WWW.bSsc.es

Barcelona
Supercomputing
Center
Centro Nacional de Supercomputacion
Task-based programming in COMPSs to
converge from HPC to Big Data

Rosa M Badia
Barcelona Supercomputing Center

EXCELENCIA
SEVERO
, OCHOA

CCDSC 2016, La Maison des Contes, 3-6 October 2016

Challenges for this talk at CCDSC 2016

(€ Challenge #1: how to “uncan” my talk to meet the
expectations of the workshop

({ Challenge #2: how to make an interesting talk in the morning
... after the first visit to the cave

(€ Challenge #3: how to speak aft fhterest

Waggle: An Open Platform for Intelligent Sensors
Exploming Disruptive Technology, Edge Computing, Resdwent Deugn

Goal of the presentation

(€ Why we do not compare Spark to PyYCOMPSs?

Barcelona
Supercomg
Center

Spark Deployment and Performance Evaluation
on the MareNostrum Supercomputer

Ruben Tous

Anastasios Gounaris

Carlos Tripiana,

BSC & UPC AUTH Sergi Girona
e Barcelona, Spai"d Thessaloniki, éireeche Barcelona, Spain
ous@ac.upc.edu .auth. i
@ac.upc. gounaria@csd.auth.gr {carlos tripiana;
sergi.girona}@bsc.es
David Carrera Eduard Ayguadé, Jordi Torres,
BSC & UPC Jesus Labarta ateo Valero
Barcelona, Spain BSC & UPC BSC & UPC |
david.car .es Spain Barcelona, Spain
{eduard.ayguade; jordi.torres;
jesus.labarta}@bsc.es mateo.valero}@bsc.es
ABSTRACT General Terms

In this paper we present a framework to enable data-intensive
Spark workloads on MareNostrum, a petascale supercom-
puter designed mainly for compute-intensive applications.
As far as we know, this is the first optimized deployment
of Spark on a petascale HPC setup, and the largest deploy-
ment of Spark ever. We detail the design of the framework
and present some benchmark data to provide insights into
the scalability of the system. We examine the impact of dif-
ferent configurations including parallelism, storage and net-
working alternatives, and we discuss several aspects in exe-
cuting Big Data workloads on & high-end computing system
based on the compute-centric paradigm. Further, we de-
rive conclusions aiming to pave the way towards systematic
and optimized methodologies for fine-tuning data-intensive

o o om large o1 - i con

figurations.

Categories and Subject Descriptors

H34 ion Storage and i Systems
and Software; D.4.8 [Software]: Performance—measure-
ments

*BSC stands for Barcelona Supercomputing Center (BSC)
and UPC for Universitat Politécnica de Catalunya.
TAUTH stands for Aristotle University of Thessaloniki,
Greece; work conducted while visting BSC & UPC.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use s granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to
lists, req: i

Performance

Keywords
Spark, MareNostrum, HPC, big data

1. INTRODUCTION

‘Traditional HPC (High-Performance Computing) systems
are designed according to the compute-centric paradigm,
with focus on computing power, and the goal to process as
many floating-point operations per second as possible. How-
ever, the growing importance of data-intensive applications
is currently pushing the transition of many computing fa-
cilities into a data-centric paradigm, for which the variable
to maximize is the amount of data, measured in records or
bytes, processed per second to perform data analysis.

The emergent focus on big data and the potential paradigm
shift poses a dilemma to the managers of traditional HPC
facilities, who have to choose between deploying dedicated
systems for data analytics or to evolve their existing infras-
tructure to meet the new demands. The work described in
this paper explores the second option, adapting an exist-
ing HPC setup to host a massively parallel dataflow plat-
form able to execute big data workloads. Among the differ-
ent massively parallel dataflow frameworks, we have chosen
Apache Spark [29]. Spark may be decmed as an evolution
of MapReduce [5] and Hadoop [26], aiming to benefit from
memory availability, elegantly handling iterations and be-
ing suitable for both batch and streaming jobs; overall it
is shown to outperform Hadoop for many applications by
orders of magnitude [28], [27).

