
1

Distinguishing Parallel and Distributed
Computing Performance

CCDSC 2016 http://www.netlib.org/utk/people/JackDongarra/CCDSC-2016/

La maison des contes Lyon France
Geoffrey Fox, Saliya Ekanayake, Supun Kamburugamuve October 4, 2016

gcf@indiana.edu
http://www.dsc.soic.indiana.edu/, http://spidal.org/ http://hpc-abds.org/kaleidoscope/

Department of Intelligent Systems Engineering
School of Informatics and Computing, Digital Science Center

Indiana University Bloomington

HPC-ABDS
High Performance Computing

Enhanced Big Data Apache Stack
DataFlow and In-place Runtime

10/4/16 2

Big Data and Parallel/Distributed Computing
• In one beginning, MapReduce enables easy parallel database like

operations and Hadoop provided wonderful open source
implementation

• Andrew Ng introduced “summation form” and showed much Machine
Learning could be implemented in MapReduce (Mahout in Apache)

• Then noted that iteration ran badly in Hadoop as used disks for
communication; Hadoop choice gives great fault tolerance

• This led to a slew of MapReduce improvements using either BSP
SPMD (Twister, Giraph) or

• Dataflow: Apache Storm, Spark, Flink, Heron …. and Dryad
• Recently Google open sources Google Cloud Dataflow as Apache

Beam using Spark and Flink as runtime or proprietary Google
Dataflow
– Support Batch and Streaming

310/4/16

HPC-ABDS Parallel Computing
• Both simulations and data analytics use similar parallel computing ideas
• Both do decomposition of both model and data
• Both tend use SPMD and often use BSP Bulk Synchronous Processing
• One has computing (called maps in big data terminology) and

communication/reduction (more generally collective) phases
• Big data thinks of problems as multiple linked queries even when queries

are small and uses dataflow model
• Simulation uses dataflow for multiple linked applications but small steps

such as iterations are done in place
• Reduction in HPC (MPIReduce) done as optimized tree or pipelined

communication between same processes that did computing
• Reduction in Hadoop or Flink done as separate map and reduce processes

using dataflow
– This leads to 2 forms (In-Place and Flow) of runtime discussed later

• Interesting Fault Tolerance issues highlighted by Hadoop-MPI comparisons
– not discussed here!

410/4/16

Java MPI performance is good if you work hard
128 24 core Haswell nodes on SPIDAL 200K DA-MDS Code

Communication dominated by MPI Collective performance

510/4/16

Best FJ Threads intra
node; MPI inter node

Best MPI; inter
and intra node

MPI; inter/intra
node; Java not
optimized

Speedup compared to 1
process per node on 48 nodes

Java versus C Performance
• C and Java Comparable with Java doing better on larger problem sizes
• LRT-BSP affinity CE; one million point dataset 1k,10k,50k,100k, and

500k centers on 16 24 core Haswell nodes over varying threads and
processes.

610/4/16

710/4/16

Heap Size

Time

Each point is a Garbage Collection Activity

810/4/16

Heap Size

Time
After Java Optimization

Apache Flink and Spark Dataflow Centric
Computation

• Both express a computation as a data-flow graph
• Graph Nodes à User defined operators
• Graph Edges à Data
• Data source nodes and Data sink nodes (i.e. File read,

File write, Message Queue read)
• Automatic placement of partitioned data in the parallel

tasks

Dataflow Operation
• The operators in API define the computation as well how nodes are

connected
– For example lets take map and reduce operators and our initial data set is A
– Map function produces a distributed dataset B by applying the user defined operator on

each partition of A. If A had N partitions, B can contain N elements.
– The Reduce function is applied on B, producing a data set with a single partition.

