be able to
write efficient parallel programs for any hardware platform.

Basic idea
• Think of the hardware of consisting of layers of

processing and memory.
– Node layer, socket layer (w/L1, L2, L3), core layer, GPU

layer, SM layer, warp layer.
• Define software “spaces” or “planes” that consist of

processing done at that layer over data structures
defined at that layer.

• Map the software spaces to the hardware layers.
• Sub-divide the spaces into sub-spaces defined by the

partitioning of arrays in the spaces. Processing occurs in
these spaces called Logical Processing Spaces (LPUs).
– This can be done recursively to arbitrary depth.

• LPUs are mapped to physical processing units (PPUs) at
the corresponding hardware layer.

15

Programmer Responsibility
• Programmers are responsible for deciding

which tasks execute in which space, for
partitioning the data within LPSes, and for
mapping the LPSes to PPSes

16

Agenda
• The problem – the five P’s
• Current Practice
• The PCubeS Type Architecture
• IT – a PCubeS language
• Performance
• Conclusions and Future Work

17

18

Partitioned Parallel Processing Spaces
(PCubeS)

PCubeS is a finite hierarchy of parallel processing spaces (PPS) each
having fixed, possibly zero, compute and memory capacities and
containing a finite set of uniform, independent sub-spaces (PPU) that
can exchange information with one another and move data to and
from their parent.

Fundamental Operations of a Space:
• Floating point arithmetic
• Data Transfer

PCubeS Example: Hermes Cluster

19

Cluster

Hermes 1 Hermes 2 Hermes 3 Hermes 4

CPU 1 CPU 2 CPU 3 CPU 4

NUMA-Node 1 NUMA-Node 2

Core-Pair 1 Core-Pair 2 Core-Pair 3 Core-Pair 4

Core 1 Core 2

Space 6

Space 5

Space 4

Space 3

Space 2

Space 1

20

20

The Mira Supercomputer
• Blue Gene Q System
• 49,152 IBM Power PC A2

nodes
• 18 Cores Per Node
• 5D Torus Node Interconnect

Network

PCubeS for Supercomputers

21

PCubeS Example: NVIDIA Tesla K20

21

Source: NVIDIA

• Core frequency 706 MHz
• 2496 CUDA cores
• 6GB on board memory
• 64KB shared memory

• 15 SMs
• Ideally 16 Warps Per SM
• 32 threads read/write at once
• 48 KB shared memory accessible

WarpSM
GPU

Agenda
• The problem – the five P’s
• Current Practice
• The PCubeS Type Architecture
• IT – a PCubeS language
• Performance
• Conclusions and Future Work

22

IT Parallel Programming Language

• Has a declarative pseudo-code like syntax.
• Characterized by emphasis on separation of concerns.
• IT is a PCubeS language.
• Programs and data structures are defined with respect to one

or more possibly nested logical processing spaces (LPSes).
• Data partitioning and mapping are defined separately from

the specification of the algorithm, i.e., the code written by the
programmer is written in a data partitioning and placement-
independent manner.

• Data partitioning and mapping are specified for each target
execution environment and code is generated specifically for
the target environment without the programmer needing to
re-write any code.

Goal: approximate the performance of low level techniques
23

Von Neumann single space

24

Variable Definitions: Instructions Stream:
a: Integer …
b: Integer …
c: Real single-precision c = a / b

Variable Definitions: Instructions Stream:
a: Integer …
b: Integer …
c: Real single-precision c = a / b

Multiple spaces
• Variables and functions exist/operate

in one or more LPSes

25

Variable Definitions:
average, median: Real double-precision
earning_list: List of Integer

Variable Assignments: Instructions Stream:
average, earning_list earning_list = compute_earnings()

average = get_avg(earning_list)

Variable Assignments: Instructions Stream:
median, earning_list …

median = get_median(earning_list)

Space B

Space A

• A space may sub-divide another space
• One can define a large number of spaces

A program
• Consists of a coordinator (main program) and a set of

tasks
– The coordinator reads/parses command line arguments,

manages task execution environments, binds environment
data structures to files, and executes tasks

• Tasks may be executed asynchronously when data
dependence permits

execute(task: task-name;
environment: environment-reference;
initialize: comma separated initialization-parameters;
partition: comma separated integer partition parameters)

Tasks

27

27

Task “Name of the Task”:
Define:

// list of variable definitions
Environment:

// instructions regarding how environmental variables of the task are related to rest of the program
Initialize <(optional initialization parameters)>:

// variable initialization instructions
Stages:

// list of parallel procedures needed for the logic of the algorithm the task implements
Computation:

// a flow of computation stages in LPSes representing the computation
Partition <(optional partition parameters)> :

// specification of LPSes, their relationship, and distribution of data structures in them

Task: define

28

Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

Compute-Stages:
…

}

Task: Stages
• Declarative, data parallel syntax
• Parameter passing by reference,

parameters must be task global or
constant

• Types are inferred. Result is simple
type polymorhism

29

Task: stages

30

Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

stages:
multiplyMatrices(x,y,z) {

do { x[i][j]=x[i][j]+y[i][k]*z[k][j]}
for i, j, in x; k in y

}

…
}

Task: Partition
• Defines how the LPS should be divided

into LPUs and the parts of the data
structures distributed to those LPUs.

