
From Automated Theorem Proving to
Nuclear Structure Analysis with Self-

Scheduled Task Parallelism

(a personal history of one programming model)

Rusty	Lusk
Mathematics	and	Computer	Science	Division

Argonne	National	Laboratory

My Theme
§ Application programming	models	should	be	simple.
§ Their	instantiations might	be	more	complex,	and	their	actual	API’s

might	be	even	more	so,	not	to	mention	their	implementations.
§ Also,	the	programming	models	of	the	libraries	that	implement	

them	might	be	more	complex.
§ For	example,	the	message	passing	model is	simple:		people	are	

familiar	with	it	from	physical	mail,	phone	calls,	email,	etc.
§ There	have	been	several	instantiations (PVM,	Express,	EUI,	p4,	

etc.)	and	multiple	implementations	of	MPI.	
– As	an	application	programming	model,	MPI	is	simple	because	

applications	use	the	simple	parts
– the	more	exotic	parts	of	MPI	are	used	by	libraries	to	implement	

simple	application	programming	models	(or	should	be).
§ MPI’s	full	API	is	a	really	a	system	programming	model,	driven	by	

library	developers	developing	portable	libraries	that	implement	
simple	programming	models	for	applications.

3

My Example
§ I	discuss	here	a	simple	programming	model	which	has	managed	to	

remain	simple	through	a	number	of	instantiations	and	
implementations.

§ It	is	related	to,	but	not	the	same	as,	several	current	task-based	
systems.

§ It	was	how	I	wrote	my	first	non-trivial	parallel	programs,	back	
before	the	term	“programming	model”	was	in	use	(I	didn’t	know	it	
was	a	programming	model).

§ I	call	it	“self-scheduled	task	parallelism”	(SSTP).	My	first	work	in	
computer	science,	after	a	stab	at	(very)	pure	mathematics,	was	in	
automated	theorem-proving,	at	Argonne	with	Larry	Wos,	Ross	
Overbeek,	and	Bill	McCune.

§ The	SSTP	model	was	invented	(not	really	on	purpose)	to	
parallelize	the	Argonne	theorem	prover	(Otter).

§ Therefore	I	am	going	to	motivate	it	by	entertaining	you	with	a	
short	introduction	to	automated	theorem	proving.

Outline
§ Some	ATP	successes	(why	automated	theorem	proving	is	

so	much	fun)
§ Resolution-based	automated	theorem	proving

– How	it	works
– A	serial	algorithm
– Some	parallel	algorithms

§ SSTP	for	a	parallel	Prolog	system
§ Why	SSTP	died	out	for	a	while	
§ Resurgence	in	Nuclear	Physics	SciDACproject	as	ADLB

– Asynchronous	Dynamic	Load	Balancing	(ADLB),	a	minimal	PM
– ADLB	is	our	current	instantiation	of	the	SSTP	model

§ Improving	ADLB	with	another	simple	API,	for	memory	
management	(DMEM)

§ Recent	results	and	current	work

Going Way Back…
§ Proposition	4	of	Euclid’s	Elements	(300	BCE)	says	
that	the	base	angles	of	an	isosceles	triangle	are	
equal.		This	theorem	is	called	the	Pons	Asinorum*.	

*	“Bridge	of	Asses”

6

A

CB

Proof:

Euclid

Euclid’s Proof of the Pons Asinorum (From the
Elements)

§ Since AF equals	AG,	and AB equalsAC, therefore	the	two	
sides FA andAC equal	the	two	sidesGA and AB,	respectively,	and	they	
contain	a	common	angle,	the	angle FAG.

§ Therefore	the	base FC equals	the	base GB, the	triangle AFC equals	the	
triangle AGB, and	the	remaining	angles	equal	the	remaining	angles	
respectively,	namely	those	opposite	the	equal	sides,	that	is,	the	
angle ACF equals	the	angle ABG, and	the	angle AFC equals	the	angle AGB.

§ Since	the	whole AF equals	the	whole AG, and	in	
these AB equals AC, therefore	the	remainder BF equals	the	remainder CG.

§ But FC was	also	proved	equal	to GB, therefore	the	two	
sides BF and FC equal	the	two	sides CG and GB	respectively,	and	the	
angle BFC equals	the	angle CGB,while	the	base BC is	common	to	them.	
Therefore	the	triangle BFC also	equals	the	triangle CGB, and	the	remaining	
angles	equal	the	remaining	angles	respectively,	namely	those	opposite	the	
equal	sides.	Therefore	the	angle FBC equals	the	angle GCB, and	the	
angle BCF equals	the	angle CBG.