B = A.map() {
User defined code to execute on a partition of A

};

C = B.reduce() {
User defined code to reduce two elements in B

}

Map
A

Reduce
B

Logical graph

C

Map
1

a_1

Reduce

b_1

Execution graph

C

Map
n

a_n
b_n

Dataflow operators
• Map: Parallel execution
• Filter: Filter out data
• Project: Select part of the data unit
• Group: Group data according to some criteria like keys
• Reduce: Reduce the data into a small data set.
• Aggregate: Works on the whole data set to compute a value, SUM, MIN
• Join: Join two data sets based on Keys.
• Cross: Join two data sets as in the cross product
• Union: Union of two data sets

Apache Spark

• Dataflow is executed by a driver program
• The graph is created on the fly by the driver program
• The data is represented as Resilient Distributed Data Sets

(RDD)
• The data is on the worker nodes and operators applied on this

data
• These operators produce other RDDs and so on
• Using lineage graph of RDDs for fault tolerance

Apache Flink
• The data is represented as a DataSet
• User creates the dataflow graph and submits to cluster
• Flink optimizes this graph and creates an execution graph
• This graph is executed by the cluster
• Support Streaming natively
• Check-pointing based fault tolerance

Twitter (Apache) Heron
• Extends Storm
• Pure data streaming
• Data flow graph is called a topology

Topology

User Graph

Data abstractions
(Spark RDD & Flink DataSet)

• In memory representation of the partitions of a distributed data set
• Has a high level language type (Integer, Double, custom Class)
• Immutable
• Lazy loading
• Partitions are loaded in the tasks
• Parallelism is controlled by the no of partitions (parallel tasks on a

data set <= no of partitions)

HDFS/Lustre/Local File system

Input Format to Read Data as
partitions

Partition 0 Partition i Partition n RDD/DataSet

Breaking Programs into Parts

1610/4/16

Coarse Grain
Dataflow
HPC or ABDS

Fine Grain Parallel Computing Data/model
parameter decomposition

K-Means Clustering in Spark, Flink, MPI

1710/4/16

K-Means total and compute times for 1 million 2D
points and 1k,10,50k,100k, and 500k centroids for
Spark, Flink, and MPI Java LRT-BSP CE. Run on
16 nodes as 24x1.K-Means total and compute times for 100k 2D points

and1k,2k,4k,8k, and 16k centroids for Spark, Flink, and
MPI Java LRT-BSP CE. Run on 1 node as 24x1.

K-Means total and compute times for 1 million 2D
points and 1k,10,50k,100k, and 500k centroids for
Spark, Flink, and MPI Java LRT-BSP CE. Run on
16 nodes as 24x1.

Map (nearest centroid calculation) Reduce (update centroids)

Data Set <Points>

Data Set <Initial Centroids> Data Set <Updated Centroids>

Broadcast

Flink Kmeans

Flink Multi Dimensional Scaling (MDS)
• Projects NxN distance matrix to NxD matrix where N is the number of

points and D is the target dimension.
• The input is two NxN matrices (Distance and Weight) and one NxD initial

point file.
• The NxN matrices are partitioned row wise
• 3 NxD matrices are used in the computations which are not partitioned.
• For each operation on NxN matrices, one or more of NxD matrices are

required.
• All three iterations have dynamic stopping criteria. So loop unrolling is

not possible.
• Our algorithm uses deterministic annealing and has three nested loops

called Temperature, Stress and CG (Conjugate Gradient) in that order.

Flink vs MPI DA-MDS Performance

Total time of MPI Java and Flink MDS implementations
for 96 and 192 parallel tasks with no of points ranging
from 1000 to 32000. The graph also show the
computation time. The total time includes computation
time, communication overhead, data loading and
framework overhead. In case of MPI there is no
framework overhead. This test has 5 Temperature
Loops, 2 Stress Loops and 16 CG Loops.

Total time of MPI Java and Flink MDS implementations
for 96 and 192 parallel tasks with no of points ranging
from 1000 to 32000. The graph also show the
computation time. The total time includes computation
time, communication overhead, data loading and
framework overhead. In case of MPI there is no
framework overhead. This test has 1 Temperature Loop,
1 Stress Loop and 32 CG Loops.

