
Do You Know What Your I/O
Is Doing?

(and how to fix it?)
William Gropp

www.cs.illinois.edu/~wgropp

2

Messages

•  Current I/O performance is often appallingly
poor
♦  Even relative to what current systems can achieve
♦  Part of the problem is the I/O interface semantics

•  Many applications need to rethink their
approach to I/O
♦  Not sufficient to “fix” current I/O implementations

•  HPC Centers have been complicit in causing
this problem
♦  By asking users the wrong question
♦  By using their response as an excuse to keep doing

the same thing

3

Just How Bad Is Current I/O
Performance?

•  Much of the data (and some slides) taken from
“A Multiplatform Study of I/O Behavior on
Petascale Supercomputers,” Huong Luu,
Marianne Winslett, William Gropp, Robert
Ross, Philip Carns, Kevin Harms, Prabhat,
Suren Byna, and Yushu Yao, presented at
HPDC’15.
♦  This paper has lots more data – consider this

presentation a sampling
•  http://www.hpdc.org/2015/program/slides/luu.pdf
•  http://dl.acm.org/citation.cfm?doid=2749246.2749269

•  Thanks to Luu, Behzad, and the Blue Waters
staff and project for Blue Waters results
♦  Analysis part of PAID program at Blue Waters

4

I/O Logs Captured By Darshan, A
Lightweight I/O Characterization Tool

•  Instruments I/O functions at
multiple levels

• Reports key I/O characteristics
• Does not capture text I/O

functions
• Low overhead à Automatically

deployed on multiple platforms.
• http://www.mcs.anl.gov/research/

projects/darshan/

5

Caveats on Darshan Data

•  Users can opt out
♦ Not all applications recorded; typically about
½ on DOE systems

•  Data saved at MPI_Finalize
♦ Applications that don’t call MPI_Finalize,

e.g., run until time is expired and then
restart from the last checkpoint, aren’t
covered

•  About ½ of Blue Waters Darshan data
not included in analysis

6

I/O log dataset: 4 platforms, >1M jobs,
almost 7 years combined

 Intrepid Mira Edison Blue
Waters

Architecture BG/P BG/Q Cray XC30 Cray XE6/
XK7

Peak Flops 0.557 PF 10 PF 2.57 PF 13.34 PF
Cores 160K 768K 130K 792K+59K

smx
Total Storage 6 PB 24 PB 7.56 PB 26.4 PB
Peak I/O
Throughput

88 GB/s 240 GB/s 168 GB/s 963 GB/s

File System GPFS GPFS Lustre Lustre
of jobs 239K 137K 703K 300K
Time period 4 years 18 months 9 months 6 months

7

Very Low I/O Throughput Is The Norm

8

Most Jobs Read/Write Little
Data (Blue Waters data)

9

I/O Thruput vs Relative Peak

10

I/O Time Usage Is Dominated By A
Small Number Of Jobs/Apps

11

Improving the performance of the top
15 apps can save a lot of I/O time

Platform I/O
time percent

Percent of platform I/O
time saved if min thruput
= 1 GB/s

Mira 83% 32%
Intrepid 73% 31%
Edison 70% 60%
Blue Waters 75% 63%

12

Top 15 apps with largest I/O
time (Blue Waters)

• Consumed 1500 hours of I/O time
(75% total system I/O time)

13

What Are Some of the
Problems?

•  POSIX I/O has a strong consistency model
♦  Hard to cache effectively
♦  Applications need to transfer block-aligned and sized data to

achieve performance
♦  Complexity adds to fragility of file system, the major cause of

failures on large scale HPC systems
•  Files as I/O objects add metadata “choke points”

♦  Serialize operations, even with “independent” files
♦  Do you know about O_NOATIME ?

•  Burst buffers will not fix these problems – must change the
semantics of the operations

•  “Big Data” file systems have very different consistency
models and metadata structures, designed for their
application needs
♦  Why doesn’t HPC?

