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(1) Mini-Ckpts: Protect the Operating System

e Why protect OS? - Any failure causes "panic”, loss of all
unsaved computation. OS remains the last unprotected piece

e Objective: Let app survive if OS fails, recover OS quickly

o Design of Mini-Ckpts:
— Identify minimal process state @ failure
— Identify common instrumentation points in OS to save state
— Warm reboot OS on failure, preserve app and continue exec.

e Implementation:
— Process protection from kernel failures at syscalls
— App lives in persistent memory

e Evaluation:
— cost of mini-ckpts and warm-rebooting a failed OS
— application survival for injected kernel faults (OpenMP+MPI)



Mini-ckpts Overview

e Requires specialized kernel > new NMI for panic shutdown
e Requires persistent memory > Linux PRAMFS

e Protection

— Checkpoint (serialize) structures describing a process

— Migrate memory to persistent region (survives warm reboot)
— continue execution...

-During interruption (syscall, interrupt IRQ, interrupt NMI)
record state of thread(s) registers l
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Warm Reboot

e Time from kernel panic until
— (a) kernel is loaded, and

— (b) software stack initialized from PRAMFS

-Single largest kernel boot cost: network initialization

e Warm Reboot Total > time at which app may be restored/resumes

e Virtual machines (VMs) do not require initializing physical h/w
— i.e., network cards

(measured BIOS Kernel Network Driver & Kernel Software Cold Total / Warm \
in seconds) Boot Time |JBoot Total | NFS-Root Mounting Misc Stack Total w/ BIOS Reboot Total
AMD Bare Metal 374 53 1.5 4.8 0.7 503 6.0
Intel Bare Metal 50.8 6.7 3.0 3.7 0.7 73.0 7.4
AMD VM — 0.8 = 0.2 < 0.6 3.0 — 3.8
Intel VM — 0.7 / = (2 < 05 1.3 — \ 1.9 /
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Experiments (Excerpt)

e We make apps resilient if OSfails

e Rejuvenates kernel,
apps survives in persistent memory

e Ckpt/restart is expensive for HPC apps
— OS5 crash > fwd progress w/o restart

e Warm reboots in ~6 seconds
— 5%-8% overheads, threaded+MPT apps, scalable in # threads
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Mini-Ckpts Summary

e Today's OS's not designed with fault tolerance in mind
— Mini-ckpts provides resilience to appliations if kernel fails
— Rejuvenates kernel, apps survives in persistent memory (PRAMFS)

e Ckpt/restart is expensive for HPC apps
— mitigating an OS crash allows forward progress w/o restart

e Mini-ckpts identifies key OS changes & structures req'd for resilience

e Warm reboots complete in ~6 seconds, overheads between 5%-8%
— Both threaded and MPI applications recoverable
— Scalable in # threads

1st ever transp. OS fault tolerance w/o loss of state

Apps could outlive OS > even if OS instable



(2) Ptune: Power Tuning HPC Jobs

Target : Exascale by 2020 i.e. 2'® FLOPS
Today: Sunway TaihuLight
93 PFlops ~ 0.1 Exaflops w/ 15.37 MW - 1 Exaflops w/ 150MW?

US DOE power budget of 20MW per exaflop system

Goal : Maximize(Performance per Watt)

Buy more nodes than can be powered

[l Peak Power ]l Medium Power | Low Power

need order of magnitude improvement in performance + power together!

Today: only 60% of the procured power used after Linpack burn-in
Solution: Hardware overprovisioning
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Processors Vary in Power Draw

e under fixed performance
e Packages from the same Stock Keeping Unit (SKU)
e Peak Performance: Uniform; Peak Power: 30% Variation

e Potential Causes: Process variation, Thermal variation, etc.
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Performance Variation with Power Caps

e Intel: Running AV g Power Limit ‘__(,each color represents a processor
) o
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e Performance : Instructions Per Second (IPS)

e 30% Performance Variation

> Variability in peak power — Performance variation

> Power-Performance curves differ from application to application




Power Efficiency

e power efficiency .= instructions retired per second (IPS) per Watt

e Variation in peak power efficiency (each color represents a processor )

e Less efficient processors are most
efficient at higher power bounds
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Power-aware job scheduling and tuning

For all jobs, determine:
1. job's power budget, Pui

Larie Job iiueue

Dispatched 2. Nopt
: Job 3. selection of nopt

4. power distribution

Backfilling Jobs across them

® nopt: optimal # of processors for a job under its power budget
Assumptions:

e Hardware overprovisioned system w/ strict power constraint
e Now: limited to CPU power (extensible)

e moldable jobs: can vary # processors for app
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PTune at job level

Goal: Maximize(JobIPS) under fixed job power budget
e Choose nopt processors from available ones
e Determine non-uniform power distribution for job across nopt procs

e Greedy: return unused expensive (inefficient) processors back to
pool of unused processors for other jobs

Inputs: Outputs:

- Job power budget PJi|— . PTune(PJi,n) |—»{~ Nowt selected processors
- n, requested procs ’ - power distribution

- characterisation data acCross nNopt Procs

e Step 1: Sort available procs by power efficiency (a priori, once)
e Step 2: Add n™ proc by stealing power from former (n-1) procs
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PPart at scheduler level

Goal: Maximize(JobIPS) under fixed job power budget

e power re-partition when new job dispatched by scheduler
— works across jobs

e If PJiis available > Tune Ji for Pji
Else Steal Power from already scheduled jobs

— Donor : proc w/ min. IPS ,
M Procl
loss for delta power lost | m proc2

e Current [Receiver

— Receiver : proc w/ max. Powercap
IPS gain for delta power

delta_power /|

Power
Power

IPS

*
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PTune 16 packages (Power Budget = 8KW)

Performance (Improvement) depends on - 1. processors (variations observed

under

cap) and 2. application (more/less IPS/W)
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PPart results for Pm/c = 28KW

1-PTune+PPartition (Ref.)
2-Uniform Capping at P/ Ny
3-Uniform Capping at 75W
4-Uniform Capping at TDP
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PPart Results

e Simulated System: Nmax = 550 procs w/ 28KW, 33KW, 39KW
Baseline
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5-35% improvement
with PPart+PTune
solution over the naive
scheduling schemes
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Conclusions

e ICS'16 miniCkpts: apps survice OS crashes in persist. memory
— Warm reboots in ~6 seconds, overheads between 5%-8%

e PACT16: Power efficient HPC operations via power caping
—Ptune: 29% improvement in job performance vs. uniform power
—PPart+Ptune: improve job throughput by 5-35% vs. naive

scheduling w/ power budget

e IPDPS'16 TintMalloc: controller+LLC-aware alloc.for threaded codes

— Avoid remote memory node access

— Reduce bank+LLC conflicts

— Parallel tasks
- Up to 75% more balanced / less idle time @ barriers
-Up to 307% higher performance / reduced runtime

— Beftter than "Standard Buddy + numa library”

— Only 1 additional line of code: 1 mmap() call @
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