31

Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;
…
Partition	(l, k	,q):
Space	A	<2D>	{
c:	block_size(k,	l)
a:	block_size(k)	replicated
b: replicated,	block_size(l)

}
}

All kinds of partitions
• block(int i)
• stride(int i)
• block_stride(int i)
• block_count(int i)
• Recursively sub-partition

32

Partition (L,K):
Space A <un-partitioned> { a,b,c}
Space B <1D> divides Space A partitions {

a:<dim1> block_(L);
d:<dim1> block(L);

}
Space C <1D> divides Space B partitions {

a:<dim2> block(K);
d:<dim2> block(K);

}

33

Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

Environment:
…

Initialize:
…

Compute-Stages:
…

Partition	 (l, k	,q):
Space	A	<2D>	{
c:	block_size(k,	l)
a:	block_size(k)	replicated
b: replicated,	block_size(l)}
}

}

Variables can be partitioned

a

b

c
2D Space A

Partition No (2, 2)

multiplyMatrices stage
executes on the selected
parts of a, b, and c inside
partition (2, 2)

An Illustration of Space Partitioning for a Small Matrix-Matrix Multiply Problem. A block
of rows of a, a block of columns of b, and a block of c are contained in the LPU
corresponding to partition (2, 2).

Partitions define LPUs

34

Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

Environment:
…

Initialize:
…

Compute-Stages:
…

Partition	 (l, k	,q):
Space	A	<2D>	{
c:	block_size(k,	l)
a:	block_size(k)	replicated
b: replicated,	block_size(l)
sub-partition	<1d><unordered>	{
a<dim2>,	b<dim1>:block_size(q)
}
}

}

Sub-partition

a

b

c
2D Space A

Partition No (2, 2)

multiplyMatrices stage
executes on the selected
parts of a, b, and c inside
partition (2, 2)

An Illustration of Space Partitioning for a Small Matrix-Matrix Multiply Problem. A block
of rows of a, a block of columns of b, and a block of c are contained in the LPU
corresponding to partition (2, 2).

Partitions define LPUs

Effect of sub-partition

35

A block of c gets loaded once and
stays

Blocks of columns from
the selected sequence of
rows of a enter and
leave the LPU in
sequence

Blocks of rows from
the selected
sequence of
columns of b enter
and leave the LPU
in sequence

Figure 5: Incremental Data Loading in an LPU
A Space A LPU

Task: Computation
• “main” program of the tasks
Space A {

stageY(args)
Space B {

…
Stage C { …. }
Stage D { …}

}
• All kinds of control flow constructs

supported
36

Space transitions
• Space transitions may cause

communication and/or synchronization
– E.g., different partitions of data structures in

different spaces may cause significant
communication

• Space transitions may cause a flow
control shift between physical layers of
the hardware
– E.g., execution shifts from cores to the GPU

• All the details are handled by the
compiler and run-time

37

Task: computation

38

Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

stages:
multiplyMatrices(x,y,z) {

do { x[i][j]=x[i][j]+y[i][k]*z[k][j]}
for i, j, in x; k in y

}
computation:
Space A {

multiplyMatrices(c, a, b);
}

}

Block matrix multiply

39

To compile we must first map
logical spaces to physical

40

Mapping

41

Cluster

Hermes 1 Hermes 2 Hermes 3 Hermes 4

CPU 1 CPU 2 CPU 3 CPU 4

NUMA-Node 1 NUMA-Node 2

Core-Pair 1 Core-Pair 2 Core-Pair 3 Core-Pair 4

Core 1 Core 2

Space 6

Space 5

Space 4

Space 3

Space 2

Space 1

“Initiate LU" {
Space A: 5// Host

}
“LU Factorization" {

Space A: 4// Socket
Space B: 1 // Core

}
“Block Matrix Multiply" {

Space A: 1// Core
}

Mapping Configuration

Project Status

42

Project Status
• Three compilers: multi-core, segmented (distributed memory

MPI plus multi-core), and hybrid (distributed memory MPI,
multi-core, GPGPU)

• Minimal optimization done. Following get it right then make it
fast approach.

• Collecting base-line results for 5 applications: MM, LuF (2
versions), Integer Sort, finite difference, Monte Carlo.

• Hybrid GPU compiler compiled first codes last month
• Language features and syntax will evolve at the same time.

