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• Background
• Focus on spatial compression
• Best in class lossy compressor
• Open questions

This is what we need 
to compress

(bit map of 128 floating 
point numbers):

Random noise

Factor 10,100
compression

Point wise max error bound: 10-5



Why	compression?
� Today’s scientific research is using simulation or 

instruments and produces extremely large of data sets to 
process/analyze

� In some cases, extreme 
data reduction is needed:
� Cosmology Simulation (HACC):

� A total of >20PB of data when 
simulating trillion of particles 

� Petascale systems FS ~20PB
(you will never have 20PB of scratch for one application)

� On Blue Waters (1TB/s file system), it would take 
20 X 10^15 / 10^12 seconds (5h30) to store the data 
à currently drop 9 snapshots over 10

� Also: HACC uses all the available memory: there is room only 
for 1 snapshot (so temporal compression would not work)



Stone	age	of	compression	for	
scientific	data	sets
� Tools were rudimentary 
à Apply compressors 
developed for integer 
strings (GZIP, BZIP2) or 
images (JPEG2000)

� Tool effects were limited in power and precision
à Low compression factors
à First lossy compressors did not control errors

� No clear understanding on how to improve technology 
à Some did not understand the limits of Shannon entropy 
à Metrics were rudimentary: compression factor & speed

� Cultural fear of using lossy compression for data reduction

10 years ago



Artefacts	of	that	period	(lossless)
� LZ77: leverages repetition of symbol string
� Variable Length Coding (Huffman for example)
� Move to front encoding
� Arithmetic encoding (symbols are 

segments of a line [0,1] of length 
proportional to their probability of 
occurrence)

� Burrows–Wheeler algorithm (bzip2)
� Markov Chain Compression
� Dynamic Statistical Encoding (adapts dynamically the probability 

table of symbols for Variable Length Coding)
� Lorenzo predictor + correction
� Techniques are combined in most powerful compressors: bzip: 

Burrows–Wheeler + Move to front + Huffman 
All these algorithms either leverage string of symbols (bytes) repetition
OR perform probability encoding: variable length coding



Effectiveness	of	the	tools	from	that	
period

P. Ratanaworabhan, Jian Ke ; M. Burtscher Cornell Univ., Ithaca, NY, USA 
Fast lossless compression of scientific floating-point data 
Data Compression Conference (DCC'06) 2006

Compression limited to a factor of 2 in most cases

In SPPM data set, each double value is repeated ~10 times
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Renaissance: the current period (1)
Scientific dataset need specific compressors..
…exploiting their unique properties.

But not all datasets are smooth
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Plotting datasets as time series:



Renaissance	(2):	Increased	
acceptance	of	lossy compression
� Tradeoff between data size and data accuracy

� Specific requirements for usefulness:
� Error-bounded compression: guaranteeing the accuracy of the 

decompressed data for users (multiple metrics). 
à Max error: Typically 10-5, 
à PSNR (f(dynamic, mean squared error))  =>100DB (105)

� Fast compression and decompression (if in-situ, compression time 
should not exceed significantly storage time): x100MB/s on 1 core

Compression Decompression

Compressed data

1/100 of
initial size

Data Data + e



Renaissance	(3):	Explosion	
of	new	ideas
� Lossy compressors

� ANL/SZ, FPZIP-40, ZFP, ISABELA, SSEM, NUMARCK.

� Common techniques used by related work
� Vector Quantization (VQ), Transforms (T), Curve-Fitting/Spline 

interpolation (CFA), Binary Analysis (BA), Lossless compress (Gzip), 
Sorting (only Isabella), Delta encoding (only NUMARCK), Lorenzo 
predictor (only FPZIP)



Argonne	SZ	Best	in	class	compressor	for	scientific	
data	sets	(strictly	respecting	user	set	error	bounds).