§ Accordingly,	since	the	whole	angle ABGwas	proved	equal	to	the	
angle ACF, and	in	these	the	angle CBG	equals	the	angle BCF, the	remaining	
angle ABC equals	the	remaining	angle ACB, and	they	are	at	the	base	of	the	
triangle ABC. But	the	angle FBCwas	also	proved	equal	to	the	
angle GCB, and	they	are	under	the	base.

A better proof, found by an automated theorem
proving program in the 70’s

§ Triangle	ABC	is	congruent	to	triangle	ACB	by	the	
side-angle-side	theorem.		Corresponding	angles	of	
congruent	triangles	are	equal.		QED.

§ Also	Pappus,	320	CE
8

A

CB

A More Recent Example

§ The	following	open	question	was	posed	to	our	group	
by	Irving	Kaplansky,	big-cheese	algebraist	at	the	
University	of	Chicago:

§ Is	there	a	finite	semigroup	that	has	an	anti-
automorphismbut	no	involution?

§ Our	program	proved	not	only	was	that	answer	was	
“yes,”	but	that	the	smallest	was	of	order	7	and	there	
were	four	such.

§ Getting	results	publishable	in	math	journals	was	even	
more	fun	than	doing	college	algebra	homework	
problems	and	theorem-proving	benchmarks.

9

Kaplansky

How Resolution Theorem Proving Works

§ Convert	statements	in	1st-order	logic	into	disjunctive	normal	
form,	in	which	all	variables	are	universally	quantified	and	
disjunction	is	the	only	connective.		Implications	become	
disjunctions:

§ x,	P(x)													Q(x)																			-P(x)		v		Q(x)
§ x,	P(x)																																									P(a)												(Skolem constant)
§ Derive	a	new	clause	from	2	existing	clauses	by	“cancellation”:

10

A
E

-P v Q
P

Q

How It Works, continued

§ Variables	get	instantiated	to	make	the	match:

§ To	prove	a	theorem,	state	its	denial	and	derive	a	
contradiction,	denoted	by	the	“null	clause.”

§ The	tricky	bits	are	to	avoid	deducing	too	much	and	controlling	
redundancy

11

All men are mortal.
Socrates is a man.
Socrates is mortal

-Man(x) v Mortal(x)
Man(Socrates)

Mortal(Socrates)

P(a)
-P(a)

“ “

Aristotle

Otter’s Basic Algorithm

§ A	very irregular	computation
§ First	attempt	at	parallelism:	process	new	resolvents in	parallel

– No	good,	 since	not	enough	parallelism,	barrier	before	each	new	given	clause

§ Next	version,	process	multiple	given	clauses	in	parallel
12

3. Process new
resolvents:
Rewrite, filter,
fwd subsumption

Set of
Support

1. Pick
“given clause”

2. Clash
With axioms

Axioms

Rewrite
rules

Keepers

4. Move “keepers”
to set of support

Repeat until you deduce the empty clause, SoS becomes empty,
or you run out of time or memory.

A Parallel Algorithm Without Deletion

§ Task	A:		Pick	a	given	clause	and	carry	out	steps	1-3	from	previous	slide
§ Task	B:		For	each	clause	in	K,	do	final	forward	subsumption test	and	add	to	set	of	

support
§ All	processes:

– If	Keepers	list	is	non-empty	and	no	other	process	is	doing	Task	B,	do	Task	B
– Else	do	Task	A

13

Infer new facts
(Task A)

Fact Database
(axioms + SoS)

“Keepers”
Update Database

(Task B)

This is the origin of SSTP.

