Sustaining the Data Ecosystem –

There is no free lunch but you still need to eat ...

CCDSC 2016

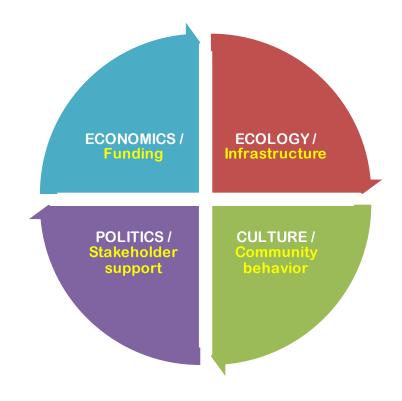
Dr. Francine Berman

Chair, Research Data Alliance/US
Hamilton Distinguished Professor, RPI

Why does Sustainability Matter?

- Data drives discovery and innovation
- Sustainable data ecosystem necessary to support
 - Public access to research data
 - Use and re-use of data
 - Reproducibility of results
 - Data management plans
- Data stewardship and preservation fundamental: "Homeless" data ceases to exist

Social and Technical Approaches Both Needed for Sustainability


Sustainable development:

"development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

Our Common Future, U.N. Brundtland Commission

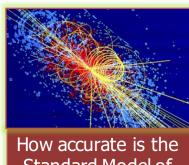
Key components

- Ecological sustainability
- Cultural sustainability
- Economic sustainability
- Political sustainability

Ecology / Infrastructure -- Making data available isn't good enough

Ecology / Infrastructure -- Making data available isn't good enough

- Infrastructure needed to support data-driven research and innovation.
 - Data is not an asset if you don't know what it means.
 - Data is not useful if you can't find it.
 - Data needs to be in the right form for analysis.
 - Data needs to be preserved for results to be reproducible.


Technical and Social Infrastructure Needed to Support Data-Driven Research

Who is at risk for asthma?

How do we increase agricultural productivity?

How accurate is the Standard Model of Physics?

Interoperability Frameworks

Digital Object Identifiers

Domain and Institutional Repositories

Data Sharing Policy

Curation Practice and Policy

Common Metadata Standards

Data
Analytics Algorithms

Data Citation Standards Data
Discovery Tools

Sustainable Economics

Data Access and Distribution Policy

Auditing, Certification and Reporting Practice

Accelerating the building and coordinating better/more/useful data infrastructure – Research Data Alliance (RDA)

Research Data Alliance (RDA) rd-alliance.org:

Global community-driven organization whose mission is to build and deploy social and technical infrastructure that enables data sharing.

Membership: 4300+ from 110 countries, all sectors, and a broad spectrum of domains:

 Broad community spanning "data consumers" to "data providers" including domain scientists, data scientists, data professionals, information scientists, librarians, computer scientists, technologists, policy makers, educators, etc.

- RDA Interest Groups identify/explore data infrastructure needed to enable data-driven research
 - Domain Repositories Interest Group
 - Chemistry Research Data Interest Group
 - Legal Interoperability Interest Group
 - Health Data Interest Group
 - <You initiate> Interest Group
- RDA Working Groups build and deploy infrastructure that addresses specific problems
 - Dynamic Data Citation Working Group
 - Wheat Data Interoperability Working Group etc.
 - <You initiate> Working Group
- Adopters utilize RDA infrastructure to improve local environment for data sharing and data-driven research.

RDA focus: (70+) RDA Working Groups and Interest Groups fostering better Curation, Management, Stewardship and Use

Policy, Good Practice, Community Standards, Education, Awareness, etc. ...

Tools, frameworks, models, registries, portals, etc.

Social/organizational solution aimed at data provider

- RDA/CODATA legal interoperability of data Interest Group
- Domain Repositories Interest Group
- National Data Services Interest Group
- RDA/CODATA Materials Data, Infrastructure and Interoperability Interest Group

Social/organizational solution aimed at data consumer

- RDA/CODATA Summer Schools in Data Science and Cloud Computing in the Developing World Interest Group
- Dynamic Data Citation Working Group
- Data Rescue Interest Group
- Ethics and Social Aspects of Data Interest Group

Technical solution aimed at data provider

- Data Type Registries Working Group
- Preservation e-infrastructure Interest Group
- Libraries for Research Data Interest Group
- BioSharing Registry Working Group

Technical solution aimed at data consumer

- Wheat Data Interoperability Working Group
- Digital practices in History and Ethnography Interest Group
- Marine Data Harmonization Interest Group
- Chemistry Research Data Interest Group

Data Provider Consumer

BENEFICIARY

Data

Fechnical

Economics / Funding — Who should pay the data bill and what do we need to support?

