Failure Detection and Propagation in HPC systems

George Bosilcal, Aurélien Bouteiller', Amina Guermouche!, Thomas
Hérault!, Yves Robert!2, Pierre Sens® and Jack Dongarra'*

1. University Tennessee Knoxuville
2. ENS Lyon, France
3. LIP6 Paris, France
4. Manchester University, UK

CCDSC - October 4, 2016

Failure detection: why?

Nodes do crash at scale (you've heard the story before)

Current solution:

@ Detection: TCP time-out (= 20mn)
® Knowledge propagation: Admin network

Work on fail-stop errors assumes instantaneous failure detection

Seems we put the cart before the horse ®

2/33

Resilient applications

e Continue execution after crash of one node

3/33

Resilient applications

e Continue execution after crash of several nodes

3/33

Resilient applications

e Continue execution after crash of several nodes
o Need rapid and global knowledge of group members

@ Rapid: failure detection
@ Global: failure knowledge propagation

3/33

Resilient applications

e Continue execution after crash of several nodes
o Need rapid and global knowledge of group members

@ Rapid: failure detection
@ Global: failure knowledge propagation

e Resilience mechanism should come for free

3/33

Resilient applications

e Continue execution after crash of several nodes
o Need rapid and global knowledge of group members

@ Rapid: failure detection
@ Global: failure knowledge propagation

e Resilience mechanism should have minimal impact

3/33

Contribution

Failure-free overhead constant per node (memory, communications)

Failure detection with minimal overhead

Knowledge propagation based on fault-tolerant broadcast overlay

Tolerate an arbitrary number of failures
(but bounded number within threshold interval)

4/33

Outline

@ Model

@ Failure detector

© Worst-case analysis

O Implementation and experiments

5/33

Model

Outline

O vodel

6/33

Model

Framework

o Large-scale platform with (dense) interconnection graph
(physical links)

e One-port message passing model
o Reliable links (messages not lost/duplicated/modified)

e Communication time on each link:
randomly distributed but bounded by 7

e Permanent node crashes

7/33

Model

Failure detector

Definition
Failure detector: distributed service able to return the state of any node,
alive or dead. Perfect if:

@ any failure is eventually detected by all living nodes and

® no living node suspects another living node

Definition
Stable configuration: all failed nodes are known to all processes (nodes
may not be aware that they are in a stable configuration).

8/33

Model

Vocabulary

Node = physical resource

Process = program running on node

Thread = part of a process that can run on a single core

Failure detector will detect both process and node failures

Failure detector mandatory to detect some node failures

9/33

Failure detector

Outline

g Failure detector

10/33

Failure detector

Timeout techniques: p observes ¢

e Pull technique
e Observer p requests a live message from ¢
® More messages
® Long timeout

h~l
Q

A

e Push technique [1]
e Observed q periodically sends heartbeats to p
© Less messages
© Faster detection (shorter timeout)

e
\ 2

[1]: W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure detectors.
IEEE Transactions on Computers, 2002

11/33

Failure detector

Timeout techniques: platform-wide

o All-to-all:

© Immediate knowledge propagation
® Dramatic overhead

e Random nodes and gossip:
© Quick knowledge propagation
® Redundant/partial failure information
(observation round with n nodes selecting random target
= expect £ nodes ignored)
® Difficult to define timeout
® Difficult to bound detection latency

12/33

Failure detector

Algorithm for failure detection

— ()
&~
e Processes arranged as a ring

e Periodic heartbeats from a
node to its successor

e Maintain ring of live nodes

— Reconnect ring after a failure
— Inform all processes

/’®H®\
ONFNSO

&

13/33

0 1 2 3 4

I [e S
T T T T T
T T

7. Heartbeat interval

—> Heartbeat

14/33

Failure detector
Reconnecting the ring

0 1 2 3 4
T T 7: Heartbeat interval

—> Heartbeat

14/33

Failure detector
Reconnecting the ring

0 1 2 3

77{]
T n: Heartbeat interval
\\

0: Timeout, § >> 71
—> Heartbeat

=77

14/33

Failure detector

Reconnecting the ring

7. Heartbeat interval
0: Timeout, § >> 7

— Heartbeat
——— Reconnection message

14/33

Failure detector

Reconnecting the ring

7. Heartbeat interval
0: Timeout, § >> 7

— Heartbeat
——— Reconnection message

14/33

Failure detector

Reconnecting the ring

7. Heartbeat interval
0: Timeout, § >> 7

— Heartbeat
——— Reconnection message

Ring reconnected

14/33

Failure detector

Algorithm

task Initialization
emitter; < (i — 1) mod N
observer; « (i + 1) mod N
HB-Timeout < 7
Susp-Timeout < §

end task

task T1: When HB-Timeout expires
HB-Timeout < 7
Send heartbeat(i) to observer;
end task

task T2: upon reception of heartbeat(emitter;)
Susp-Timeout + &
end task

task T3: When Susp-Timeout expires
Susp-Timeout < 2§
D; + D; Uenitter;
dead < emitter;
emitter; < FindEmitter(D;)
Send NewObserver(i) to emitter;

