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I come not to bury MPI 
but to layer on top of it.

2



What is IT?
• IT is an language to experiment with 

PCubeS (multi-space) parallel 
language constructs and performance.

• IT is designed to address the 
challenge of writing portable, 
performant, parallel programs.

• IT is the brain-child of Yan Yanhaona.
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• The problem – the five P’s
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• IT – a PCubeS language
• Performance
• Conclusions and Future Work
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The Problem

Productive, Portable, 
Performing, Predictable, 

Parallel Programs
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Parallel programming is hard
• Seitz once said parallel programming is 

no harder than sequential programming.
• Time spent dealing with parallelization, 

parallel correctness, performance, and 
porting is time not spent on the 
application.

• Optimization is hardware dependent. 
Memory hierarchies are deep and getting 
deeper

• Increasingly heterogeneous 
environments
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The problem is not getting 
any easier

Once solved for one machine 
you then face the portability 

problem
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Problem identified by Snyder
• The salient features of an architecture 

must be reflected in programming 
languages or the programmer will be 
misled.

• The language influences algorithms 
and constrains how the programmer 
can express the solution.
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Lawrence Snyder. Annual review of computer science vol. 1, 1986. 
chapter Type Architectures, Shared Memory, and the Corollary of 
Modest Potential, pages 289–317. Annual Reviews Inc., Palo Alto, CA, 
USA, 1986.



Von Neumann
• Fetch/execute over a flat random 

access memory
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Variable Definitions: Instructions Stream:
a: Integer …
b: Integer …
c: Real single-precision              c = a / b

Variable Definitions: Instructions Stream:
a: Integer …
b: Integer …
c: Real single-precision              c = a / b

• Very successful – the model provides an 
abstraction that has been implemented over a 
wide variety of physical machines.

• Imperative languages map easily to the model.
• The compilers job is relatively simple.



We have not found an analog 
to the Von Neumann machine
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• Hundreds of parallel languages from the 80’s to today
• Dominant life forms

– MPI
• Reflects a type architecture of communicating sequential 

processes quite well. Clearly separates “local” from “remote” 
communication and synchronization.

– Pthreads
– OpenMP

• Syntactic sugar for Pthreads. Reflects shared memory type 
architecture with assumption of uniform access. Works well at 
small scale, but fails as more and more cores are added.

– CUDA
• Modern attempts to solve the problem

– PGAS
– Fortress, X10 …
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Programmer is responsible for
• Deciding where to perform 

computations, e.g., cores, GPUs, SMs
• Deciding how to decompose and 

distribute data structures
• Deciding where to place data structures, 

including managing caches
• Managing the communication and 

synchronization to ensure that the right 
data is in the right place at the right time

• All in the face of asynchrony
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Our Approach

1. Develop an abstraction to view different hardware architectures 
in a uniform way.
– Abstraction must expose salient architectural features of a 

hardware.
– Cost of using those features should be apparent.
– We call this Partitioned Parallel Processing Spaces - PCubeS
Type Architecture: Laurence Snyder, 1986

2. Then develop programming paradigms that work over that 
abstraction.
– Paradigms should be easy to understand.
– IT is the first PCubeS language.

Objective: once you learn the fundamentals, you should be able to 
write efficient parallel programs for any hardware platform.



Basic idea
• Think of the hardware of consisting of layers of 

processing and memory.
– Node layer, socket layer (w/L1, L2, L3), core layer, GPU 

layer, SM layer, warp layer.
• Define software “spaces”  or “planes” that consist of 

processing done at that layer over data structures 
defined at that layer.

• Map the software spaces to the hardware layers.
• Sub-divide the spaces into sub-spaces defined by the 

partitioning of arrays in the spaces. Processing occurs in 
these spaces called Logical Processing Spaces (LPUs).
– This can be done recursively to arbitrary depth.

• LPUs are mapped to physical processing units (PPUs) at 
the corresponding hardware layer.
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Programmer Responsibility
• Programmers are responsible for deciding 

which tasks execute in which space, for 
partitioning the data within LPSes, and for 
mapping the LPSes to PPSes
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Partitioned Parallel Processing Spaces 
(PCubeS)

PCubeS is a finite hierarchy of parallel processing spaces (PPS) each 
having fixed, possibly zero, compute and memory capacities and 
containing a finite set of uniform, independent sub-spaces (PPU) that 
can exchange information with one another and move data to and 
from their parent.

