(1)Mini-Ckpts: Surviving OS Failures
in Persistent Memory
(2) Ptune: Power Tuning HPC Jobs

Frank Mueller
North Carolina State University

in collaboration with
ORNL, SNL, LLNL
NC STATE UNIVERSITY

Department of Computer Science

M Lawrence Livermore Sandia
—d National Laboratory National
Laboratories

National Laboratory

(1) Mini-Ckpts: Protect the Operating System

e Why protect OS? - Any failure causes "panic”, loss of all
unsaved computation. OS remains the last unprotected piece

e Objective: Let app survive if OS fails, recover OS quickly

o Design of Mini-Ckpts:
— Identify minimal process state @ failure
— Identify common instrumentation points in OS to save state
— Warm reboot OS on failure, preserve app and continue exec.

e Implementation:
— Process protection from kernel failures at syscalls
— App lives in persistent memory

e Evaluation:
— cost of mini-ckpts and warm-rebooting a failed OS
— application survival for injected kernel faults (OpenMP+MPI)

Mini-ckpts Overview

e Requires specialized kernel > new NMI for panic shutdown
e Requires persistent memory > Linux PRAMFS

e Protection

— Checkpoint (serialize) structures describing a process

— Migrate memory to persistent region (survives warm reboot)
— continue execution...

-During interruption (syscall, interrupt IRQ, interrupt NMI)
record state of thread(s) registers l

(e No

i | [e | Tgmen]

Warm Reboot

e Time from kernel panic until
— (a) kernel is loaded, and

— (b) software stack initialized from PRAMFS

-Single largest kernel boot cost: network initialization

e Warm Reboot Total > time at which app may be restored/resumes

e Virtual machines (VMs) do not require initializing physical h/w
— i.e., network cards

(measured BIOS Kernel Network Driver & Kernel Software Cold Total / Warm \
in seconds) Boot Time |JBoot Total | NFS-Root Mounting Misc Stack Total w/ BIOS Reboot Total
AMD Bare Metal 374 53 1.5 4.8 0.7 503 6.0
Intel Bare Metal 50.8 6.7 3.0 3.7 0.7 73.0 7.4
AMD VM — 0.8 = 0.2 < 0.6 3.0 — 3.8
Intel VM — 0.7 / = (2 < 05 1.3 — \ 1.9 /

/

Experiments (Excerpt)

e We make apps resilient if OSfails

e Rejuvenates kernel,
apps survives in persistent memory

e Ckpt/restart is expensive for HPC apps
— OS5 crash > fwd progress w/o restart

e Warm reboots in ~6 seconds
— 5%-8% overheads, threaded+MPT apps, scalable in # threads

/\

Rurtime in Seconds

20 T

P
G0 |
50
40 +
30
20 F

10 - N

| | | |
Baseline ===
Mini-ckpts Enabled i

NN

BT CG EFP FT 15 LU MG SP LA

(measured BIOS Kernel Network Driver & Kernel Software Cold Total / Warm \
in seconds) Boot Time |JBoot Total | NFS-Root Mounting Misc Stack Total w/ BIOS Reboot Total
AMD Bare Metal 374 53 1.5 4.8 0.7 503 6.0
Intel Bare Metal 50.8 6.7 3.0 3.7 0.7 73.0 7.4
AMD VM — 0.8 = 0.2 < 0.6 3.0 — 3.8
Intel VM — 0.7 / = (2 < 05 1.3 — \ 1.9 /

/

Mini-Ckpts Summary

e Today's OS's not designed with fault tolerance in mind
— Mini-ckpts provides resilience to appliations if kernel fails
— Rejuvenates kernel, apps survives in persistent memory (PRAMFS)

e Ckpt/restart is expensive for HPC apps
— mitigating an OS crash allows forward progress w/o restart

e Mini-ckpts identifies key OS changes & structures req'd for resilience

e Warm reboots complete in ~6 seconds, overheads between 5%-8%
— Both threaded and MPI applications recoverable
— Scalable in # threads

1st ever transp. OS fault tolerance w/o loss of state

Apps could outlive OS > even if OS instable

(2) Ptune: Power Tuning HPC Jobs

Target : Exascale by 2020 i.e. 2'® FLOPS
Today: Sunway TaihuLight
93 PFlops ~ 0.1 Exaflops w/ 15.37 MW - 1 Exaflops w/ 150MW?

