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Science Examples
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Pharmaceutical
manufacture & processing

Non-destructive imaging of
fossils

Casting aluminium

Structure of the Histamine
H1 receptor




Data Rates

Detector Performance (MB/s)
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* 2007 No detector faster than ~10 MB/sec
e 2009 Pilatus 6M system 60 MB/s

e 2011 25Hz Pilatus 6M 150 MB/s

e 2013 100Hz Pilatus 6M 600 MB/sec

* 2013 ~10 beamlines with 10 GbE
detectors (mainly Pilatus and PCO Edge)

* 2016 Percival detector 6GB/sec

Thanks to Mark Heron



Cumulative Amount of Data Generated By Diamond

i /
/

Data Size in PB

O | [ [ [ [ [ [
Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16
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Cryo-SXT Data Segmentation of Cryo-soft X-ray
Tomography (Cryo-SXT) data

.

B24: Cryo Transmission X-ray Microscopy beamline at DLS
Data Collection: Tilt series from +65° with 0.5° step size
Reconstructed volumes up to 1000x1000x600 voxels

Voxel resolution: ~40nm currently

Total depth: up to 10um
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Neuronal-like mammalian cell line; single

GOAL: Study structure and morphological changes of whole cells
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boundaries Data Analysis Software Group Laboratory

e Tensto hundreds of organelles per dataset
e Tedioustomanuallyannotate 3D Volume Data Segmentation
e Celltypes can lookdifferent .
e Few previousannotations available

e Automatedtechniques usually fail

scientificsoftware@diamond.ac.uk




Workflow

Data
Preprocessing

Data
Representation

scientificsoftware@diamond.ac.uk

-
Raw Slice Gaussian Filter Total Variation

Data Representation

SuperVoxels (SV) SV Boundaries

SuperVoxels:
® Groups of similarand adjacent voxels in 3D
Preserve volume boundaries
Reduce noise when representing data
Reduce problem complexity several orders of magnitude
Use Local clustering in {xyz + A * intensity}space



Data Representation

Workflow
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Representation Initial Grid with uniformly Local k-means ina small

sampled seeds window around seeds
Voxel Grid Supervoxel

scientificsoftware@diamond.ac.uk 946 x 946 x 200 = 180M voxels 180M / (10x10x10) = 180K supervoxels




Feature Extraction

Workflow .
Features are extracted from voxels to represent their appearance:

® Intensity-based filters (Gaussian Convolutions)

e Textural filters (eigenvalues of Hessian and Structure Tensor)

User Annotation + Machine Learning

Feature Extraction

y

User’s Manual
Segmentations

Predictions Refinement

User Annotations
Classification , , ,
Using a few user annotations along the volume as an input:

l ® A machine learning classifier (i.e. Random Forest) is trained to

Refinement . : :
discriminate between different classes (i.e. Nucleus and Cytoplasm)

and predict the class of each SuperVoxel in the volume.

scientificsoftware@diamond.ac.uk

e A Markov Random Field (MRF) is then used to refine the predictions.



SuRVoS Workbench

(Su)per-(R)egion (Vo)lume (S)egmentation
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Coming soon: https://github.com/DiamondLightSource/SuRVoS

scientificsoftware@diamond.ac.uk

Imanol Luengo <imanol.luengo@nottingham.ac.uk>, Michele C. Darrow, Matthew C.

Spink, Ying Sun, Wei Dai, Cynthia Y. He, Wah Chiu, Elizabeth Duke, Mark Basham,
Andrew P. French, Alun W. Ashton




. Centre for Environmental

Y\ Data Archival

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL
NATURAL ENVIRONMENT RESEARCH COUNCIL
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Data Centres

The Centre for Environmental Data Archival is responsible for the running of the following data centres:

- : The British
Eg?: *&;..tu'lusphe"c Atmospheric

HATIOHAL CENTRE FOR ATMOSPHERIC SCIENCE Data centre
HATURAL ENYIRONHMENT RESEARCH COUNCIL
The British Atmospheric
Data Centre (BADC), NERC's designated data centre for the UK
atmospheric science community, covering climate, composition,
observations and NWP data.

The UK Solar System Data
Centre

The UK Solar System Data Centre, co-funded by

STFC and NERC, curates and provides access to
archives of data from the upper atmosphere, ionosphere and Earth's solar
environment.

NERC Earth
Observation Data
Centre

The NEODC is NERC's designated
data centre for Earth Observation data and is part of NERC's Mational
Centre for Earth Observation.

IPCC Data
Distribution Centre

The Intergovernmental Panel on Climate Change (IPCC) DDC provides
climate, socio-economic and environmental data, both from the past and
also in scenarios projected into the future. Technical guidelines on the
selection and use of different types of data and scenarios in research and
assessment are also provided.



Rising demand
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Large data sets: satellite observations

Sentinel 1A: Launched 2014
(1B due 2016)

Key instrument: Synthetic Aperture Radar
Data rate (two satellites: raw 1.8 TB/day, archive
products ~ 2 PB/year)

NERC

COMET: Centre for Observation and Modelling of
Earthquakes, Volcanoes, and Tectonics
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[Picture credits: ESA, Arianespace.com, PPO.labs-Norut-COMET-SEOM Insarap study, ewf.nerc.ac.uk/2014/09/02/new-satellite-maps-out-napa-valley-earthquake/ )



Rising demand
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Where's this coming from? Scientific Pull underpinned by Technology Push

Core Science Requirements

Atmospheric Model
Big International

Drivers:
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National Centre for Why JASMIN? Centre for Environmental
Atmospheric Science Bryan Lawrence - RAL, June 2016 Data Analysis

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL'
NATURAL ENVIRONMENT RESEARCH COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL




Why JASMIN?