Fundamental  Operations of a Space:
• Floating point arithmetic
• Data Transfer



PCubeS Example: Hermes Cluster
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Cluster

Hermes 1 Hermes 2 Hermes 3 Hermes 4

CPU 1 CPU 2 CPU 3 CPU 4

NUMA-Node 1 NUMA-Node 2

Core-Pair 1 Core-Pair 2 Core-Pair 3 Core-Pair 4

Core 1 Core 2

Space 6

Space 5

Space 4

Space 3

Space 2

Space 1
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The Mira Supercomputer
• Blue Gene Q System
• 49,152 IBM Power PC A2 

nodes
• 18 Cores Per Node
• 5D Torus Node Interconnect 

Network

PCubeS for Supercomputers
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PCubeS Example: NVIDIA Tesla K20
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Source: NVIDIA

• Core frequency 706 MHz
• 2496 CUDA cores
• 6GB on board memory
• 64KB shared memory

• 15 SMs
• Ideally 16 Warps Per SM 
• 32 threads read/write at once
• 48 KB shared memory accessible 

WarpSM
GPU
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IT Parallel Programming Language

• Has a declarative pseudo-code like syntax.
• Characterized by emphasis on separation of concerns. 
• IT is a PCubeS language.
• Programs and data structures are defined with respect to one 

or more possibly nested logical processing spaces (LPSes). 
• Data partitioning and mapping are defined separately from 

the specification of the algorithm, i.e., the code written by the 
programmer is written in a data partitioning and placement-
independent manner.

• Data partitioning and mapping are specified for each target 
execution environment and code is generated specifically for 
the target environment without the programmer needing to 
re-write any code.

Goal: approximate the performance of low level techniques
23



Von Neumann single space
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Variable Definitions: Instructions Stream:
a: Integer …
b: Integer …
c: Real single-precision              c = a / b

Variable Definitions: Instructions Stream:
a: Integer …
b: Integer …
c: Real single-precision              c = a / b



Multiple spaces
• Variables and functions exist/operate 

in one or more LPSes
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Variable Definitions:
average, median: Real double-precision
earning_list: List of Integer

Variable Assignments:       Instructions Stream:
average, earning_list earning_list = compute_earnings() 

average = get_avg(earning_list)

Variable Assignments:         Instructions Stream:
median, earning_list … 

median = get_median(earning_list)

Space B

Space A

• A space may sub-divide another space
• One can define a large number of spaces



A program 
• Consists of a coordinator (main program) and a set of 

tasks
– The coordinator reads/parses command line arguments, 

manages task execution environments, binds environment 
data structures to files,  and executes tasks

• Tasks may be executed asynchronously when data 
dependence permits

execute(task: task-name; 
environment: environment-reference;
initialize: comma separated initialization-parameters; 
partition: comma separated integer partition parameters)



Tasks
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Task “Name of the Task”:
Define:

// list of variable definitions 
Environment:

// instructions regarding how environmental variables of the task are related to rest of the program
Initialize <(optional initialization parameters)>:

// variable initialization instructions
Stages:

// list of parallel procedures needed for the logic of the algorithm the task implements
Computation:

// a flow of computation stages in LPSes representing the computation
Partition <(optional partition parameters)> :

// specification of LPSes, their relationship, and distribution of data structures in them



Task: define
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Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

Compute-Stages:
…

}



Task: Stages
• Declarative, data parallel syntax
• Parameter passing by reference, 

parameters must be task global or 
constant

• Types are inferred. Result is simple 
type polymorhism
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Task: stages
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Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

stages:
multiplyMatrices(x,y,z) {

do { x[i][j]=x[i][j]+y[i][k]*z[k][j]} 
for i, j, in x; k in y

}

…
}



Task: Partition
• Defines how the LPS should be divided 

into LPUs and the parts of the data 
structures distributed to those LPUs.