US DOE power budget of 20MW per exaflop system

Goal : Maximize(Performance per Watt)

Buy more nodes than can be powered

[l Peak Power]l Medium Power | Low Power

need order of magnitude improvement in performance + power together!

Today: only 60% of the procured power used after Linpack burn-in
Solution: Hardware overprovisioning

] [
m m m ‘I : \
o
I

WCP

Processors Vary in Power Draw

e under fixed performance
e Packages from the same Stock Keeping Unit (SKU)
e Peak Performance: Uniform; Peak Power: 30% Variation

e Potential Causes: Process variation, Thermal variation, etc.

2 - + Unbounded Power A
A Processor Temperature

120
|

100 110
| 1
08
1

90
0.8
I

Peak Power [W]
Normalized Data

80

0.7
1

70

0 1$Packta_qe 3||:D 400 500 1(;0 Pa@kagé IDzulm 500 600 8

Performance Variation with Power Caps

e Intel: Running AV g Power Limit ‘__(,each color represents a processor
) o

(RAPL): _
— PKG (processor) g 2 -
— DRAM =0
* measures avg. power short period £,
® can set power cap ‘i’ ”
- will never exceed this level S -

I | | | I | |
50 60 70 80 90 100 110
e Data for 600 Intel Ivy Bridge processors Package Power [W]

e Performance : Instructions Per Second (IPS)

e 30% Performance Variation

> Variability in peak power — Performance variation

> Power-Performance curves differ from application to application

Power Efficiency

e power efficiency .= instructions retired per second (IPS) per Watt

e Variation in peak power efficiency (each color represents a processor)

e Less efficient processors are most
efficient at higher power bounds

0.75
|

Most Efficient

Variability in peak power
- Variation in peak power
efficiency

[east Efficient

IPS/W [in Billions]
0.65
|

0.55
|

50 60 70 80 90 100 110
Package Power [W]

Power efficiency curves differ from application to application

10

Power-aware job scheduling and tuning

For all jobs, determine:
1. job's power budget, Pui

Larie Job iiueue

Dispatched 2. Nopt
: Job 3. selection of nopt

4. power distribution

Backfilling Jobs across them

® nopt: optimal # of processors for a job under its power budget
Assumptions:

e Hardware overprovisioned system w/ strict power constraint
e Now: limited to CPU power (extensible)

e moldable jobs: can vary # processors for app

12

PTune at job level

Goal: Maximize(JobIPS) under fixed job power budget
e Choose nopt processors from available ones
e Determine non-uniform power distribution for job across nopt procs

e Greedy: return unused expensive (inefficient) processors back to
pool of unused processors for other jobs

Inputs: Outputs:

- Job power budget PJi|— . PTune(PJi,n) |—»{~ Nowt selected processors
- n, requested procs ’ - power distribution

- characterisation data acCross nNopt Procs

e Step 1: Sort available procs by power efficiency (a priori, once)
e Step 2: Add n™ proc by stealing power from former (n-1) procs

13

PPart at scheduler level

Goal: Maximize(JobIPS) under fixed job power budget

e power re-partition when new job dispatched by scheduler
— works across jobs

e If PJiis available > Tune Ji for Pji
Else Steal Power from already scheduled jobs

— Donor : proc w/ min. IPS ,
M Procl
loss for delta power lost | m proc2

e Current [Receiver

— Receiver : proc w/ max. Powercap
IPS gain for delta power

delta_power /|

Power
Power

IPS

*

14

PTune 16 packages (Power Budget = 8KW)

Performance (Improvement) depends on - 1. processors (variations observed

under

cap) and 2. application (more/less IPS/W)

250

_ | B NLOwER

@ PTune @ no

O Uniform Power(Baseline)