� Basic Idea of SZ 1.1 (four steps): 
Step 1. Data linearization: Convert N-D data to 1-D sequence

Step 2. Approximate/Predict each data point by the best-fit curve-
fitting models

Step 3. Compress unpredictable data by binary analysis

Step 4. Perform lossless compression (Gzip): LZ77, Huffman coding
Steps 1-3 prepare for strong Gzip compression
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Step	2	of	SZ	1.1:	Prediction	
by	best-fit	curve	fitting	model

� Use two-bit code to denote the best-fit curve-fitting model
� 01: Preceding Neighbor Fitting (PNF)
� 10: Linear Curve Fitting (LCF)
� 11: Quadratic Curve Fitting (QCF)
� 00: This value cannot be predicted – unpredictable data
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SZ	1.1	Error	control

� Two types of error bounds are supported
� Absolute Error Bound

Specify the max compression error by a constant, such as 10-6

� Relative Error Bound
Specify the max compression error based on the global value 
range size and a percentage

Combination of Error Bounds
Users can set the real compression error bound based on only 
absErrorBound, relBoundRatio, or a kind of combination of them. 
Two types of combinations are provided: AND, OR. 
The combined error bound is then computed by the Min of the 
two error bounds (AND) or the Max (OR)



Evaluation	Results
� Compression Factor (EB: 10-6): original size / compressed 

size

� SZ 1.1 Compression Factor > 10 for 7 of the 13 benchmarks
� SZ 1.1 better than ZFP for all datasets but 2

1.1



Evaluation	Results
� Compression Error 

� Cumulative Distribution Function over the snapshots
� SZ and ZFP can both respect the absolute error bound 10-6 well.
� SZ is much closer to the error bound (ZFP over preserves data 

accuracy)
SZ ZFP

However, in some situations ZFP does not respect the error bound
(observed on the ATM dataset from NCAR)



Evaluation	Results
� Compression Time (in seconds)

ATM                  1.5TB           - 25604     24121                  38680
Hurricane           4.8GB          1152      155         156                      237

High cost due to 
sorting operations

SZ 1.1 compression time 
is comparable to ZFP



More	research	is	needed	(1)
Some	datasets	are	“hard	to	compress”

� All compressors (including SZ) fail to reach high 
compression factors on several data sets:
� BlastBS (3.65), CICE (5.43), ATM (3.95), Hurricane (1.63)
� We call these data sets “hard to compress”

� A common feature of these datasets is the presence 
of spikes
� If you plot the dataset as a time series:

� Example:
� APS data

(Argonne photon 
source)



More	research	is	needed	(2):
What	are	the	right	metrics?
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Variable FREQSH (Fractional occurrence of shallow convection) in ATM Data Sets (CESM/CAM)

Laplacian comparison
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More	research	is	needed	(3):
Respecting	error	bound	does	not	guarantee	temporal	behavior

SZ1.1 SZ1.3

• PlasComCM:	coupled	multi-physics	plasma	combustion	code	(UIUC)	solving	
compressible	Navier-Stokes	equations.

• Truncation	error	is	at	10-5
• We	checkpoint	it	and	restart	from	lossy (EB=10-5)	checkpoints.
• We	measure	derivation	from	lossless	restarts
• Two	different	algorithms	SZ	1.1	(CF:~5)	and	SZ	1.3	(CF:~6)

Gaz

Cylinder

(Images: Jon Calhoun, UIUC)



More	research	is	needed	(4):
Respecting	error	bound	does	not	guarantee	
spatial	behavior

SZ1.1 SZ1.3

Maximal	absolute	error	between	the	numerical	solution	of	momentum	and	the	
compressed	numerical	solution	of	momentum	in	PlasComCM.	

(Images: Jon Calhoun, UIUC)



Conclusion
� The world of compression is fascinating!

� This is just the beginning.

� There is still a lot to be done:
� ”Hard to compress data sets”
� Identify relevant compression metrics
� Understand/control propagation of     

compression error
� Opportunities for co-design

� Preparing a workshop at Argonne in 
March 2017 ”Lossy compression for 
scientific computing and data analytics”

� If you interested, send me an email.  

By the way,  
compression is 
also an art


