Barbara Chapman Stony Brook University Brookhaven National Laboratory

a passion for discovery

How To Get Tied Up In Knots

Barbara Chapman Stony Brook University Brookhaven National Laboratory

a passion for discovery

(Near) Real-Time Big Data Streaming Analysis

Barbara Chapman Stony Brook University Brookhaven National Laboratory

a passion for discovery

Major Research Facilities

RHIC

- 2.4 mile circumference
- Studying the origins of universe through ion collisions revealing make up of visible matter
- Discovery of the 'perfect liquid'

National Synchrotron Light Source II

National Synchotron Light Source II

- Soon to be world's brightest X-ray light source
- \$960 million project hundreds of local jobs
- Completed in 2014
- Approx. 3,000 visiting researchers

Center for Functional Nanomaterials

Center for Functional Nanomaterials

- Exploring energy science at the nanoscale
- Building new materials atom-by-atom to achieve desired properties and functions

Brookhaven Science Associates

Big Data Computing in HEP and NP RHIC ATLAS Computing Facility (RACF) & Physics Applications Software (PAS) Groups, BNL Physics Dept

- RACF
 - 15 years of experience at the largest data scales
 - Data sets on order of 100PB (ATLAS is 160 PB today)
- PanDA, LHC's exascale workload manager developed at BNL
 - 2013: ~1.3 Exabytes in 200M jobs, ~150 sites, ~1000 users
 - Continuous innovation needed for scaling: ATLAS data volume increasing 10X in 10 years

- Intelligent networks, agile workload management, distributed

data handling

Next Generation Workload Management and Analysis System For Big Data: Big PanDA

PI: Alexei Klimentov; BNL PAS Group: T.Maeno, S.Panitkin, T.Wenaus; BNL CSI: D.Yu

Science Objectives & Impact

Objectives:

- Factorizing the core components of PanDA
- Evolving PanDA to support extreme scale computing clouds and Leadership Computing Facilities
- Integrating network services and real-time data access to the PanDA workflow
- Real time monitoring and visualization package for PanDA

Impact:

- Enable adoption of PanDA by a wide range of exascale scientific communities
- Provide access to a wide class of distributing computing to data intensive sciences
- Introduce the concept of Network Element as a core resource in workload management
- Provide easy to use and easy to virtualize interface for scientific communities Multiple DOE-supported institutes: BNL, ORNL, ANL, LBNL and US Universities: UTA, Rutgers

Progress & Accomplishments

- Basic PanDA code (server and pilot) is factorized
- PanDA instance at Amazon EC2 is set up (VO independent)
- · Common project with Google was successfully completed
- First implementation of PanDA workflow management system on leadership supercomputer (Titan)
 - Also NERSC and Anselm (Ostrava)
- Successful access to large, otherwise-unavailable opportunistic resources.
- Successful operation of multiple applications required by high energy physics and high energy nuclear physics experiments.
- Networking throughput performance and P2P statistics collected by different sources continuously exported to PanDA database

Brookhaven Science Associates

Computational Science Initiative

Vision: Expand and leverage BNL's leadership in the analysis and processing of large volume, heterogeneous data sets for high-impact science programs and facilities

To achieve this vision BNL has:

 Created Lab-level Computational Science Initiative reporting to DDST

 Begun to build Lab-wide sustainable infrastructure for data management, real-time analysis and complex analysis

- Initial focus: NSLS-II

 Initiated growth of competencies in applied mathematics & computer science aligned with the missions of ASCR, other SC programs

 Established partnerships with SBU, key universities, IBM, Intel, other National Labs

Intelligent Networking for Streaming Data D. Katramatos, S. Yoo, K. Kleese van Dam, CSI

- Streaming Data Analysis on the Wire (AoW)
 - Research and develop framework that enables generic computation on data on the wire, i.e. while in transit in the network
 - Primary goal: provide real-time/near real-time information to facilitate early decision making
 - Data analysis
 - Simple transformations
 - Pattern detection
 - Multitude of applications (sensor networks, IoT, cybersecurity)

(Near-)Realtime Streaming Analytics

Shinjae Yoo (CSI), Dmitri Zakharov (CFN), Eric Stach (CFN), Sean McCorkle (Biology)

Summary and significance

- Streaming analytics is one of the most attractive approach to handle high velocity and high volume data algorithmically due to one pass and limited memory operation
- Our streaming learning algorithms showed performance comparable to batch learning algorithms and superior to legacy streaming algorithms

Data research and capabilities

- Built streaming manifold learning algorithms, which can be applicable to most of unsupervised learnings including feature selection, anomaly detection, and clustering analysis
- Develop streaming analytics algorithms, customized to handle unique challenges in streaming analytics
- Applying streaming analytics on various science problems starting from CFN

Data frontiers

- CFN: near real time analysis of transmission electron microscopy (TEM) images from a 3GB/s image stream
- Biology: processing all known protein pairs to get new level of biological insights
- NSLS-II: applicable to high velocity beamlines at NSLS-II.
- SmartGrid: distributed high velocity data such as PMU for distributed state estimation

Streaming Visual Analytics and Visualization W. Xu, Computational Science Initiative

 Enable visual data interaction including browsing, comparison, and evaluation to steer streaming data acquisition and online data analysis.