10/4/16 19

1

10

100

1000

10000

Ti
m

e
Se

co
nd

s
in

 L
og

 1
0

Sc
al

e

No of Points

Flink vs MPI for MDS with only inner
iterations

Flink-4x24
MPI-4x24
Compute-4x24
Flink-8x24
MPI-8x24
Compute-8x24

1

10

100

1000

10000

Ti
m

e
in

 S
ec

on
ds

 in
 L

og
 1

0
sc

al
e

No of points

Flink vs MPI for MDS Total Time

Flink-4x24
MPI-4x24
Compute-4x24
Flink-8x24
MPI-8x24
Compute-8x24

Flink MDS Dataflow Graph for MDS inner loop

HPC-ABDS Parallel Computing
• MPI designed for fine grain case and typical of parallel computing used in large scale

simulations
– Only change in model parameters are transmitted
– In-place implementation
– Synchronization important as parallel computing

• Dataflow typical of distributed or Grid computing workflow paradigms
– Data sometimes and model parameters certainly transmitted
– If used in workflow, large amount of computing and no synchronization

constraints
– Caching in iterative MapReduce avoids data communication and in fact systems

like TensorFlow, Spark or Flink are called dataflow but often implement “model-
parameter” flow

• Inefficient to use same runtime mechanism independent of characteristics
– Use In-Place implementations for parallel computing with high overhead and

Flow for flexible low overhead cases
• HPC-ABDS plan is to keep current user interfaces (say to Spark Flink Hadoop Storm

Heron) and transparently use HPC to improve performance

2110/4/16

Harp (Hadoop Plugin) brings HPC to ABDS
• Basic Harp: Iterative HPC communication; scientific data abstractions
• Careful support of distributed data AND distributed model
• Avoids parameter server approach but distributes model over worker nodes

and supports collective communication to bring global model to each node
• Applied first to Latent Dirichlet Allocation LDA with large model and data

2210/4/16

Shuffle
M M M M

Collective	Communication

M M M M

R R

MapCollective ModelMapReduce Model

YARN

MapReduce V2

Harp

MapReduce
Applications

MapCollective
Applications

Clueweb

2310/4/16

enwiki

Bi-gram

Clueweb

Latent Dirichlet Allocation on 100 Haswell nodes: red is Harp (lgs and rtt)

Improvement of Storm (Heron) using HPC
communication algorithms

2410/4/16

Original Time Speedup Ring

Speedup TreeSpeedup Binary

Latency of binary tree, flat tree and bi-directional ring implementations compared to serial
implementation. Different lines show varying # of parallel tasks with either TCP communications
and shared memory communications(SHM).

Next Steps in HPC-ABDS
• Currently we are circumventing the dataflow and adding HPC

runtime to Apache systems (Storm, Hadoop, Heron)
• We can aim exploit better Apache capabilities and additionally

1) Allow more careful data specification such as separating "model
parameters" (variable) from "data“ (fixed)

2) Allowing richer (less automatic) dataflow and data placement
operations. In particular allow equivalent of HPF
DECOMPOSITION directive to align decompositions

3) Implement HPC dataflow runtime "in-place" to implement
"classic parallel computing" and higher performance dataflow

• This is all as modifications to Apache source
• We should be certain to be less ambitious than HPF and not spend

5 years making an inadequate compiler
• Resultant system will support parallel computing and orchestration

(workflow), batch and streaming.

2510/4/16

Application Requirements
• It would be good to understand which applications fit

a) MapReduce
b) Current Spark/Flink/Heron but not MapReduce
c) HPC-ABDS (MPI) but not current Spark/Flink/Heron

• a) could be Database (Hive etc.), Data-lake and
• b) is certainly Streaming and Spark ec. outperform Hadoop on

many big data applications
• c) is Global Machine Learning (large scale and iterative like

Deep learning, clustering, hidden factors, topic models) and
graph problems

2610/4/16