Urgency to provide better environmental
predictions

Need for higher-resolution models
HPC to perform the computation
Huge increase in observational capability/capacity

Massive storage requirement: observational data
transfer, storage, processing

Massive raw data output from prediction models

Huge requirement to process raw model output
into usable predictions (post-processing)

JAMSIN (STFC/Stephen Kill)



JASMIN infrastructure

Part data store, part HPC cluster, part private cloud...

» 16 PB Fast Storage J :
(Panasas, many Tbit/s bandwidth) "// !4’//,/{/// t" 1 (.
» 1 PB Bulk Storage = WP .7 20

» Elastic Tape

» 4000 cores: half deployed as
hypervisors, half as the
“Lotus” batch cluster.

» Some high memory nodes,
a range, bottom heavy.




Some JASMIN Statistics

16 PetaBytes useable high performance spinning disc
Two largest Panasas ‘realms’ in the world (109 and 125 shelves).

900TB useable (1.44PB raw) NetApp iSCSI/NFS for virtualisation + Dell Equallogic PS6210XS for
high 10PS low latency iSCSI

5,500 CPU cores split dynamically between batch cluster and cloud/virtualisation (VMware

vCloud Directorand vCenter/vSphere)
40 Racks
>3 Tera bits per second bandwidth. 10 Capability of ~250GBytes/sec

“hyper” converged networkinfrastructure - 10GbE + MPI low latency (~8uS) + iSCSI over same

network fabric. (No separate SAN or Infiniband)



954 Routes

Non-blocking, low latency, CLOS Tree Network
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768 10GbE Non-blocking

JC2-SP1

16 x 12 x 40GbE = 192 40GbE ports
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16 x MSX1024B-1BFS

Max 36 leaf switches :1,728 Ports @ 10GbE

* Non-Blocking, Zero Contention (48x10Gb

16 x 12 40GbE
954 Routes

« ~1,200 Ports expansion

1,104 x 10GbE Ports CLOS L3 ECMP OSPF



JASMIN “Science DMZ” Architecture

Border Router o Border Router Firewall
Enterprise Border 'a g
Router/Firewall J

WAN

perfS@NAR Offices

Site / Campus
access to Science

DMZ resources Core

Switch/Router

[ perfS®NAR

perfSONAR
&> Frontend
switch
Dedicated
path for virtual
circuit traffic

Front end
switch

Science DMZ

/ Switch/Router

Data Transfer

Nodes
' perfS@NAR |

cuhy st T High Latency WAN Path

security policy y

control points Supercomputer
High Latency WAN Path ;
s isiplloroins SRa/CEnpuR © Lowlatency LAN Path ~ L. T
Data Transfer Node Virtual Gircuits = e
with high-speed storage High Latency VC Path SIS
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Simple Science DMZ Supercomputer Center

http://fasterdata.es.net/science-dmz-architecture



JANET POP

RAL site access routers

Unmanaged cloud

DD

RAL firewall

RAL core switch

JASMIM Data Transfer Zone

g 9 .9

JASMIN DTZ router

CEDAFTP  jasmin-xfer2

perfSONAR
JASMIN main netwark Dept A Dept B
RAL Department routers
JASMIN
head router
LOTUS
GWSss Archive

Managed cloud




The UK Met Office UPSCALE campaign

m Automation

controller

& JASMIN

) Clear data from HPC once

successfully transferred and
data validated




Example Data Analysis

* Tropical cyclone tracking has
become routine; 50 years of
N512 data can be processed
in 50 jobs in one day

* Eddy vectors; analysis we would not attempt on a
server/workstation (total of 3 months of processor time and
~40 GB memory needed) completed in 24 hours in 1,600 batch
jobs

* JASMIN/LOTUS combination has clearly demonstrated the
value of cluster computing to data processing and analysis.

M Roberts et al: Journal of Climate 28 (2), 574-596



The Experimental Data Challenge

* Data rates are increasing, facilities science more data intensive

* Handling and processing data has become a bottleneck to produce science
* Need to compare with complex models and simulations to interpret the data

* Computing provision at home-institution highly variable
* Consistent access to HTC/HPC to process and interpret experimental data
* Computational algorithms more specialised
* More users without the facilities science background

» Need access to data, compute and software services
* Allow more timely processing of data
e Use of HPC routine not “tour de force”
* Generate more and better science

» Need to provide within the facilities infrastructure
* Remote access to common provision
e Higher level of support within the centre
* Core expertise in the computational science
* More efficient than distributing computing resources to individual facilities and research groups



The Experimental Data Challenge

* Data rates are increasing, facilities science more data intensive

* Handling and processing data has become a bottleneck to produce science
* Need to compare with complex models and simulations to interpret the data

* Computing provision at home-institution highly variable
* Consistent access to HTC/HPC to process and interpret experimental data
* Computational algorithms more specialised
* More users without the facilities science background

» Need access to data, compute and software services
* Allow more timely processing of data
e Use of HPC routine not “tour de force”
* Generate more and better science

. L e ada lovelace centre
» Need to provide within the facilities infrastructure

* Remote access to common provision

e Higher level of support within the centre

* Core expertise in the computational science

* More efficient than distributing computing resources to individual facilities and research groups
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The ALC will significantly enhance our capability to support the Facilities’
science programme:

e Theme 1: Cgpacity in advanced software development for data
analysis and interpretation

* Theme 2: A new generation of data experts and software developers,
and science domain experts

* Theme 3: Compute infrastructure, for managing, analysing and
simulating the data generated by the facilities and for designing next
generation Big-Science experiments

» Focused on the science drivers and computational needs of Facilities

28



