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Major Research Facilities 

National Synchotron Light Source II 
    

• 			Soon to be world’s brightest X-ray light source 
 

•   $960 million project - hundreds of local jobs 
 

•   Completed in 2014 
 

•   Approx. 3,000 visiting researchers  

Center	for	FuncConal	Nanomaterials	

Center	for	FuncConal	Nanomaterials	
•  Exploring energy science at the nanoscale 
•  Building new materials atom-by-atom to achieve 

desired properties and functions  

NaConal	Synchrotron	Light	Source	II	
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RHIC 
•  2.4 mile circumference  
•  Studying the origins of universe through ion 

collisions revealing make up of visible 
 matter 

•  Discovery of the ‘perfect liquid’ 



Big Data Computing in HEP and NP 
RHIC ATLAS Computing Facility (RACF) & Physics Applications Software (PAS) 
Groups, BNL Physics Dept 

•  RACF 
-  15 years of experience at the largest data scales 
- Data sets on order of 100PB  (ATLAS is 160 PB today)  

•  PanDA, LHC’s exascale workload manager developed at BNL 
-  2013: ~1.3 Exabytes in 200M jobs, ~150 sites, ~1000 users  
- Continuous innovation needed for scaling: ATLAS data 

volume increasing 10X in 10 years 
-  Intelligent networks, agile workload management, distributed 

data handling  



Science Objectives & Impact 

 
•  Basic PanDA code (server and pilot) is factorized 
•  PanDA instance at Amazon EC2 is set up (VO independent) 
•  Common project with Google was successfully completed 
•  First implementation of PanDA workflow management system 

on leadership supercomputer (Titan) 
•  Also NERSC and Anselm (Ostrava) 

•  Successful access to large, otherwise-unavailable 
opportunistic resources. 

•  Successful operation of multiple applications required by high 
energy physics and high energy nuclear physics experiments. 

•  Networking throughput performance and P2P statistics 
collected by different sources continuously exported to 
PanDA database 

Progress & Accomplishments 

Next Generation Workload Management and Analysis System For Big Data: 
Big PanDA  

PI: Alexei Klimentov; BNL PAS Group : T.Maeno, S.Panitkin, T.Wenaus; BNL CSI : D.Yu  

Objectives : 
•  Factorizing the core components of PanDA  
•  Evolving PanDA to support extreme scale computing clouds and Leadership 

Computing Facilities  
•  Integrating network services and real-time data access to the PanDA workflow 
•   Real time monitoring and visualization package for PanDA 
Impact : 
•   Enable adoption of PanDA by a wide range of exascale scientific communities 
•   Provide access to a wide class of distributing computing to data intensive   

sciences 
•  Introduce the concept of Network Element as a core resource in workload 

management 
•  Provide easy to use and easy to virtualize interface for scientific communities 
Multiple DOE-supported institutes:  BNL, ORNL, ANL, LBNL and US Universities : UTA, Rutgers 

 Running PanDA on Oak Ridge LCF (Titan) 

http://pandawms.org/info 

Running PanDA on Google Compute Engine 
§ We ran for about 8 weeks  
§ Very stable running on the Cloud side. GCE was rock solid. 
§ We ran computationally intensive jobs  

§ Physics event generators, detector simulation, 
§ Completed 458,000 jobs, generated  and processed about 214 M events 
§ Reached Throughput of 15k jobs per day 

Number of cores per 
opportunistic Titan job and 
associated wait times over 
the course of 24 hour test. 



Computational Science Initiative  

Vision: Expand and leverage BNL’s leadership  
in the analysis and processing of large volume, 
heterogeneous data sets for high-impact 
science programs and facilities 
To achieve this vision BNL has: 
•  Created Lab-level Computational Science 

Initiative reporting to DDST 
•  Begun to build Lab-wide sustainable 

infrastructure for data management, real-time 
analysis and complex analysis 
-  Initial focus: NSLS-II 

•  Initiated growth of competencies in applied 
mathematics & computer science aligned with 
the missions of ASCR, other SC programs 

•  Established partnerships with SBU, key 
universities, IBM, Intel, other National Labs 
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Computational Science 



Intelligent Networking for Streaming Data 
D. Katramatos, S. Yoo, K. Kleese van Dam, CSI 

•  Streaming Data Analysis on the Wire (AoW) 
- Research and develop framework that enables generic 

computation on data on the wire, i.e. while in transit in the network 
- Primary goal: provide real-time/near real-time information to 

facilitate early decision making 
-  Data analysis 
-  Simple transformations 
-  Pattern detection 

- Multitude of applications (sensor networks, IoT, cybersecurity) 

-  https://www.bnl.gov/compsci/projects/analysis-on-the-wire.php 



(Near-)Realtime Streaming Analytics 
Shinjae Yoo (CSI), Dmitri Zakharov (CFN), Eric Stach (CFN), Sean McCorkle (Biology)  

Summary and significance 
•  Streaming analytics is one of the most 

attractive approach to handle high velocity 
and high volume data algorithmically due to 
one pass and limited memory operation 

•  Our streaming learning algorithms showed  
performance comparable to batch learning 
algorithms and superior to legacy streaming 
algorithms 

Data frontiers 
•  CFN: near real time analysis of transmission 

electron microscopy (TEM) images from a 
3GB/s image stream 

•  Biology: processing all known protein pairs to 
get new level of biological insights 

•  NSLS-II: applicable to high velocity beamlines 
at NSLS-II. 

