
Resilient application co-scheduling
with processor redistribution

Anne Benoit1

Löıc Pottier1 Yves Robert1,2

1ENS Lyon & INRIA, France

2University of Tennessee Knoxville, USA

Anne.Benoit@ens-lyon.fr

October 4, 2016 – CCDSC 2016

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 1 / 25

Anne.Benoit@ens-lyon.fr
Anne.Benoit@ens-lyon.fr

Why co-scheduling?

Supercomputers use more and more accelerators

For instance, next supercomputer hosted by Argonne:

Aurora → 180 petaflops only provided by Xeon Phi

One KNL (actual Xeon Phi) has 288 threads

More and more concurrency available ,

We want to execute applications concurrently!

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 2 / 25

Anne.Benoit@ens-lyon.fr

Why co-scheduling?

Supercomputers use more and more accelerators

For instance, next supercomputer hosted by Argonne:

Aurora → 180 petaflops only provided by Xeon Phi

One KNL (actual Xeon Phi) has 288 threads

More and more concurrency available ,

We want to execute applications concurrently!

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 2 / 25

Anne.Benoit@ens-lyon.fr

Why co-scheduling?

Supercomputers use more and more accelerators

For instance, next supercomputer hosted by Argonne:

Aurora → 180 petaflops only provided by Xeon Phi

One KNL (actual Xeon Phi) has 288 threads

More and more concurrency available ,

We want to execute applications concurrently!

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 2 / 25

Anne.Benoit@ens-lyon.fr

Why co-scheduling?

time0

p

T2

T3

T1

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 3 / 25

Anne.Benoit@ens-lyon.fr

Why resilience?

Supercomputers enroll huge number of processors

More components → increased probability of errors

MTBF of 1 processor → around 100 years

MTBF of p processors → 100
p

MTBF Titan < 1 day

Resilience at petascale is already a problem /

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 4 / 25

Anne.Benoit@ens-lyon.fr

Why resilience?

Supercomputers enroll huge number of processors

More components → increased probability of errors

MTBF of 1 processor → around 100 years

MTBF of p processors → 100
p

MTBF Titan < 1 day

Resilience at petascale is already a problem /

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 4 / 25

Anne.Benoit@ens-lyon.fr

Checkpoint with fail-stop errors

Save the state of the application periodically:

TimeW W

C C C

In case of errors, application returns to last checkpoint:

TimeW W

Error

C C C

Work done between last checkpoint and error is lost;
downtime D and recovery R before resuming execution:

TimeWlost W W

C D + R C C

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 5 / 25

Anne.Benoit@ens-lyon.fr

Checkpoint with fail-stop errors

Save the state of the application periodically:

TimeW W

C C C

In case of errors, application returns to last checkpoint:

TimeW W

Error

C C C

Work done between last checkpoint and error is lost;
downtime D and recovery R before resuming execution:

TimeWlost W W

C D + R C C

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 5 / 25

Anne.Benoit@ens-lyon.fr

Checkpoint with fail-stop errors

Save the state of the application periodically:

TimeW W

C C C

In case of errors, application returns to last checkpoint:

TimeW W

Error

C C C

Work done between last checkpoint and error is lost;
downtime D and recovery R before resuming execution:

TimeWlost W W

C D + R C C

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 5 / 25

Anne.Benoit@ens-lyon.fr

Outline

Model and complexity

Heuristics

Simulation results

Conclusion

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 6 / 25

Anne.Benoit@ens-lyon.fr

Example

time0

p

T2

T3

T1

time0

p

T2

T3

T1

Redistribution when T2 releases its processors

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 7 / 25

Anne.Benoit@ens-lyon.fr

Example

time0

p

T2

T3

T1

time0

p

T2

T3

T1

Redistribution when T2 releases its processors

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 7 / 25

Anne.Benoit@ens-lyon.fr

Example

time0

p

tf

Error

T2

T3

T1

time0

p

tf

Error

T2

T3

T1

How to compute the new execution time of T3?
Give processors of T1 to T3?

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 8 / 25

Anne.Benoit@ens-lyon.fr

Example

time0

p

tf

Error

T2

T3

T1

time0

p

tf

Error

T2

T3

T1

How to compute the new execution time of T3?
Give processors of T1 to T3?

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 8 / 25

Anne.Benoit@ens-lyon.fr

Model

n independent parallel applications T1,T2, . . . ,Tn

Execution platform with p identical processors

Each application is malleable: its number of processors j can
change at any time

Each application is a divisible load application

Problem: CoSched

Minimize the maximum of the expected completion times of
n applications executed on p processors subject to failures.
Redistributions are allowed only when an application completes
execution or is struck by a failure.

