Scaling Resiliency via machine learning and compression

Alok Choudhary

Henry and Isabel Dever Professor
EECS and Kellogg School of Management
Northwestern University
choudhar@eecs.northwestern.edu

Founder, chairman and Chief Scientist

4Cinsights Inc: A Big Data Science Company

<u>+1 312 515 2562</u>

alok@4Cinsights.com

Northwestern Engineering

Department of Electrical Engineering and Computer Science

Motivation

- Scientific simulations
 - Generate large amount of data.
 - Data feature: high-entropy, spatial-temporal
- Exascale Requirements*
 - Scalable System Software: Developing scalable system software that is power and resilience aware.
 - Resilience and correctness: Ensuring correct scientific computation in face of faults, reproducibility, and algorithm verification challenges.
- NUMARCK (NU Machine learning Algorithm for Resiliency and ChecKpointing)
 - Learn temporal relative change and its distribution and bound pointwise user defined error.

Checkpointing and NUMARACK

- Traditional checkpointing systems store raw (and uncompressed) data
 - cost prohibitive: the storage space and time
 - threatens to overwhelm the simulation and the post-simulation data analysis
- I/O accesses have become a limiting factor to key scientific discoveries.

Northwestern Engineering

Department of Electrical Engineering and Computer Science

What if a Resilience and Checkpointing Solution Provided

- Improved Resilience via more frequent yet relevant checkpoints, while
- Reducing the amount of data to be stored by an order of magnitude, and
- Guaranteeing user-specified tolerable maximum error rate for each data point, and
- an order of magnitude smaller mean error for each data set, and
- reduced I/O time by an order of magnitude, while
- Providing data for effective analysis and visualization

Motivation: "Incompressible" with Lossless Encoding

Motivation: Still "Incompressible" with Lossy Encoding

Obwehratifone Simulyation Represents a State Travalitien Model

Observations:

- Variable Values distribution
- Change in Variable Value distribution
- Relative Change in Variable Value distribution

$$\Delta D_{i,j} = \frac{D_{i,j} - D_{i-1,j}}{D_{i-1,j}}$$

Hypothesis: The relative changes in variable values can be represented in a much smaller state space.

- A1(t) = 100, A1(t+1) = 110 => change = 10, rel change = 10%
- A2(t) = 5, A2(t+1) = 5.5 => change = .5, rel change = 10%

Sneak Preview: Relative Change is more predictable

Relative Change between iteration 1 and 2 on climate CMIP5 rlus data

Northwestern Engineering

Department of Electrical Engineering and Computer Science

Challenges

- How to learn patterns and distributions of relative change at scale?
- How to represent distributions at scale?
- How to bound errors?
- System Issues
 - data movement
 - I/O
 - Scalable software
 - Reconstruction when needed

Northwestern Engineering

Department of Electrical Engineering and Computer Science

NUMARCK Overview

NUMARCK: Overview

E.g., Distribution Learning Strategies

- Equal-width Bins (Linear)
- Log-scale Bins (Exponential)
- Machine Learning Dynamic clustering

Number of bins or clusters depends on the bits designated for storing indices and error tolerance examples

- index length (B): 8bits

 the number of clusters
- tolerable error per point (E): 0.1% → the width of each cluster

Equal-width distribution

In each iteration, partition value into 255 bins of equal-width. Each value is assigned to a corresponding bin ID (represented by the center of bin). If the difference between the original value and the approximated one is larger than user-specified value (0.1%), it is stored as it is (i.e., incompressible)

Log-scale Distribution

dens: iteration 32 to 33

Machine Learning (Clustering-based) based Binning

In each iteration, partition the ratio data into 255 clusters using (e.g., K-means) clustering, followed by approximated values based on corresponding cluster's centroid value.

dens: iteration 32 to 33

Methodology Summary

Initialization

• this is the model, initial condition and metadata

Calculation

Calculate the relative change

Learning Distributions

- Bin the relative change into N bins
- Index and Store bin IDs

Storage

- •Store index, compress index
- •Store exact values for change outside error bounds

Reconstruction

- Read last available complete checkpoint
- Reconstruct data values for each data point, can report the error bounds.