31

Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;
…
Partition	(l, k	,q):
Space	A	<2D>	{
c:	block_size(k,	l)
a:	block_size(k)	replicated
b: replicated,	block_size(l)

}
}



All kinds of partitions
• block(int i)
• stride(int i)
• block_stride(int i)
• block_count(int i)
• Recursively sub-partition
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Partition (L,K):
Space A <un-partitioned> { a,b,c}
Space B <1D>  divides Space A partitions {

a:<dim1> block_(L);
d:<dim1> block(L); 

}
Space C <1D> divides Space B partitions {

a:<dim2> block(K);
d:<dim2> block(K);

}
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Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

Environment:
…

Initialize:
…

Compute-Stages:
…

Partition	 (l, k	,q):
Space	A	<2D>	{
c:	block_size(k,	l)
a:	block_size(k)	replicated
b: replicated,	block_size(l)}
}

}

Variables can be partitioned

a

b

c
2D Space A

Partition No (2, 2)

multiplyMatrices stage 
executes on the selected 
parts of a, b, and c inside 
partition (2, 2)

An Illustration of Space Partitioning for a Small Matrix-Matrix Multiply Problem. A block 
of rows of a, a block of columns of b, and a block of c are contained in the LPU 
corresponding to partition (2, 2).

Partitions define LPUs
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Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

Environment:
…

Initialize:
…

Compute-Stages:
…

Partition	 (l, k	,q):
Space	A	<2D>	{
c:	block_size(k,	l)
a:	block_size(k)	replicated
b: replicated,	block_size(l)
sub-partition	<1d><unordered>	{
a<dim2>,	b<dim1>:block_size(q)
}
}

}

Sub-partition

a

b

c
2D Space A

Partition No (2, 2)

multiplyMatrices stage 
executes on the selected 
parts of a, b, and c inside 
partition (2, 2)

An Illustration of Space Partitioning for a Small Matrix-Matrix Multiply Problem. A block 
of rows of a, a block of columns of b, and a block of c are contained in the LPU 
corresponding to partition (2, 2).

Partitions define LPUs



Effect of sub-partition
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A block of c gets loaded once and 
stays

Blocks of columns from 
the selected sequence of 
rows of a enter and 
leave the LPU in 
sequence 

Blocks of rows from 
the selected 
sequence of 
columns of b enter 
and leave the LPU 
in sequence 

Figure 5: Incremental Data Loading in an LPU
A Space A LPU



Task: Computation
• “main” program of the tasks
Space A {

stageY(args)
Space B {

…
Stage C { …. }
Stage D { …}

}
• All kinds of control flow constructs 

supported
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Space transitions
• Space transitions may cause 

communication and/or synchronization
– E.g., different partitions of data structures in 

different spaces may cause significant 
communication

• Space transitions may cause a flow 
control shift between physical layers of 
the hardware
– E.g., execution shifts from cores to the GPU

• All the details are handled by the 
compiler and run-time
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Task: computation
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Task	MM	{
Define:
a,	b,	c :	2D	Array	of	Real	double-precision;

stages:
multiplyMatrices(x,y,z) {

do { x[i][j]=x[i][j]+y[i][k]*z[k][j]} 
for i, j, in x; k in y

}
computation:
Space A {

multiplyMatrices(c, a, b);
}

}



Block matrix multiply
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To compile we must first map 
logical spaces to physical
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Mapping
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Cluster

Hermes 1 Hermes 2 Hermes 3 Hermes 4

CPU 1 CPU 2 CPU 3 CPU 4

NUMA-Node 1 NUMA-Node 2

Core-Pair 1 Core-Pair 2 Core-Pair 3 Core-Pair 4

Core 1 Core 2

Space 6

Space 5

Space 4

Space 3

Space 2

Space 1

“Initiate LU" {
Space A: 5// Host

}
“LU Factorization" {

Space A: 4// Socket
Space B: 1 // Core

}
“Block Matrix Multiply" {

Space A: 1// Core
}

Mapping Configuration



Project Status

42



Project Status
• Three compilers: multi-core, segmented (distributed memory 

MPI plus multi-core), and hybrid (distributed memory MPI, 
multi-core, GPGPU)

• Minimal optimization done. Following get it right then make it 
fast approach.

• Collecting base-line results for 5 applications: MM, LuF (2 
versions), Integer Sort, finite difference, Monte Carlo.