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 9 / 25

Anne.Benoit@ens-lyon.fr

Fault model

Only fail-stop errors

Errors follow an exponential law Exp(λ)

Mean Time Between Faults (MTBF) for one proc.: µ = 1/λ
For application Ti with j processors: µi,j = µ/j

Use of light-weight periodic checkpointing protocol, with
period τi ,j =

√
2µi ,jCi ,j + Ci ,j [Young, 1974], where Ci ,j is the

checkpoint cost

Ci ,j = mi
jτ + β, where mi is the memory footprint of Ti , β is a

start-up latency and τ is the link bandwidth

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 10 / 25

Anne.Benoit@ens-lyon.fr

Checkpointing model

Double checkpointing algorithm [Kalé et al. 2004]

Each processor stores two checkpoints: its own and that of its
buddy processor

If there is a fault, the buddy processor sends back both
checkpoints

Processor 2

Processor 1

Barrier

C2

C1

Local checkpoint (C1)

Distance checkpoint (C2)

checkpoints done

W

W
The number of
processors allocated
to each application
is even

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 11 / 25

Anne.Benoit@ens-lyon.fr

Execution time

For application Ti with j processors:

Fault-free execution time: ti ,j

Resilient expected execution time: tRi ,j(αi), where αi is the
remaining fraction of work that needs to be executed by Ti

(initially, αi = 1)

We can easily express the number of checkpoints, Nff
i ,j(αi),

and then obtain an expression of tRi ,j(αi):

tRi ,j(αi)=eλjRi,j

(
1

λj
+D

)(
Nff
i ,j(αi)(eλjτi,j−1)+(eλjτlast−1)

)

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 12 / 25

Anne.Benoit@ens-lyon.fr

With redistribution

Redistribution done (i) when an application ends, or (ii) when
an error strikes

Redistribution cost of application Ti from j to k processors

RC j→k
i depends on:

Data footprint of Ti (mi)
Number of processors involved (j to k)
Link bandwidth τ , start-up latency β
Constant start-up overhead S

RC j→k
i = S + max(min(j , k), |k − j |)×

(
mi

kjτ
+ β

)
After redistribution, we systematically checkpoint and
therefore pay the cost Ci,k

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 13 / 25

Anne.Benoit@ens-lyon.fr

Remaining fraction of work at time t

Initially, αi = 1 for 1 ≤ i ≤ n, and we remove progressively
the work already completed

Time when last redistribution or failure occurred for
application Ti : tlastRi

Number of checkpoints between tlastRi
and the event at

time t: Ni ,j =
⌊
t−tlastRi
τi,j

⌋

How to compute the αi values,
and hence the expected execution times of applications?

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 14 / 25

Anne.Benoit@ens-lyon.fr

Remaining fraction of work at time t

Initially, αi = 1 for 1 ≤ i ≤ n, and we remove progressively
the work already completed

Time when last redistribution or failure occurred for
application Ti : tlastRi

Number of checkpoints between tlastRi
and the event at

time t: Ni ,j =
⌊
t−tlastRi
τi,j

⌋

How to compute the αi values,
and hence the expected execution times of applications?

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 14 / 25

Anne.Benoit@ens-lyon.fr

Computation of work done

Example of redistribution when a fault strikes application Ti : the colored

rectangles correspond to useful work done by Ti and Ti ′ before the

failure; Ti ′′ is not affected by the failure (no redistribution)

time

tlastRi′′ = 0

processors

Ci,j Ci,j

Fault
t

D Ri,j
RC j→j+q

i
Ci,j+q

tlastRi

Ti

Ci′,j′ Ci′,j′
RC j′→j′−q

i′
Ci′,j′−qTi′

tlastRi′

Ci′′,j′′ Ci′′,j′′Ti′′

If Ti is the faulty application: αi =
Ni,j×(τi,j−Ci,j)

ti,j

Otherwise: αi =
tf−tlastRi−Ni,jCi,j

ti,j

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 15 / 25

Anne.Benoit@ens-lyon.fr

Complexity without redistribution

Theorem 1

The CoSched problem without redistributions can be solved in
polynomial time O(p × log(n)), where p is the number of
processors, and n is the number of applications

Each application has two processors

We allocate the p − 2n remaining processors two by two in a
greedy way to longest application

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 16 / 25

Anne.Benoit@ens-lyon.fr

Greedy algorithm when redistributions are allowed

T1 =

t1,1 = 10, w1,1 = 10

t1,2 = 9, w1,2 = 18

t1,3 = 6, w1,3 = 18

T2 =

t2,1 = 6, w2,1 = 6

t2,2 = 3, w2,2 = 6

t2,3 = 3, w2,3 = 9

T1

T2

0 6 9

T2

0 6 8

T1

(a) Greedy uses largest execution
time to allocate processors

T1

T2

0 3 10

T2

0 3 7.2

T1

(b) Greedy-SP uses best
speedup profile to allocate
processors

Some examples where Greedy-SP is not optimal either...