NUMARCK Algorithm

- Change ratio calculation
 - Calculate element-wise change ratios
- Bin histogram construction
 - Assign change ratios within an error bound into bins
- Indexing
 - Each data element is indexed by its bin ID
- Select top-K bins with most elements
 - Data in top-K bins are represented by their bin IDs
 - Data out of top-K bins are stored as is
- (optional) Apply lossless GNU ZLIB compression on the index table
 - Further reduce data size
- (optional) File I/O
 - Data is saved in self-describing netCDF/HDF5 file

Experimental Results: Datasets

- FLASH code is a modular, parallel multi-physics simulation code: developed at the FLASH center of University of Chicago
 - It is a parallel adaptive-mesh refinement (AMR) code with block-oriented structure
 - A block is the unit of computation
 - The grid is composed of blocks
 - Blocks consists of cells: guard and interior cells
 - Cells contains variable values
- CMIP supported by World Climate Research Program: (1) Decadal Hindcasts and predictions simulations;
 (2) Long-term simulations; (3) atmosphere-only simulations.

Northwestern Engineering

Department of Electrical Engineering and Computer Science

Evaluation metrics

- Incompressible ratio
 - % of data that need to be stored as exact values because it would be out of error bound if approximated
- Mean error rate
 - Average difference between the approximated change ratio and the real change ratio for all data
- Compression ratio
 - Assuming data D of size |D| is reduced to size |D'|, it is defined as:

$$\frac{|D| - |D'|}{|D|} \times 100$$

Incompressible Ratio: Equal-width Binning

FLASH dataset, 0.1% error rate

Incompressible Ratio: Log-scale Binning

Incompressible Ratio: Clustering-based Binning

Mean Error Rate: Clustering-based

Increasing Index Size: Incompressible Ratio

Increasing bin sizes (8-bit to 10-bit) reduces % of incompressible significantly. Note: rlds is the most difficult to compress with 8-bit

Different Approximations: Compression Ratio

Increasing bin sizes (8-bit to 10-bit) increases compression ratio significantly.

Different Tolerable Error Rates: Incompressible Ratio (0.1% - 0.5%)

Scaling - Experimental Settings

Name of data set	Application	Domain	Size per iteration	Variable dimension	Variable size
Sedov	FLASH	Astrophysics	15MB	165*32*32*1	1.3MB
Stir-1	FLASH	Astrophysics	3.7GB	64*157*157*157	945MB
Stir-2	FLASH	Astrophysics	296GB	1024*314*314*157	59GB
Stir-3	FLASH	Astrophysics	2.4TB	8192*314*314*157	472GB
ASR	ASR	Climate	103MB	29*320*320	11MB
CMIP	CMIP3	Climate	19GB	42*2400*3600	1.4GB

Data sets and environment:

- FLASH datasets
 - SuperMUC at Leibniz Supercomputing Centre, Germany, a parallel computer consists of 9216 nodes (16 cores per node)
 - We used up to 12,800 cores in our experiments

Others

A Linux machine, 2 quad-core CPUs (32 GB memory)

Compression ratios

Compared with lossy compression algorithms: ZFP (LLNL), ISABELLA (NCSU)

Scalability Experiments

FLASH datasets (turbulence stirring test)

- Stir-2 (59GB) data
 - Numbers of cores: 1600
 - Speed-up: 1404
 - Time: 2.655 sec
 - Original I/O time: 13.2 sec/iteration
- Stir-3 (472GB) dataset
 - Number of cores:12800
 - Speed-up: 8788
 - Time: 3.610 sec
 - Original I/O time: 18.0 sec

Speedup of Stir-2

Speedup of Stir-3

14 12 10 8 8 4 2 0 320 480 640 800 960 1120 1280 1440 1600 Number of cores

Runtime of Stir-3

Open Problems and Challenges

- Optimize and/or create new machine learning algorithms
 - for higher compressions and more accurate representation
 - Scalable implementation
 - Learning from historical results to optimize the "learning step"

for minimizing data movement and power

- Adaptation for anomaly detection (for resilience and analysis)
- Use of memory hierarchy and local SSDs
- Incorporation into pNetCDF etc and libraries
- I/O optimizations

Northwestern Engineering

Department of Electrical Engineering and Computer Science

THANK YOU!

Alok Choudhary

Henry and Isabel Dever Professor
EECS and Kellogg School of Management
Northwestern University
choudhar@eecs.northwestern.edu