Time [Seconds]
150
|

123%
6%

-

%\

Number of Processors
10

69%

50%

SP

50%

69%

BT

100%

R* o = RS
o~ O
2 §§2 ¥8e
8 3 2
2 e R S & e 38
cL.x | BB 3B~ Lo | Se8 288 2 e
2xs | Z5S gt~ 228 5= = S&8
582 o &%= .] =32
Comd EP SP BT Comd EP SP BT Comd EP
Q (-)
Avg. Perf. improvment: 11% @ az.a4
(-)
procs reduced: 28% R e B
[=] o o o
o o o o
— '6-9. ~— ~— ~— . — '6-9. — — ~— . — . —
-~ o~ -~ ° o~ o~
= el | B | g0 o | B P
gl |2 & S & | 2
2 © © © © © ©
o o] BE BE To] Te]
'e] <t <t
< <
Comd EP SP BT Comd EP SP BT Comd EP

PPart results for Pm/c = 28KW

1-PTune+PPartition (Ref.)
2-Uniform Capping at P/ Ny
3-Uniform Capping at 75W
4-Uniform Capping at TDP

-l 64 processor
4 PR SRS Sssenannnasenn sy | 3 2 p r o C e S S o r
j M 4 processor

1.0

0.8

M/c poWer or IPS
norm. wrt. max

T
0.6

500 1000 1500 2000 2500 3000

|
No more jobs can be scheduled after the 58th job
T T T

Job IPS [in Billions]

= M/C power norm. wrt. Pm/c
A) M/C throughput norm. wrt. max _
] @
gl AALALL 2 o .
14 7 11 15 19 23 27 31 35 39 43 47 51 55 —w 8
. . I [e—
Job# [Ordered by Dispatch Tlmer\ O +—
A 5|
CEH ' @, | g
= Y €|
o0 - i &-\?é\ 2 |
Sg 5 E £z |+
0 e O + o :
0 g- g q;) g S |4 = &
(@) ‘i
Lo < . tq B
cé- = ®°
= RS, 5 o .
° i =< //_ -88_&&&% il
AP A Y = L

More jobs scheduled with PTune+PPart v
under the same Pm/c

PPart Results

e Simulated System: Nmax = 550 procs w/ 28KW, 33KW, 39KW
Baseline

o
T B PTune+PPartition (Ref.)

B Uniform Capping at (Pm/c)/(Nmax)

@ Uniform Capping at 75W 100%
© _{ O Uniform Capping at TDP 95% 95%

100%
91% 91%

Uo:! -1 100%
@ _|
o
<
o
o
o
o |
o

28 KW 33 KW 39 KW

M/C Power budget

5-35% improvement
with PPart+PTune
solution over the naive
scheduling schemes

18

Conclusions

e ICS'16 miniCkpts: apps survice OS crashes in persist. memory
— Warm reboots in ~6 seconds, overheads between 5%-8%

e PACT16: Power efficient HPC operations via power caping
—Ptune: 29% improvement in job performance vs. uniform power
—PPart+Ptune: improve job throughput by 5-35% vs. naive

scheduling w/ power budget

e IPDPS'16 TintMalloc: controller+LLC-aware alloc.for threaded codes

— Avoid remote memory node access

— Reduce bank+LLC conflicts

— Parallel tasks
- Up to 75% more balanced / less idle time @ barriers
-Up to 307% higher performance / reduced runtime

— Beftter than "Standard Buddy + numa library”

— Only 1 additional line of code: 1 mmap() call @

19

Acknowledgement

Supp. 1n part by DOE/NFS grants, Humboldt fellowship

DOE DE-FG02-05ER25664, DE-FG02-08ER25837, DE-AC05-000R22725, NFS 0237570, 0410203, 0429653, 1058779, 0958311, 0937908
DOE DE-AC04-94AL85000 (SNL) , DOE DE-AC05-000R22725 (ORNL) , LBL-6871849 (LBL)

sponsored by the U.S. Department of Energy's Office of Advanced
Scientific Computing Research

eNCSU: David Fiala, Neha Gholkar, Frank Mueller

eORNL: Christian Engelmann M Iﬁa?t?renﬁ_]_ILvenPore
—ad National Laboratory

eSNL: Kurt Ferreira
eoLLNL: Barry Rountree

NC STATE UNIVERSITY sanda

Department of Computer Science laborat[jrles