A Complete Parallel Algorithm (Roo)

§ Only	one	process	at	a	time	does	B,	the	rest	is	a	free-for	all	with	no	traffic	cop	or	DAG
§ Again,	each	process	executes	same	loop,	acquiring	work,	doing	 it,	making	new	work

14

Infer new facts
(Task A)

Fact Database
(axioms + SoS)

“Keepers”
Update Database

(Task B)

To be deleted

Rewrite facts
(Task D)

Back Subsumption
(Task C)

Some Old (But Good) Results

§ The	”two	inverter”	problem:
– Design	a	circuit,	using	AND,	OR,	and	just	two	NOT	gates,	whose	3	outputs	are	

the	inversions	of	its	three	inputs.
§ In	implicational	propositional	calculus,	the	law	of	hypothetical	syllogism	

can	be	derived	from	a	proposed	single	axiom	by	condensed	detachment:
– -P(x)		v		-P(i(x,y))	 	v		P(y)										(Condensed	detachment)
– P(i(i(i(x,y),z),	 i(i(z,x),	 i(u,x)							(Lukasiewicz	axiom)
– -P(i(i(a,b),	 i(i(b,c),	 i(a,c))))	 							(Denial	of	hypothetical	syllogism)

15

y
x -x

z
-y
-z

Otter-2inv Roo24-2inv Otter-Luka Roo24-Luka
Runtime	(sec.) 47236 2237 29098 1269

Generated 6323644 6351410 6706380 7108289

Kept 21342 21343 20410 18759

Speedup 1.0 21.1 1.0 22.9

§ On 24-processor Sequent

Parallel Prolog

§ Creating/acquiring	work	is	again	
done	by	modifying	a	shared	data	
structure

§ Just	beginning	to	identify	and	
abstract	these	operations	into	
general	putting	work	into,	and	
getting	work	out	of,	a	shared	work	
pool

16

SSTP Takes a Vacation

§ As	the	number	of	processors	multiplied,	shared	memory	
couldn’t	scale,	and	large-scale	parallel	computing	went	to	
message	passing.

§ DOE	lost	interest	in	inference	as	the	hope	of	a	program	
verification	miracle	faded.

§ SSTP	evolved	(backwards)	into	the	manager-worker	
programming	model	(e.g.	Linda)

§ This	solved	beautifully	the	load-balancing	problem	for	
irregular	computations	but	hit	its	own	scalability	problem
– Too	many	workers	for	a	single	manager	to	keep	up	with
– Too	little	memory	for	a	single	manager	to	store	the	structures	
defining	the	work	pool

17

18

Green’s Function Monte Carlo – A Complex Application
§ Green’s	Function	Monte	Carlo	-- the	“gold	standard”	for	ab initio

calculations	in	nuclear	physics	at	Argonne	(Steve	Pieper,	Physics	Division)
§ A	non-trivial manager/worker	algorithm,	with	assorted	work	types	and	

priorities;	multiple	processes	create	work	dynamically;	large	work	units
§ Had	scaled	to	2000	processors	on	BG/L,	then	hit	scalability	wall.
§ Needed	to	get	to	10’s	of	thousands	of	processors	at	least,	in	order	to	carry	

out	calculations	on	12C,	an	explicit	goal	of	the	UNEDF	SciDAC	project.
§ The	algorithm threatened	to	become	even	more	complex,	with	more	

types	and	dependencies	among	work	units,	together	with	smaller	work	
units.		An	extremely	irregular	computation.

§ Wanted	to	maintain	original	manager/worker	structure	of	physics	code
§ This	situationbrought	forth	the	Asynchronous	Dynamic	Load	Balancing	

Library	(ADLB),	giving	up	generality	for	scalability	and	ease	of	use.
§ Achieving	scalability	has	been	a	multi-step	process

– balancing	processing
– balancing	memory
– balancing	communication

§ Now	runs	with	100’s	of	thousands	of	processes

ADLB On One Slide

19

– ADLB_Put(type,	priority,	len,	buf,	target_rank,	answer_dest)
– ADLB_Reserve(req_types,	handle,	len,	type,	prio,	

answer_dest)
– ADLB_Get_Reserved(handle,	buffer)
– and	a	few	housekeeping	calls…

Manager

Worker Worker Worker Worker Worker

Shared
Work pool

Worker Worker Worker Worker Worker

Shared
Work pool

Old Model:

New Model:
ADLB put/get

Application Processes
ADLB Servers

The Model:

The API:

An Implementation:

ADLB abstracts the idea of creating/acquiring work using put/get of work
units into a work pool

ADLB Uses Multiple MPI Features

§ ADLB_Init returns	separate	application	communicator,	so	application
processes	can	communicate	with	one	another	using	MPI	as	well	as	by	using	
ADLB	features.