Send BcastMsg(dead, i, D;) to Neighbors(i, D;)

end task

task T4: upon reception of NewObserver(j)
observer; < j
HB-Timeout < 0

end task

task T5: upon reception of
BcastMsg(dead, s, D)

D; <+ D; U {dead}

Send BcastMsg(dead, s, D) to
Neighbors(s, D)
end task

function FindEmitter(D;)
k < emitter;
while £ € D; do
k< (k—1)mod N
return k
end function

15/33

Failure detector

Broadcast algorithm

e Hypercube Broadcast Algorithm [1]

e Disjoint paths to deliver multiple

broadcast message copies 2 3

e Recursive doubling broadcast
algorithm by each node

; 0
¢ Completes if f < UOg(n)J -1 Node Nodel Node2 Node4

(f: number of failures, 1 0 053 045

n: number of live processes) 2 0-1-3 0 0-4-6
3 0-1 0-2 0-4-5-7
4 0-1-5 0-2-6 0
5 0-1 0-2-6-7 0-4
6 0-1-3-7 0-2 0-4
7 0-1-3 0-2-6 0-4-5

[1] P. Ramanathan and Kang G. Shin, 'Reliable Broadcast Algorithm’, IEEE transaction on
computers, 1998

16 /33

Failure detector

Failure propagation

e Hypercube Broadcast Algorithm
e Completes if f < |log(n)| —1 (f: number of failures, n: number of
living processes)
e Completes after 27log(n)

e Application to failure detector

o Ifn#£2!
o k= log(n)]
° 2k <n< 2k+1
e Initiate two successive broadcast operations

e Source s of broadcast sends its current list D of dead processes

e No update of D during broadcast initiated by s

(do NOT change broadcast topology on the fly)

17/33

Failure detector

Quick digression

e Need a fault-tolerant overlay
with small fault-tolerant diameter
and easy routing
e Known only for specific values of n:
o Hypercubes: n = 2F
e Binomial graphs: n = 2*
e Circulant networks: n = cd”
°

18/33

Worst-case analysis

Outline

9 Worst-case analysis

19/33

Worst-case analysis

Worst-case analysis

Failure

\ L L L

Time

Stable at most T'(f) if f faults Stable
Theorem
With n < N alive nodes, and for any f < |logn| — 1, we have
f(f+1)

T(f) < f(f+1)0+ fr+ B(n)

2
where B(n) = 87logn.

o 2 sequential broadcasts: 4t1log(n)

o One-port model: broadcast messages and heartbeats interleaved

20/33

Worst-case analysis
Worst-case scenario

[+

T(f) < f(f+1)0+ fr+ 5

B(n)

R(f) ring reconstruction time
T(f) < R(f) + broadcasts (for the proof)

Process p discovers the death of ¢ at most once

= ¢ — th failed process discovered dead by at most f —i + 1
processes

= at most w broadcasts

For 1< f<|logn|—1,

R(f)<R(f—1)+2f6+71

21/33

Worst-case analysis

Ring reconnection

— - P 7>§1 777777
R(f) S R(f — 1) + 2f6 + T)[};Li%gg to detect the

° R(l) S 27- + 5 S 26 _|_ T 4 detects failure of 2 after 2§
* R(f) < R(f = 1)+ R() rao| [FETT
if next failure non-adjacent to 4 detects failure of 1 after 25
previous ones IS N

Ffe=——-----+A7----- Ring reconnected

e Worst-case when failing nodes G L
. . . _ 7 VB roadcast messages of the
consecutive in the ring Beast kq@//:q o failure of processes 3, 2 and 1
. . ‘- . v ey _____ P
e Build the ring by “jumping B =heartbeat
=Newt server
over platform to avoid Bcast=Broadcast Operation

correlated failures

22/33

Worst-case scenario

T(f) < f(F+1)0+ fr+

23/33

Worst-case analysis

Worst-case scenario

Too pessimisticl?