43

Agenda
• The problem – the five P’s
• Current Practice
• The PCubeS Type Architecture
• IT – a PCubeS language
• Performance
• Conclusions and Future Work

44

Multi-core
• General
– All results for double precision (64-bit)
– Compiler: g++ with -O3 -mtune=native -

march=native -mfpmath=sse
– Sequential codes hand optimized and cache

blocked
• Multi-core tests run on Hermes.
– Four 16-core AMD Opteron 6276. 256GB

memory total.
– Core-pairs share a floating point unit. Thus

only 32 floating point units.

45

Matrix Multiply
Time in seconds for sequential, speedup for others vs sequential

46

1000 2000 4000 8000 10000

Sequential 2.1 18.1 167.4 1560.0 2302.0
OpenMP-32 7.8 3.5 3.1 4.0 4.3
OpenMP-64 6.6 4.4 3.2 3.4 2.4
IT-1 0.8 0.8 0.9 0.8 0.8
IT-4 3.0 3.2 3.4 3.3 3.3
IT-8 5.8 6.1 6.8 6.5 6.6
IT-32 17.8 19.6 24.2 24.4 24.4
IT-64 24.3 27.0 26.2 40.7 40.0

MPI/Multi-core
• Performance comparison is versus a hand

coded/tuned sequential C program.
• Distributed memory tests run on Rivanna.

– Rivanna is a Cray Cluster Solution connected by FDR
(fourteen data rate) Infiniband. Nodes have Intel(R)
Xeon(R) CPU E52670 processors. Each node has two
processors with ten 2.5GHz cores each and each
processor has 32K L1 data cache per core, 32K L1
instruction cache per core, 256K L2 cache per core
and a 25MB shared L3 cache. Nodes 128GB memory.

• Compiler: GNU compiler with O3 optimization
flag for all the tests.

• One MPI task per node. Internal parallelism using
pthreads.

47

Block Matrix Multiply

48

Sequential 10K 1769 20K 11751
Block	size	32	speedup

Cores 10K Efficiency 20K Efficiency
20 11.30 0.57 9.50 0.48
100 57.00 0.57 47.30 0.47
200 117.90 0.59 96.80 0.48
400 231.60 0.58 188.90 0.47

Block	size	64	speedup
Cores 10K Efficiency 20K Efficiency

20 17.90 0.90 18.50 0.93
100 89.39 0.89 91.70 0.92
200 180.10 0.90 183.70 0.92
400 361.50 0.90 368.30 0.92

Hybrid GPU compiler
• Compiler has generated code for less

than a month. Lots of work to be done
still on optimization

• Bigred 2 at Indiana
– Host: 16 core AMD Opteron(TM)

Processor 6276
– GPU: NVIDIA Tesla K20

49

Performance - MM

50

Kepler K-20 Time	(S)
10KX10K Slowdown 20KX20K Slowdown

Handwritten 21.4 171.2
IT	- one	GPU 126.4 5.91 983.6 5.75
IT	- four	GPUs 32.9 1.54 251.4 1.47

Notes:
1) 20K time is an estimate, 8X 10K time. 20K will not fit on card.
2) IT time is better than 50% of the students in parallel computing class
3) Same code on all platforms!
4) Handwritten is ~100GF double precision

Agenda
• The problem – the five P’s
• Current Practice
• The PCubeS Type Architecture
• IT – a PCubeS language
• Performance
• Conclusions and Future Work

51

Take away messages
• Machine hierarchies are getting deeper
• The type architectures and

programming languages must reflect
the physical machine structure

• PCubeS/IT models and implements a
hierarchically nested machine model

52

Take away
• IT is a combined task/data parallel

language
• IT separates the specification of the

computation from
– The physical layer on which it executes
– The partitioning and mapping of the data to

physical resources
• The IT compiler and run-time manage all

communication and synchronization, as
well as dealing with the heterogeneity of
the layers

53

Compiler/Run-Time Status
• Compilers available for V0 language
–Multicore
– Distributed memory MPI with multicore
– Now generating code, but not ready for

distribution: distributed memory MPI with
multicore and CUDA.

54

Future Work
• Results are promising yet still preliminary
• Need to expand the set of codes (we

have five currently) AND
– Extend scale significantly
– Examine the tuning parameter space to

determine whether PCubeS parameters lead
to best performance, e.g., block size

• Compiler/run-time performance bugs
need to be worked out

55

56

Other control flow constructs
do in sequence {statement+}

for $index in Range-Expression
step Step-Expression

do in sequence {statement+}
while Boolean-expression

If (Boolean-expression) {statement+}
Repeat Boolean-expression { nested sub-flow }
Where Boolean-expression { nested sub-flow }
Epoch {nested stages accessing version dependent
data structures }

57