§ Servers	are	in	MPI_Iprobe loop	for	responsiveness.
§ MPI_Datatypes for	some	complex,	structured	messages	(status)
§ Servers	use	nonblocking sends	and	receives,	maintain	queue	of	active	

MPI_Request objects.
§ Queue	is	traversed	and	each	request	kicked	with	MPI_Test each	time	

through	loop;	could	use	MPI_Testany.		No	MPI_Wait.
§ Client	side	uses	MPI_Ssend to	implement	ADLB_Put in	order	to	conserve	

memory	on	servers,	MPI_Send for	other	actions.
§ Servers	respond	to	requests	with	MPI_Rsend since	MPI_Irecvs are	known	to	

be	posted	by	clients	before	requests.
§ MPI	provides	portability:		laptop,	Linux	cluster,	BG/Q,	Cray
§ MPI	profiling	library	is	used	to	understand	application/ADLB	behavior.

20

A Recent Problem and Its Solution

§ The	multiple	servers	were	originally	
introduced	to	spread	the	
communication	(and	computational)	
load	that	were	swamping	the	one	
master.

§ But	they	also	store	the	data	for	the	
work	units.

§ As	the	work	units	became	larger,	we	
needed	more	servers	for	their	storage	
capability,	exacerbating	the	
synchronization	problem.

§ Solution:	decouple	work	unit	
allocation	from	work	unit	storage.

21

DMEM – A library to provide a shared-memory model
on a distributed-memory machine

§ API	summary:		put,	get,	copy,	free,	get-part,	update
§ User	(application	or	another	library)	refers	to	a	memory	object	

via	a	(small)	handle,	which	encodes	its	location	and	size.
§ DMEM	runs	as	a	separate	thread	in	applications,	sharing	

memory	with	application	processes,	so	local	operations	are	
fast.

§ Optimization:		put	and	copy	operations	are	local	if	possible.
– For	non-local	operations,	multiple	optimization	strategies	
are	possible

§ Looking	ahead,	object	size	is	of	type	MPI_Aint,	which	is	
typically	a	long	int in	C	and	an	integer*8	in	Fortran.

22

DMEM API and Implementation

§ The	API:
– DMEM_Put(void	*,	MPI_Aint,	dmem_handle);
– DMEM_Get(dmem_handle,	void	*);
– DMEM_Get_part(dmem_handle,	MPI_Aint,	MPI_Aint,	void	*);
– DMEM_Copy(dmem_handle,	dmem_handle);
– DMEM_Update(dmem_handle,	MPI_Aint,	MPI_Aint,	void	*);
– DMEM_Free(dmem_handle);

§ The	Implementation:
– At	DMEM_Init,	each	process	forks	a	thread,	which	processes	DMEM	requests	

independently	of	the	application	thread.
– There	is	a	manager	who	keeps	an	approximate	view	of	memory	used	by	DMEM	

on	each	process.
– So	far,	the	manager	has	not	become	a	bottleneck.
– Optimization	problem:	on	DMEM_Put,	where	should	 the	memory	be	allocated?		

(locally	if	possible,	then	round-robin,	 load	balanced,	or	mixture)
– Relies	on	MPI	for	communication

23

How DMEM Helps ADLB

§ DMEM’s	MPI	communicator	is	all	of	GFMC’s	client	(application)	
processes	(not	the	servers).

§ GFMC	is	modified	to	store	work	units	containing	DMEM	
handles	instead	of	the	large	blocks	of	data	that	used	to	be	the	
work	units;	data	is	stored	and	retrieved	via	DMEM_Put and	
DMEM_Get.

§ All	of	application	processes’	total	memory	is	now	available.
§ Work	units	presented	to	ADLB	are	tiny	(contain	handles	

instead	of	entire	work	unit	data).
§ So	way	fewer	servers	are	needed	for	storage.
§ So	ADLB’s	synchronization	challenge	disappears.
§ Everybody	wins!