• Hybrid GPU compiler compiled first codes last month
• Language features and syntax will evolve at the same time. 
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Multi-core
• General
– All results for double precision (64-bit)
– Compiler: g++ with -O3 -mtune=native -

march=native -mfpmath=sse
– Sequential codes hand optimized and cache 

blocked
• Multi-core tests run on Hermes.
– Four 16-core AMD Opteron 6276. 256GB 

memory total.
– Core-pairs share a floating point unit. Thus 

only 32 floating point units.
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Matrix Multiply
Time in seconds for sequential, speedup for others vs sequential
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1000 2000 4000 8000 10000

Sequential 2.1 18.1 167.4 1560.0 2302.0
OpenMP-32 7.8 3.5 3.1 4.0 4.3
OpenMP-64 6.6 4.4 3.2 3.4 2.4
IT-1 0.8 0.8 0.9 0.8 0.8
IT-4 3.0 3.2 3.4 3.3 3.3
IT-8 5.8 6.1 6.8 6.5 6.6
IT-32 17.8 19.6 24.2 24.4 24.4
IT-64 24.3 27.0 26.2 40.7 40.0



MPI/Multi-core
• Performance comparison is versus a hand 

coded/tuned sequential C program.
• Distributed memory tests run on Rivanna.

– Rivanna is a Cray Cluster Solution connected by FDR 
(fourteen data rate) Infiniband. Nodes have Intel(R) 
Xeon(R) CPU E52670 processors. Each node has two 
processors with ten 2.5GHz cores each and each 
processor has 32K L1 data cache per core, 32K L1 
instruction cache per core, 256K L2 cache per core 
and a 25MB shared L3 cache. Nodes 128GB memory.

• Compiler: GNU compiler with O3 optimization 
flag for all the tests.

• One MPI task per node. Internal parallelism using 
pthreads.
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Block Matrix Multiply
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Sequential 10K 1769 20K 11751
Block	size	32	speedup

Cores 10K Efficiency 20K Efficiency
20 11.30 0.57 9.50 0.48
100 57.00 0.57 47.30 0.47
200 117.90 0.59 96.80 0.48
400 231.60 0.58 188.90 0.47

Block	size	64	speedup
Cores 10K Efficiency 20K Efficiency

20 17.90 0.90 18.50 0.93
100 89.39 0.89 91.70 0.92
200 180.10 0.90 183.70 0.92
400 361.50 0.90 368.30 0.92



Hybrid GPU compiler
• Compiler has generated code for less 

than a month. Lots of work to be done 
still on optimization

• Bigred 2 at Indiana
– Host: 16 core AMD Opteron(TM) 

Processor 6276
– GPU: NVIDIA Tesla K20
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Performance - MM
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Kepler K-20 Time	(S)
10KX10K Slowdown 20KX20K Slowdown

Handwritten 21.4 171.2
IT	- one	GPU 126.4 5.91 983.6 5.75
IT	- four	GPUs 32.9 1.54 251.4 1.47

Notes: 
1) 20K time is an estimate, 8X 10K time. 20K will not fit on card.
2) IT time is better than 50% of the students in parallel computing class
3) Same code on all platforms! 
4) Handwritten is ~100GF double precision
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Take away messages
• Machine hierarchies are getting deeper
• The type architectures and 

programming languages must reflect 
the physical machine structure

• PCubeS/IT models and implements a 
hierarchically nested machine model
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Take away
• IT is a combined task/data parallel 

language
• IT separates the specification of the 

computation from
– The physical layer on which it executes
– The partitioning and mapping of the data to 

physical resources
• The IT compiler and run-time manage all 

communication and synchronization, as 
well as dealing with the heterogeneity of 
the layers
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Compiler/Run-Time Status
• Compilers available for V0 language
–Multicore
– Distributed memory MPI with multicore
– Now generating code, but not ready for 

distribution: distributed memory MPI with 
multicore and CUDA.
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Future Work
• Results are promising yet still preliminary
• Need to expand the set of codes (we 

have five currently) AND
– Extend scale significantly
– Examine the tuning parameter space to 

determine whether PCubeS parameters lead 
to best performance, e.g., block size 

• Compiler/run-time performance bugs 
need to be worked out
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Other control flow constructs
do in sequence {statement+} 

for $index in Range-Expression 
step Step-Expression

do in sequence {statement+} 
while Boolean-expression

If (Boolean-expression) {statement+} 
Repeat Boolean-expression { nested sub-flow } 
Where Boolean-expression { nested sub-flow }
Epoch {nested stages accessing version dependent 
data structures }
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