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 17 / 25

Anne.Benoit@ens-lyon.fr

Complexity with redistribution

Theorem 2

With constant redistribution costs and without failures,
CoSched is NP-complete (in the strong sense)

Reduction from 3-Partition with distinct integers

a1
a2

· · ·
a′1,k S T3m+kS S

· · ·
a′2,k S T3m+k

· · ·
a′3,k T3m+kSS

· · ·
a3m

· · ·
S S S T3m+k

· · ·

3S

3m small applications

m large applications

D

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 18 / 25

Anne.Benoit@ens-lyon.fr

Algorithms and heuristics

Optimal greedy algorithm without redistribution to allocate
processors to applications at beginning

Two cases of redistribution:

When an application ends and releases its processors

When a fault occurs, we redistribute only if the faulty
application becomes the longest one

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 19 / 25

Anne.Benoit@ens-lyon.fr

Heuristics

Two heuristics when applications end:

EndGreedy: Greedy algorithm with redistribution costs

EndLocal: Local decisions (take processors from shortest
applications)

Two heuristics in case of fault:

IteratedGreedy: Greedy algorithm with redistribution
costs

ShortestAppsFirst: Local decisions (take processors from
shortest applications)

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 20 / 25

Anne.Benoit@ens-lyon.fr

Test platform

Fault simulator, synthetic applications

Fault-free execution time (Amdahl model)

ti ,1 = 2×mi × log2(mi)

ti ,j = f × ti ,1 + (1− f)
ti ,1
j

+
mi

j
log2(mi)

mi : number of data needed by application i

f : sequential fraction of time (f = 0.08 for our tests)

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 21 / 25

Anne.Benoit@ens-lyon.fr

Results

Impact of n with 5000 processors and an MTBF of 100 years for each

processor

0.5

0.75

1

 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#tasks

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

Heuristics are more efficient when the number of applications
increases. With n = 1000, we obtain a gain around 40%.

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 22 / 25

Anne.Benoit@ens-lyon.fr

Results

Impact of checkpointing cost c and sequential fraction f

with n = 100 and p = 1000

0.5

0.75

1

 0.01 0.1 1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Cost of checkpoints

Fault context without ReDistrib
IteratedGreedy-EndGreedy

IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy

ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

0.5

0.75

1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Fraction of sequential time

Fault context without ReDistrib
IteratedGreedy+EndGreedy

IteratedGreedy+EndLocal
ShortestApplicationsFirst+EndGreedy

ShortestApplicationsFirst+EndLocal
Fault-free context with ReDistrib (EndLocal)

Heuristics more efficient when checkpointing cost decreases.
Heuristics very efficient when applications are almost fully parallel.

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 23 / 25

Anne.Benoit@ens-lyon.fr

Summary of results

IteratedGreedy better than ShortestAppsFirst:
rebuilds complete schedule at each fault (except for very low
MTBF, 10 years or less)

Faulty context: gain flexibility from failures

Too many processors/too few applications: less need of
redistribution

Best context: heterogeneous applications

Significant impact of checkpointing cost and fraction of
sequential time

All heuristics run within a few seconds, while total execution
time of applications takes several days: negligible overhead

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 24 / 25

Anne.Benoit@ens-lyon.fr

Conclusion

Detailed and comprehensive model for scheduling a pack of
applications with failures and redistributions

Greedy polynomial-time algorithm with failures but
no redistribution

With redistribution: NP-completeness of the problem, even
with constant redistribution costs and no failures

Polynomial-time heuristics to redistribute efficiently:
significant improvement of execution time

Future work:

How to partition applications into packs?

Competitiveness of online redistribution algorithms?

How to deal with silent errors?

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 25 / 25

Anne.Benoit@ens-lyon.fr

Conclusion

Detailed and comprehensive model for scheduling a pack of
applications with failures and redistributions

Greedy polynomial-time algorithm with failures but
no redistribution

With redistribution: NP-completeness of the problem, even
with constant redistribution costs and no failures

Polynomial-time heuristics to redistribute efficiently:
significant improvement of execution time

Future work:

How to partition applications into packs?

Competitiveness of online redistribution algorithms?

How to deal with silent errors?

Anne.Benoit@ens-lyon.fr October 4, 2016 – CCDSC 2016 25 / 25

Anne.Benoit@ens-lyon.fr

	Resilience
	Checkpoint

	Model and problem
	Model
	Fault model
	Checkpointing model
	Execution time
	Redistribution

	Complexity
	Algorithms
	Initial algorithm and redistribution
	Heuristics

	Simulations
	Conclusion

