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Motivation
• Scientific simulations

• Generate large amount of data.
• Data feature: high-entropy, spatial-temporal

• Exascale Requirements*
• Scalable System Software: Developing scalable system software that 

is power and resilience aware.
• Resilience and correctness: Ensuring correct scientific computation in 

face of faults, reproducibility, and algorithm verification challenges.

• NUMARCK (NU Machine learning Algorithm for 
Resiliency and ChecKpointing)
• Learn temporal relative change and its distribution and bound point-

wise user defined error.

* From Advanced Scientific Computing Advisory Committee Top Ten Technical Approaches for Exascale



Checkpointing and	NUMARACK
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Solution?
NUMARCK

n Traditional	checkpointing	systems	store	raw	(and	
uncompressed)	data

− cost	prohibitive:	the	storage	space	and	time
− threatens	to	overwhelm	the	simulation	and	the	
post-simulation	data	analysis

n I/O	accesses	have	become	a	limiting	factor	to	key	
scientific	discoveries.
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What if a Resilience and 
Checkpointing Solution Provided

• Improved Resilience via more frequent yet 
relevant checkpoints, while

• Reducing the amount of data to be stored by an 
order of magnitude, and

• Guaranteeing user-specified tolerable maximum 
error rate for each data point, and

• an order of magnitude smaller mean error for 
each data set, and

• reduced I/O time by an order of magnitude, while
• Providing data for effective analysis and 

visualization
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Motivation:	“Incompressible”	with	
Lossless	Encoding
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Compressible Exponent.
Low Entropy.

Incompressible mantissa.
Less predictable.
High Entropy.

=

=
n

i
ii xpxpXH

1
)(log)()(

Shannon’s Information Theory: 

Bit position of double precision rlds data
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• Highly	random

Original	rlds data

• Extreme	events	missed

~0.35 correlation!

Motivation:	Still	“Incompressible”	with	
Lossy Encoding
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Bspline reconstructed	rlds data



What	if	we	analyze	the	Change	in	
Value?	

Observations:
• Variable	Values	– distribution	
• Change	in	Variable	Value	– distribution
• Relative	Change	in	Variable	Value	- distribution

Hypothesis:	The	relative	changes	in	variable	values	can	be	represented	in	a	much	smaller	
state	space.

• A1(t)	=	100,	A1(t+1)	=	110	=>	change	=	10,	rel change	=	10%
• A2(t)	=		5,	A2(t+1)	=	5.5	=>	change	=	.5,	rel change	=	10%	

Observation:	Simulation	Represents	a	
State	Transition	Model



Sneak	Preview:	Relative	Change	is	more	
predictable

Randomness

Iteration	1	and	2	on	
climate	CMIP5	rlus data

Relative	Change	between	iteration	1	and	2	on	climate	CMIP5	rlus data

Learning	
Distribution
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Challenges
• How to learn patterns and distributions of relative

change at scale?
• How to represent distributions at scale?
• How to bound errors?
• System Issues

• data  movement
• I/O
• Scalable software
• Reconstruction when needed
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NUMARCK Overview

Forward 
Predictive 
Coding

Transform the data 
by computing 
relative changes in 
ratio from one 
iteration to the next

Data 
Approximation

Learn the distribution of 
relative change r using 
machine learning 
algorithms and store 
approximated values 

F
Traditional checkpointing

Machine learning based checkpointing

Full checkpoint in 
each checkpoint
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F: Full checkpoint

C: change ratios



Forward coding

~0.99 correlation!
0.001 RMSE

NUMARCK:	Overview
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E.g.,	Distribution	Learning	Strategies

• Equal-width	Bins	(Linear)
• Log-scale	Bins	(Exponential)
• Machine	Learning	– Dynamic	clustering	

Number	of	bins	or	clusters	depends	on	the	bits	
designated	for	storing	indices	and	error	tolerance
examples

– index	length	(B):	8bits
– tolerable	error	per	point	(E):	0.1%

the	number	of	clusters

the	width	of	each	cluster
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Equal-width	distribution

dens:	iteration	32	to	33

In	each	iteration,	partition	value	into	255	bins	of	equal-width.	Each	value	is	assigned	to	a	
corresponding	bin	ID	(	represented	by		the	center	of	bin).	If	the	difference	between	the	original	
value	and	the	approximated	one	is	larger	than	user-specified	value	(0.1%),	it	is	stored	as	it	is	
(i.e.,	incompressible)

Pros:	Easy	to						
Implement

Cons:	(1)	Can	only	
cover	range	of	
2*E*(2^B	-1);
(2)	Bin	width:	2*E	



Log-scale	Distribution

dens:	iteration	32	to	33

In	each	iteration,	partition	the	ratio	distribution	into	255	bins	of	log-scale	width.	
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Pros:	cover	larger	ranger	and	
more	finer	(narrower)	bins

Cons:	may	not	perform	well	
for	highly	irregularly	
distributed	data



Machine	Learning	(Clustering-based)	based	
Binning

dens:	iteration	32	to	33

In	each	iteration,	partition	the	ratio	data	into	255	clusters	using	(e.g.,	K-means)	clustering,	
followed	by	approximated	values	based	on	corresponding	cluster’s	centroid	value.	
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Methodology	Summary