Economics / Funding – Who should pay the data bill and what do we need to support?

Data infrastructure costs increase with usage, stewardship and access requirements, perceived value

Greater costs at the extremes (including "big" data) ...

Data Center Costs include

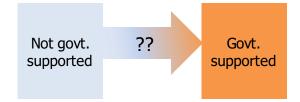
- Maintenance and upkeep
- Software tools and packages
- Utilities (power, cooling)
- Space
- Networking

- Security and failover systems
- People (expertise, help, infrastructure management, development)
- Training, documentation
- Monitoring, auditing
- Reporting costs
- Costs of compliance with regulation, etc.

Why are Infrastructure Investments such a hard sell?

- Quantifying opportunity cost a challenge
- Hard to "market" compared to more urgent/newsworthy/short-term competing priorities
- Business model must be sustainable and address infrastructure refresh and evolution

	Archival Storage Systems	Supercomputers
Metrics of Success	High reliability; Minimal data loss and damage	High Performance; good ranking on the Top500 list; application impact
Next Generation Systems	Smooth migration for data key: Preservation collections must migrate to new media without loss of data or disruption to users	Growth in capability/capacity key: Compatibility of systems not required although there should be application transition paths
Funding Model	No gaps. Funding must be available for continuous support of data collections	Serial "one time" funding for each new HPC resource possible



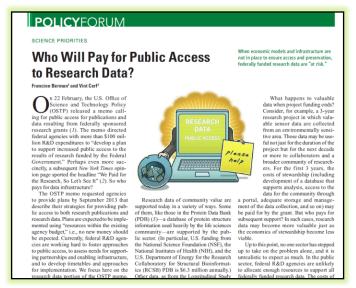
There's no free lunch but you still have to eat How can we pay for/sustain research data and infrastructure?

Academic Sector

Create sustainable university library and domain repository stewardship options

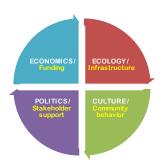
Public Sector

Clarify public sector stewardship commitments: articulate what data will / won't be supported



Private Sector

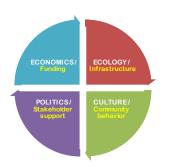
Facilitate private sector stewardship of public access research data as a public good


Public access version at http://www.cs.rpi.edu/~bermaf/

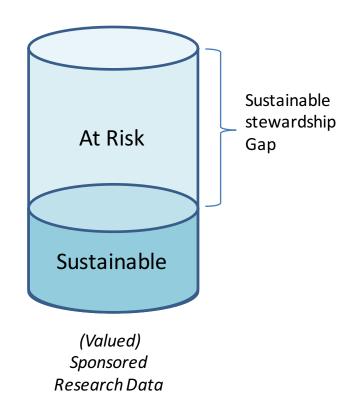
Individuals

Charge low-barrier-toaccess fees for data / Advertise / Subscribe

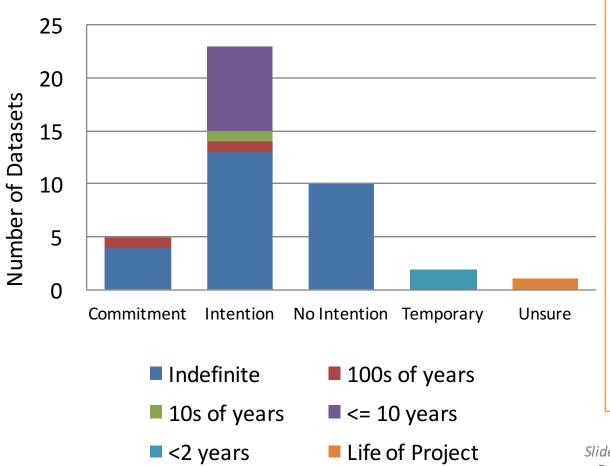
Evolve research culture to adapt what works in the private sector



Culture / Community behavior – How can we minimize risk for valued open data?



Culture / Community behavior — How can we minimize risk for valued open data?