CREDIT: CoE for Big Military Data Intelligence

- Big-data real-time analytics research
 - Sophisticated battlefield data fusion and analytics
 - Integrated, scalable data analysis and inference infrastructure
- Multiple sources of data, some real-time, potentially unreliable
 - High volume, velocity, variety; variable, uncertain quality (veracity)
- Stringent requirement for real-time decision-making
- Novel machine-learning algorithms for high-dimensional heterogeneous data sets with missing data
 - Deep learning for advanced feature detection
 - Critical event detection
- Enhancements to Spark for battlefield data, scheduling with real-time constraints, optimization for accelerator-based architectures
- Visualization on large screen and mobile devices
- Collaborators: Prairie View A&M, Stony Brook

CREDIT Real-Time Detection and Decision-Making

Spark: Resilient Distributed Data (RDD)

- Core data management concept in Spark
- Read-only datasets
- Each RDD transforms to another RDD (map, filter, etc)
- Lazy evaluation: RDD values do not materialize unless an action is required (count, collect, save, etc)
- Fault-tolerance is managed using lineage of the RDDs
- A dataset is (resiliently) distributed across the cluster nodes: no single node has all the data, possible recovery from node failures
- In-memory processing: storing computed data across jobs for reuse
- Application Domain: iterative machine learning algorithms and interactive data mining tools

Spark vs. MPI Execution Model

StackExchange *AnswersCount*Benchmark

- Counts average number of answers to a query
- 80GB test data set
- Hadoop saves intermediate data to disk; Spark minimizes disk use
- OpenMP unoptimized
- MPI: could not handle very large files
- Spark scales well up to 64 processes

https://github.com/hrasadi/HPCfBD

BigDataBench PageRank

- BigDataBench implementation of PageRank in Scala
- 16 processes/node, 1,000,000 vertices on SDSC COMET
- Spark with data caching scales well
- Spark's RDMA does not help since little data motion


```
var ranks = links.mapValues(v => 1.0).persist(StorageLevel.MEMORY_AND_DISK)
for (i <- 1 to iters) {
  val contribs = links.join(ranks).values.flatMap {
    case (urls, rank) => val size = urls.size
    urls.map(url => (url, rank / size))
  }.persist(StorageLevel.MEMORY_AND_DISK)
  // This caching is not done in HiBench Implementation
  ranks = contribs.reduceByKey(_ + _).mapValues(0.15 + 0.85 * _)
```

Integrated Platform for Data-Intensive Science

N. Malitsky, NSLS II Control Department, BNL

- Development of a generic data integration platform based on Spark
 - Managing, analyzing, and parallel processing of heterogeneous data sources from experimental facilities and scientific applications
 - Support for hybrid data layer combines NoSQL metadata catalogs and repositories of heterogeneous data files
 - Additional support for multi-dimensional (time-series) datasets and GPUbased image processing, etc.

TensorFlow

- Google's TensorFlow: open source software, since November 2015
- C++, Python; core of TensorfFlow written in C++
- Library of operations that manipulate tensors and persistent variables
 - Tensors are arbitrary dimensionality arrays
 - Element type may be specified or inferred at graph construction time.
 - Elementwise math operations, matrix operations, checkpointing, locks, control flow, neural net building; ML ops (stochastic gradient descent)
 - Control operations include means to express loops
- Run operation specifies what needs to be computed (output)
- Implementation constructs execution graph of operations
 - computes transitive closure of nodes that must be executed to derive outputs
 - determines execution order that respects their dependencies
- Assumes user sets up graph once and executes it thousands or millions of times via Run calls.

Improving TensorFlow Scalability

- TensorFlow intended for parallel execution
 - Modeling phase selects resources
 - Send/receive constructs inserted
 - Better starting point for exploiting HPC systems
 - FT in messaging and periodic checks
 - Persistent variables periodically saved
- Extend interface for new algorithms
 BNL and CREDIT partners
- Map computations in Tensorflow graph to (Data Flow) Task Graph for efficient cluster implementation
 - Instantiation of operations
- Optimize for HPC systems