•  SmartGrid: distributed high velocity data such 
as PMU for distributed state estimation 

Data research and capabilities 
•  Built streaming manifold learning algorithms, 

which can be applicable to most of 
unsupervised learnings including feature 
selection, anomaly detection, and clustering 
analysis 

•  Develop streaming analytics algorithms, 
customized to handle unique challenges in 
streaming analytics 

•  Applying streaming analytics on various 
science problems starting from CFN 

  

Streaming 
Analysis 



Streaming Visual Analytics and Visualization 
W. Xu, Computational Science Initiative 

•  Enable visual data interaction including browsing, comparison, and evaluation to 
steer streaming data acquisition and online data analysis. 
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Streaming data correlation analysis 
raw multivariate time series data 

online correlation tracker 

Correlation-driven color mapping 

Multi-level 
image set 
browsing 

Multivariate volume 
visualization 

HCL color palette Air pollutants distribution 
over certain region 



CREDIT: CoE for Big Military Data Intelligence  
 
 

•  Big-data real-time analytics research 
- Sophisticated battlefield data fusion and analytics 
-  Integrated, scalable data analysis and inference infrastructure 

•  Multiple sources of data, some real-time, potentially unreliable 
- High volume, velocity, variety; variable, uncertain quality (veracity) 

•  Stringent requirement for real-time decision-making  

•  Novel machine-learning algorithms for high-dimensional heterogeneous 
data sets with missing data 
- Deep learning for advanced feature detection 
- Critical event detection 

•  Enhancements to Spark for battlefield data, scheduling with real-time 
constraints, optimization for accelerator-based architectures 

•  Visualization on large screen and mobile devices 

•  Collaborators: Prairie View A&M, Stony Brook  



CREDIT Real-Time Detection and Decision-Making 
 

13 



Spark: Resilient Distributed Data (RDD) 

§  Core data management concept in Spark 
§  Read-only datasets 
§  Each RDD transforms to another RDD (map, filter, etc) 
§  Lazy evaluation: RDD values do not materialize unless an 

action is required (count, collect, save, etc) 
§  Fault-tolerance is managed using lineage of the RDDs 
§  A dataset is (resiliently) distributed across the cluster nodes: 

no single node has all the data, possible recovery from node 
failures 

§  In-memory processing: storing computed data across jobs for 
reuse 

§  Application Domain:  iterative machine learning algorithms and 
interactive data mining tools 

RDD1 RDD2 
Transformation1 

RDD3 
Transformation2 action1 

Value 
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 StackExchange AnswersCount 
Benchmark 

•  Counts average number of 
answers to a query 

•  80GB test data set 
•  Hadoop saves intermediate 

data to disk; Spark 
minimizes disk use 

•  OpenMP unoptimized  
•  MPI: could not handle very 

large files 
•  Spark scales well up to 64 

processes  
  0
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https://github.com/hrasadi/HPCfBD 



BigDataBench PageRank 
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var ranks = links.mapValues(v => 1.0).persist(StorageLevel.MEMORY_AND_DISK) 
for (i <- 1 to iters) { 
  val contribs = links.join(ranks).values.flatMap { 
    case (urls, rank) => val size = urls.size 
    urls.map(url => (url, rank / size)) 
  }.persist(StorageLevel.MEMORY_AND_DISK) 
  // This caching is not done in HiBench Implementation 
  ranks = contribs.reduceByKey(_ + _).mapValues(0.15 + 0.85 * _) 
} 

•  BigDataBench implementation of 
PageRank in Scala 

•  16 processes/node, 1,000,000 
vertices on SDSC COMET 

•  Spark with data caching scales well 
•  Spark’s RDMA does not help since 

little data motion 



Integrated Platform for Data-Intensive Science 

•  Development of a generic data integration platform based on Spark 
-  Managing, analyzing, and parallel processing of heterogeneous data 

sources from experimental facilities and scientific applications 
-  Support for hybrid data layer combines NoSQL metadata catalogs and 

repositories of heterogeneous data files 
-  Additional support for multi-dimensional (time-series) datasets and GPU-

based image processing, etc. 

N. Malitsky, NSLS II Control Department, BNL 

EPICS V4  
Middle Layer 

Meta Data  
Store 

Beamline  
Control Data 
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Control Data 

Data Broker API 
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Data 

Scientific  
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Parallel Access and Processing 
Heterogeneous Data Sources 



TensorFlow 

•  Google’s TensorFlow: open source software, since November 
2015 

•  C++, Python ; core of TensorfFlow written in C++ 
•  Library of operations that manipulate tensors and persistent 

variables 
-  Tensors are arbitrary dimensionality arrays  
-  Element type may be specified or inferred at graph construction time.  
-  Elementwise math operations, matrix operations, checkpointing, locks, 

control flow, neural net building; ML ops (stochastic gradient descent) 
-  Control operations include means to  express loops 

•  Run operation specifies what needs to be computed (output) 
•  Implementation constructs execution graph of operations 
-  computes transitive closure of  nodes that must be executed to derive 

outputs  
-  determines execution order that respects their dependencies  

•  Assumes user sets up graph once and executes it thousands 
or millions of times via Run calls. 



Improving TensorFlow Scalability 

•  TensorFlow intended for parallel 
execution  
-  Modeling phase selects resources  
-  Send/receive constructs inserted 
-  Better starting point for exploiting HPC 

systems 
-  FT in messaging and periodic checks 
-  Persistent variables periodically saved 

 
 
•  Extend interface for new algorithms 
-  BNL and CREDIT partners 

•  Map computations in Tensorflow 
graph to (Data Flow) Task Graph 
for efficient cluster implementation 
-   Instantiation of operations  

•  Optimize for HPC systems 

Tensorflow 

Compiler analyzes 
computational 

graphs, operations 

Data Flow Graphs 

Distributed Program 

Heterogeneous 
Cluster 