- How much public research data is at risk?
- U.S. National Institute of Health estimates for 2011
 PubMed Central publications:
 - 12% of publication data sets deposited in recognized repositories, 88% of the data sets were invisible
 - Estimated approximately 200,000-235,000 invisible data sets generated NIH work published in 2011
 - 87% of the invisible data sets are new, 13% reflect data re-use
 - More than 50% of the datasets were derived from live human or animal subjects
- Community practice key to sustaining the data ecosystem

Type of Commitment and Term of Value

Researchers believe their data have longterm value.

For datasets with >10 years of value:

- 2 out of 37 have a matching commitment
- ~1/4 have no explicit intention to preserve

Slide courtesy of Jeremy York from iPRES 16
Presentation. Stewardship Gap Project
http://www.colorado.edu/ibs/cupc/stewardship-gap/

Many Stewardship gaps, many characterizations of "valued data"; Focused, strategic community practice can increase sustainability

Resource Gaps:

- Insufficient funding
- Insufficient staff
- Insufficient information
- Lack of facilities

Responsibility Gaps:

- Insufficient institutional and individual commitments
- Differing expectations of researchers, stewards, and stakeholders
- Insufficient stewardship and sustainability planning
- Insufficient compliance with policy and regulation

Infrastructure gaps:

- Insufficient tools for management, use, discovery, preservation
- Insufficient tools and frameworks for access and sharing

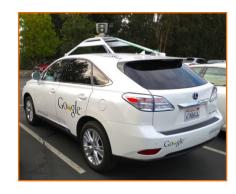
One approach does not fit all:


Differential policy, practice, resources, education/training, etc. can be used strategically to address various gaps

	Type of Gap			
ne				
Fype of Value				
/pe c				
1				

Politics / stakeholder support --How to maximize benefits of data for the public good?

Politics / stakeholder support --How to maximize benefits of data for the public good?


Internet of Things (IoT): Enabling environment or Lord of the Flies? How should the IoT be managed / organized?

- Who develops its "laws"?
- Who enforces them?
- Can you opt out?

Which decisions should be made by technology?
When does your privacy matter more than the needs of others?

Does your computer know good from evil?

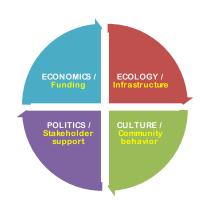
What does Governance Mean for the IoT?

Adapting the World Governance Index (based on the UN Millennium Declaration), key governance themes span

Peace and Security	\rightarrow	IoT Security, Trust, Safety, Crime
Democracy and Rule of Law	\rightarrow	Legal framework for determining appropriate and inappropriate behavior, responsibility, accountability
Human Rights and Participation	\rightarrow	IoT "Bill of Rights"? – Right to Privacy, Right to control information, Right to opt out, etc. Framework for promoting "equality" and penalizing "discrimination"
Sustainable development	\rightarrow	Architectures, standards, policy, infrastructure, etc. to promote evolutionary and sustainable growth
Human development	\rightarrow	Digital ethics, use of technology to advance / actualize its participants and contribute to well-being

IoT "Future Work" – Academic underpinnings and public development of governance, policy and social structures

Is the IoT a society?


- Who are its citizens? What are their rights?
 What is its ethnography? Will it be possible to live outside the IoT?
- What should its ethical code be? What is the "common good"? Do we need "artificial ethics" in conjunction with artificial intelligence?
- How do we implement and enforce social and governance structures for communities of devices, humans, systems, organizations, groups, hybrids? Does your toaster get a vote?

Social behavior begins with the individual: How you can help build a sustainable data ecosystem

- ECOLOGY / Infrastructure
 - Contribute to the development / adoption of data infrastructure for your problem/community and share it with others
 - Make your data accessible (as appropriate) by curating it and ingesting it into a publicly accessible repository
 - Create a data management plan that realistically describes what's needed throughout the entire data life cycle
- ECONOMICS / Funding
 - Budget realistically for the costs of data stewardship and preservation
 - Make data stewardship and preservation a fiscal priority for your project, institution or organization

- CULTURE / Community behavior
 - Contribute to or create a local / community culture of data sharing
 - Cite and publish your data when you write about your results.
 - Work with your professional societies and conferences to include "data sessions" and publications (idea from Sibel Adali)
- POLITICS / Stakeholder support
 - Make the case to stakeholders that data infrastructure is critical and a priority to ensure the accessibility of the data that drives innovation
 - Create / adopt / support policy and practice that enables the development and continued maintenance of sustainable stewardship, data sharing, and broad access