23/33

Worst-case analysis

Worst-case scenario

@ If time between two consecutive faults is larger than T'(1), then
average stabilization time is 7'(1) = O(logn)

® If f quickly overlapping faults hit non-consecutive nodes,
T(f) = O(log*n)

® If f quickly overlapping faults hit f consecutive nodes in the ring,
T(f) = O(log*n)

Large platforms: two successive faults strike consecutive nodes with
probability 2/n

23/33

Worst-case analysis

Risk assessment wth 7 = 1us

10° T T T T
Hing=20 years
Hing=45 years
10% B Hing=100 years
@
w
©
£
x
©
=
101 . i i i i
1k 50k 100k 150k 200k 250k

Number of nodes (n)

P (< |logy(n)] failures in T'(|logy(n)])) < 0.000000001

o With ping = 45 years, § < 60s = timely convergence
o Detector generates negligible noise to applications (e.g., n = §/10)

24/33

Worst-case analysis

Simulations

Average stabilization time = see paper!

25/33

Implementation and experiments

Outline

o Implementation and experiments

26 /33

Implementation and experiments

Implementation

e Observation ring and propagation topology
implemented in Byte Transport Layer (BTL)
e No missing heartbeat period: Applicati \w
BTL

e Implemented in MPI internal thread
independently from application . |
communications Poll'l op_elj.ﬁon for

e RDMA put channel to directly raise a flag at applicatio .
receiver memory Heartbeat Heartbeat

— No allocated memory, no message wait queue

e Implementation in ULFM / OpenMPI

27/33

Implementation and experiments

study: ULFM

e Extension to the MPI library
allowing the user to provide its
own fault tolerance technique

e Failure notification in MPI calls
that involve a failed process

e ULFM requires an agreement
(broadcast succeeded)

— All live processes need to

participate

e Examples: MPI_COMM_AGREE
and MPI_COMM_SHRINK

28/33

Implementation and experiments

Experimental setup

Titan ORNL Supercomputer

e 16-core AMD Opteron processors
e Cray Gemini interconnect

ULFM

e OpenMPI 2.x
e Compiled with MPI_THREAD MULTIPLE

One MPI rank per core

Average of 30 times

29/33

Overhead% over no FT

Implementation and experiments

Titan (Cray XK7); 256 MPI ranks on 256 cores; 5=nx10; ULFM MPI, uGNI/SM transports, Tuned collective module

IMB 4B Messages IMB 1MB Messages Application

12 T T 4 T T T
Varlablllty w/o FT (01, / 9 Variability w/o FT (o) -~
10 F Missed n Missed n K
7/ / Missed d AL 3| 7/ Missedd XX
| —®— PingPing o AA —#— HPL, N=40,000 K
—6&— PingPong f < AKX
L endRecv 2 AKX
]
////

N

9 0
2 A -"-\.\._/ LA
AANX X
4L L A% 1 L L L
1e+00 1e-01 1e-02 1e+00 1e-01 1e-02 1e+00 1e-01 1e-02

Heartbeat period n (s)

Heartbeat period n (s)

Heartbeat period n (s)

30/33

Detection and propagation delay

Latency (s)

Stabilization delay 5=2.5s
27 1
26 1
25 e e
24 R
23 R
—%—1 :au:t
L 2 faults i
22 4 faults
8 faults
21 i L L
Ok 1k 2k 3k 4k 5k

Implementation and experiments

Titan (Cray XK7); 1 MPI rank/core; 5=nx10; ULFM MPI, uGNIV/SM transports, Tuned collective module

Number of cores

6k

Overhead% over 1 fault

Bri and C Ag with D Failures
140 T T T 14 T T T T T T
ﬂau:ts —>— 6,000 cores
N faults i i
120 8 faults 1.2
100 R 1 B
I
8o | { £ os .
>
H
60 |- 1 & o6 g
©
-
40 - 1 0.4 g
20 1 0.2 1
0 A . . i . 0 . . M- . .
Ok 1k 2k 3k 4k 5k 6k 2 3 4 5 6 7 8

Number of cores

Number of failures

31/33

Implementation and experiments

Consensus in ULFM without fault detector

Post Failure Agreement Cost (Cray XC30)

80000

) 000 ///mvfﬁf*’ﬁ\f*&W*\
e Provided by the system o
20000

@ Timeout: Large to avoid false ; i e
. 2000
positive ® , 150

@ Failures detected by ORTE, which * o0 o e
informs mpirun, which then et
broadcasts w
8

@ Non resilient binary tree structure T
® Delays on the mpirun level to start o

the propagation Bl e

1k 2% 3k L3 5k Bk
#processes

50X improvement with failure detector ©©©

32/33

Conclusion and future work

e Conclusion
e Failure detector based on timeout and heartbeats
o Tolerate arbitrary number of failures (but not too frequent)
e Complicated trade off between noise, detection and risks (of not

detecting failures)
e Implementation in ULFM

o Negligible noise
e Quick failure information dissemination

e Future work

e System-level implementation
e Address trade-off between detection time and risk

33/33

	Model
	Failure detector
	Worst-case analysis
	Implementation and experiments