•  There have been some efforts, such as PVFS, but the requirement
for POSIX has held up progress

14

Remember

• POSIX is not just “open, close,
read, and write” (and seek …)
♦ That’s (mostly) syntax

• POSIX includes strong semantics if
there are concurrent accesses
♦ Even if such accesses never occur

• POSIX also requires consistent
metadata
♦ Access and update times, size, …

15

No Science Application Code
Needs POSIX I/O

•  Many are single reader or single writer
♦  Eventual consistency is fine

•  Some are disjoint reader or writer
♦  Eventual consistency is fine, but must handle non-block-aligned

writes
•  Some applications use the file system as a simple data base

♦  Use a data base – we know how to make these fast and reliable
•  Some applications use the file system to implement

interprocess mutex
♦  Use a mutex service – even MPI point-to-point

•  A few use the file system as a bulletin board
♦  May be better off using RDMA
♦  Only need release or eventual consistency

•  Correct Fortran codes do not require POSIX
♦  Standard requires unique open, enabling correct and aggressive

client and/or server-side caching

•  MPI-IO would be better off without POSIX

16

Part 2: What Can We Do
About it?

• Short run
♦ What can we do now?

• Long run
♦ How can we fix the problem?

17

Short Run

•  Diagnose
♦ Case study. Code “P”

•  Avoid serialization (really!)
♦ Reflects experience with bugs in file

systems, including claiming to be POSIX but
not providing correct POSIX semantics

•  Avoid cache problems
♦  Large block ops; aligned data

•  Avoid metadata update problems
♦  Limit number of processes updating

information about files, even implicitly

18

Case Study

• Code P:
♦ Logically Cartesian mesh
♦ Reads ~1.2GB grid file

• Takes about 90 minutes!
♦ Writes similar sized files for time

steps
• Only takes a few minutes (each)!

• System I/O Bandwidth is ~ 1TB/s
peak; ~5 GB/sec per (groups of
125) nodes

19

Serialized Reads

•  “Sometime in the past only this
worked”
♦ File systems buggy (POSIX makes

system complex)
• Quick fix: allow 128 concurrent reads

♦ One line fix (if (mod(i,128) == 0)) in
front of Barrier

♦ About 10x improvement in performance
• Takes about 10 minutes to read file

20

What’s Really Wrong?

•  Single grid file (in easy-to-use, canonical order)
requires each process to read multiple short
sections from file

•  I/O system reads large blocks; only a small
amount of each can be used when each process
reads just its own block
♦  For high performance, must read and use entire blocks
♦  Can do this by having different processes read blocks,

then shuffle data to the processes that need it
•  Easy to accomplish using a few lines of MPI

(MPI_File_set_view, MPI_File_read_all)

21

Fixing Code P

•  Developed simple API for reading arbitrary
blocks within an n-D mesh
♦  3D tested; expected use case
♦  Can position beginning of n-D mesh anywhere in file

•  Now ~3 seconds to read file
♦  1800x faster than original code
♦  Sounds good, but is still <1GB/s
♦  Similar test on BG/Q 200x faster

•  Writes of time steps now the top problem
♦  Somewhat faster by default (caching by file system

is slightly easier)
♦  Roughly 10 minutes/timestep
♦  MPI_File_write_all should have similar benefit as

read

22

Long Run

• Rethink I/O API, especially
semantics
♦ May keep open/read/write/close, but

add API to select more appropriate
semantics
• Maintains correctness for legacy codes
• Can add improved APIs for new codes
• New architectures (e.g., “burst buffers”)

unlikely to implement POSIX semantics

23

Final Thoughts

•  Users often unaware of how poor their I/O
performance is
♦  They’ve come to expect awful

•  Collective I/O can provide acceptable
performance
♦  Single file approach often most convenient for

workflow; works with arbitrary process count
•  Single file per process can work

♦  But at large scale, metadata operations can limit
performance

•  Antiquated HPC file system semantics make
systems fragile and perform poorly
♦  Past time to reconsider in requirements; should look

at “big data” alternatives

24

Thanks!

•  Especially Huong Luu, Babak Behzad
•  Code P I/O: Ed Karrels
•  Funding from:

♦  NSF
♦  Blue Waters

•  Partners at ANL, LBNL; DOE funding

