Are Killer Apps Killing Exascale?

Al Geist Corporate Fellow Oak Ridge National Lab

> CCDSC 2016 Lyon France October 4, 2016

This is HUGE!

U.S. Exascale System

This is HUGE!
I love this
computer.

- 2009 the goal was to get to exascale by 2018
- 2013 the goal was slipped to 2020
- Today the U.S. Exascale Computing project is targeting 2023

Is it politics, technology, or the lack of any compelling killer apps that is driving out the target date for exascale?

U.S. Exascale timeline driven by 4 year cadence for Leadership computers

DOE Facilities have a fixed 4-5 year cadence Present Roadmap for Largest US supercomputers 2012 - 2022

2017 CORAL 200 PF

2015 Trinity 60 PF

2012 Titan 26 PF and Sequoia 20PF

Power constraints of 20-30 MW facilities and pay-off schedules of 4 year leases limit accelerating this Roadmap to 2020.

U.S. Vendors Surveyed:Asked can you do Exascale sooner? What are Cost, Power, and Space?

2016 U.S. Exascale Project Takes off

The Project has four parts: Apps, SW. HW, Systems, and leverages CORAL-2 The Project has three phases:

- Phase 1 R&D before DOE facilities exascale systems RFP in 2019
- Phase 2 Exascale architectures and NRE are known. Targeted development
- Phase 3 Exascale systems delivered. Meet Mission Challenges

ECP Goals – But what is missing is a driving need – A Killer App

- Develop scientific, engineering, and large-data applications that exploit the emerging, exascale-era computational trends caused by the end of Dennard scaling and Moore's law
- Create software that makes exascale systems usable by a wide variety of scientists and engineers across a range of applications
- Enable by 2023 two diverse computing platforms with up to 50× more computational capability than today's 20 PF systems, within a similar size, cost, and power footprint

What is missing is a driving need that is time sensitive and

- Saves millions of lives, for example a cure for cancer, or
- Has huge global impact, for example cheap, clean, energy production

Exascale Applications – Important But not Time Sensitive

Lot's of "better science" but not an ultimate goal or solution like Higgs Boson

Fundamental Laws (NP)

QCD-based elucidation of fundamental laws of nature:
Standard Model validation and beyond SM discoveries

Climate (BER)

Accurate regional impact assessment of climate change*

Materials Science (BES)

Find, predict, and control materials and properties:

Chemical Science (BES, BER)

Biofuel catalysts design; stressresistant crops

Combustion (BES)

Design highefficiency, lowemission combustion engines and gas turbines*

^{*} Scope includes a discernible data science component

Exascale Applications – Important But not saving millions of lives

Precision Medicine for Cancer (NIH)

Accelerate and translate cancer research in RAS pathways, drug responses, treatment strategies*

Seismic (EERE, NE, NNSA)

Reliable
earthquake
hazard and risk
assessment in
relevant
frequency
ranges*
treaty verification

Genomics (BES)

Protein structure and dynamics; 3D molecular structure design of engineering functional properties*

Metagenomic s (BER)

Leveraging microbial diversity in metagenomic datasets for new products and life forms*

Chemical Science (BES)

Design
catalysts for
conversion of
cellulosicbased
chemicals into
fuels,
bioproducts

Exascale Applications – Important But no guarantee of earth shattering impact

Magnetic Fusion Energy (FES)

Predict and guide stable ITER operational performance with an integrated whole device model*

Nuclear Energy (NE)

Accelerate
design and
commercialization
of next-generation
small modular
reactors*

Wind Energy (EERE)

Increase
efficiency and
reduce cost of
turbine wind
plants sited in
complex
terrains*

Cosmology (HEP)

Cosmological probe of standard model (SM) of particle physics: Inflation, dark matter, dark energy*

Astrophysics (NP)

Demystify origin of universe and nuclear matter in universe*

Conclusion U.S. Exascale Project Has Taken off But How is it going to Land?

- Interest fades because no killer app to sustain and project peters out
- Runs out of gas (budget cut after 5 years) and project crashes
- Excitement maintained and U.S. exascale systems available in 2023 and success "declared" w/o science
- U.S. government understands the Importance of Science and the project goes till science is done in 2025