24

Recent Results for GFMC with DMEM on Theta

§ Theta	is	new	Knights	Landing	– based	machine	at	Argonne,	
with	64	cores/node,	and	we	have	just	started	experiments

§ GFMC	is	hybrid:		OMP	+	ADLB	+	DMEM
– Strong	OMP	scaling	per	node	up	to	#	cores	(1	MPI	rank	on	node)
– Better	throughput	with	multiple	ranks	per	node
– Weak	scaling	with	ADLB	up	to	current	size	of	machine

25

10 50 100 500 1000 50000

10

20

30

Number of nodes (6 MPI ranks/node, 10 threads/rank)

Ti
m

e
(m

in
ut

es
)

GFMC Weak MPI scaling on Theta
11 Monte Carlo samples/node

Each rank uses 9
OMP threads and
one pthread for
DMEM; 6 ranks
per node

A Lurking Future Problem (LFP)

§ (Near)	future	machines	are	going	to	have	lots	of	memory	per	node	(for	huge	work	
units)	and	lots	of	threads	(hardware	and	software)	per	node	(to	work	on	them).

§ What	if	an	ADLB	(or	even	just	a	DMEM)	application	wants	to	utilize	work	units	
whose	size	is	larger	than	2	GB	(approximately	the	size	of	a	32-bit	integer)?

§ ADLB	and	DMEM	are	agnostic	about	the	internal	structure	of	work	units,	so	their	
internal		messages	use	MPI_BYTE	as	their	message	type,	so	the	count	argument	in	
MPI	communications	is	the	size	(in	bytes)	of	the	message.

§ MPI_{Send/Recv}	specifies	the	count	argument	as	an	integer	(still	32	bytes	on	most	
systems).

§ The	MPI-3	forum	decided	not	to	change	this,	because	“long”	messages	could	be	
sent/received	on	an	MPI-compliant	implementation	by	using	MPI	datatypes	to	
lower	the	count	argument	into	the	32-bit	range.

§ But:
– Some	people	(even	me,	an	MPI	enthusiast)	consider	MPI	datatypes	inconvenient.
– Some	important	MPI	implementations	are	not	MPI-compliant!		(e.g.	Mira	and	Titan)

§ Solution:	 	a	long-message	library	for	anyone	who	needs	it:		MPIL
– Looks	like	MPI,	except	for	MPIL_Count in	MPI_Send/Recv,	etc.
– Limited	version	(enough	for	DMEM)	working	now

26

MPIL – MPI Long Messages

§ API
– MPIL_Init(comm)
– MPIL_Send(*buf,	MPI_Count count,	datatype,	rank,	tag,	comm)
– MPIL_Recv(*buf,	MPI_Count count,	datatype,	rank,	tag,	comm,	MPIL_Status

&status)
– MPIL_Finalize(comm)
– MPIL_Probe(…)																(the	tricky	one)
– MPIL_Bcast(...)																	(etc.)

§ Implementation	(in	progress)
– For	MPI-standard-conforming	implementations:

• Construct	datatype	consisting	of	large	number	of	user’s	datatypes
• MPISend/Recv	using	this	datatype	and	32-bit	value	of	count.		Use	(hidden)	struct	

datatype	if	division	has	remainder

– For	implementations	where	the	underlying	communication	layer	can	only	
handle	32-bit-size	messages:
• Divide	user	message	into	multiple	smaller	messages	(chunks).
• Send	header	with	first	chunk,	so	MPIL_Recv	knows	how	many	MPI_Recvs	to	post.
• Use	hidden	communicator	to	help	with	MPIL_Probe.

27

Summary

§ Automated	proving,	an	irregular	computation,	motivated	our	initial	self-
scheduling,	load-balancing	approach

§ ADLB,	its	current	instantiation,	demonstrates	that	by	giving	up	some	
generality,	a	programming	model	can	provide	scalability	without	
complexity	for	(some)	applications.

§ GFMC	motivated	ADLB,	which	motivated	DMEM,	which	motivated	MPIL.
– But	all	3	are	small,	portable,	independent	libraries

§ DMEM	was	a	big	help	to	ADLB,	but	is	potentially	useful	in	a	more	general	
context.		(e.g.	to	exploit	multiple	types	of	memory	in	a	hierarchical	memory	
system).		Needs	wider	user	input.

§ MPIL	will	be	a	simple,	portable	way	to	provide	long	message	support	to	any	
MPI	program	at	lowest	cost.

§ Even	little-bitty	libraries	(i.e.	with	small	API’s)	can	be	useful	in	HPC	physics	
applications	(as	long	as	they	have	a	Fortran	interface,	of	course).

§ Automated	theorem	proving	might	be	currently	somewhat	out	of	fashion,	
but	wouldn’t	it	be	great	if	we	could….

28
Make America logical again!

The End

29