• this is the model, initial condition and metadataInitialization

• Calculate the relative changeCalculation

• Bin the relative change into N bins
• Index and Store bin IDs

Learning 
Distributions

•Store index, compress index
•Store exact values for change outside error boundsStorage

• Read last available complete checkpoint
• Reconstruct data values for each data point, can report 

the error bounds.
Reconstruction



NUMARCK	Algorithm
• Change	ratio	calculation

– Calculate	element-wise	change	ratios
• Bin	histogram	construction

– Assign	change	ratios	within	an	error	bound	into	bins
• Indexing

– Each	data	element	is	indexed	by	its	bin	ID
• Select	top-K	bins	with	most	elements

– Data	in	top-K	bins	are	represented	by	their	bin	IDs
– Data	out	of	top-K	bins	are	stored	as	is

• (optional)	Apply	lossless	GNU	ZLIB	compression	on	the	index	table
– Further	reduce	data	size

• (optional)	File	I/O
– Data	is	saved	in	self-describing	netCDF/HDF5	file



• FLASH	code	is	a	modular,	parallel	
multi-physics	simulation	code:	
developed	at	the	FLASH	center	of	
University	of	Chicago
– It	is	a	parallel	adaptive-mesh	refinement	

(AMR)	code	with	block-oriented	
structure

– A	block	is	the	unit	of	computation
– The	grid	is	composed	of	blocks
– Blocks	consists	of	cells:	guard	and	

interior	cells
– Cells	contains	variable	values	

• CMIP	- supported	by	World	Climate	
Research	Program:	(1)	Decadal	
Hindcasts and	predictions	simulations;	
(2)	Long-term	simulations;	(3)	
atmosphere-only	simulations.

var 0,	1,	2,	…,	23
(e.g.,	density,	
pressure and	
temperature)

Experimental	Results:	Datasets
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Evaluation metrics
• Incompressible ratio

• % of data that need to be stored as exact values because it would 
be out of error bound if approximated

• Mean error rate
• Average difference between the approximated change ratio and the 

real change ratio for all data

• Compression ratio
• Assuming data D of size |D| is reduced to size |D’|, it is defined as: 

D − D '
D

×100



Incompressible	Ratio:	Equal-width	
Binning

FLASH	dataset,	0.1%	error	rate
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Incompressible	Ratio:	Log-scale	Binning

FLASH	dataset,	0.1%	error	rate
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Incompressible	Ratio:	Clustering-based	
Binning

FLASH	dataset,	0.1%	error	rate

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

dens pres ener eint temp



Mean	Error	Rate:	Clustering-based

FLASH	dataset,	0.1%	error	rate
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Increasing	Index	Size:	
Incompressible	Ratio	
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% of	data	needed	to	be	stored	as	exact	values	(i.e.,	uncompressible)

Increasing	bin	sizes	(8-bit	to	10-bit)	reduces	%	of	incompressible	significantly.
Note:	rlds is	the	most	difficult	to	compress	with	8-bit



Different	Approximations:	
Compression	Ratio
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Increasing	bin	sizes	(8-bit	to	10-bit)	increases	compression	ratio	significantly.



Different	Tolerable	Error	Rates:	
Incompressible	Ratio	(0.1%	- 0.5%)
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Scaling	- Experimental	Settings
Name	of
data	set Application Domain

Size	per	
iteration Variable	dimension Variable	

size
Sedov FLASH Astrophysics 15MB 165*32*32*1 1.3MB
Stir-1 FLASH Astrophysics 3.7GB 64*157*157*157 945MB
Stir-2 FLASH Astrophysics 296GB 1024*314*314*157 59GB
Stir-3 FLASH Astrophysics 2.4TB 8192*314*314*157 472GB
ASR ASR Climate 103MB 29*320*320 11MB
CMIP CMIP3 Climate 19GB 42*2400*3600 1.4GB

• Data	sets	and	environment:
– FLASH	datasets

• SuperMUC at	Leibniz	Supercomputing	Centre,	Germany,	a	parallel	computer	
consists	of	9216	nodes	(16	cores	per	node)

• We	used	up	to	12,800	cores	in	our	experiments
– Others

• A	Linux	machine,	2	quad-core	CPUs	(32	GB	memory)	



Compression	ratios
l Compared	with	lossy	compression	algorithms:	ZFP	(LLNL),	ISABELLA	(NCSU)
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Scalability	Experiments
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FLASH	datasets	(turbulence	stirring	test)
• Stir-2	(59GB)	data

– Numbers	of	cores:	1600
– Speed-up:	1404
– Time:	2.655	sec
– Original	I/O	time:	13.2	

sec/iteration
• Stir-3	(472GB)	dataset

– Number	of	cores:12800
– Speed-up:	8788
– Time:	3.610	sec
– Original	I/O	time:	18.0	sec



Open	Problems	and	Challenges

• Optimize	and/or	create	new	machine	learning	
algorithms
– for	higher	compressions	and	more	accurate	representation
– Scalable	implementation	
– Learning	from	historical	results	to	optimize	the	“learning	
step”

for	minimizing	data	movement	and	power
– Adaptation	for	anomaly	detection	(for	resilience	and	
analysis)

• Use	of	memory	hierarchy	and	local	SSDs
• Incorporation	into	pNetCDF etc and	libraries
• I/O	optimizations
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