We have deployed Apache Spark 1.3.0 on a real-world,
petascale, HPC setup, the MareNostrum supercomputer,
built on top of commodity hardware'. To achieve this, we
have designed and developed a framework (named Spark for
MareNostrum or SparkMN) to efficiently run Spark clus-

republish, to post on servers or
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Centro Nacional de Supercomputacion

http://www.bsc.es/marenostrun-support-services/
y

((COMPSs vs Spark

— Architecture

— Programming
— Runtime

— MN deployment

({ Codes and results
— Examples: Wordcount, Kmeans, Terasort
— Programming differences
— Some performance numbers

(€ Conclusions

Barcelona

Supercomputing

Center 4
Centro Nacional de Supercomputacion

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

COMPSS VS SPARK

Architecture comparison

Python

PySpark

Spark
SQL

Standalone
with local
storage

Streaming

Spa

SCALA
App

Java
App

MLIib

Apache SPARK

MESOS YARN

HDFS

14

Graphx

7S

Python C/C++
App App
l 4 y

C/C++
Binding

Python
Binding

>
o
O

©
S

®©
©

Clouds

Supercomputing

Centro Nacional de Supercomputacion

Programming with PyCOMPSs/COMPSs

({
({

({
({
({

(

({

Sequential programming
General purpose programming language + annotations/hints
— To identify tasks and directionality of data

Task based: task is the unit of work
Simple linear address space

Builds a task graph at runtime that express potential concurrency
— Implicit workflow
Exploitation of parallelism
(C ... and of distant parallelism
Agnostic of computing
platform

— Enabled by the runtime
for clusters, clouds and grids

— Cloud federation

@ Phasing _ Association test
Pre-imputation . Imputation Quality filtering
filtering

o Post-imputation () Data merging

Barcelona ‘ Filtering (i) Summary statistics

Supercomputing “~" and tophits results

Center /
Centro Nacional de Supercomputacion

ti

Programming with Spark

({ Sequential programming

(€ General purpose programming language + operators

(€ Main abstraction: Resilient Distributed Dataset (RDD)
— Collection of read-only elements partitioned across the nodes of the

cluster that can be operated on in parallel

(€ Operators transform RDDs

— Transformations
— Actions

(€ Simple linear address space

(€ Builds a DAG of operators applied to the RDDs

(€ Somehow agnostic of computing platform
— Enabled by the runtime for clusters and clouds

®

Barcelona
Supercomputing
Center

Centro N.

lacional de Supercomputacion

COMPSs Runtime behavior

®

User code +
task
annotations

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Phasing

&

71— >

WRPE J'JM'MMJA’
-

(=) Association test

Files,
objects

Spark runtime

({
({

({

({
({

-~ \\ ~ ~ 2 ’ N
e —phe b —owbm 2B
HadoopRDD > FilteredRDD —»| MappedRDD
Barcelona
Supercomputing

Runtime generates a DAG derived from the transformations and actions

RDD is partitioned in chunks and each transformation/action will be applied
to each chunk

— Chunks mapped in different workers — possibility of replication

— Tasks scheduled where the data resides
RDDs are best suited for applications that apply the same operation to all
elements of a dataset

— Less suitable for applications that make asynchronous fine-grained updates to shared
state

Intermediate RDD can persist in-memory

Lazy execution:
— Actions trigger the execution of a pipeline of transformations

Center 10

Centro Nacional de Supercomputacion

COMPSs @ MN

(€ MareNostrum version

(€ Results from COMPSs release 2.0 beta

®

— Specific script to generate LSF scripts and
submit them to the scheduler: enqueue compss

— N+1 MareNostrum nodes are allocated

— One node runs the runtime, N nodes run worker processes
« Each worker process can execute up to 16 simultaneous tasks
— Files in GPFS
* No data transfers
» Temporal files created in local disks

— To be released at SC16

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

SPARK @ MN - spark4mn

(€ Spark deployed in MareNostrum supercomputer

(€ Spark jobs are deployed as LSF jobs

— HDFS mapped in GPFS storage
— Spark runs in the allocation

((Set of commands and templates

— Sparkdmn

» sets up the cluster, and launches applications,
everything as one job.

— sparkdmn_benchmark
N jobs

— sparkdmn_plot
* metrics

Data
Transfer LD::E
Machines

— | |

. GPFS Storage
Barcelona User Data GPFS Storage
Supercomputing
Center
Centro Nacional de Supercomputacion

12

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

CODES AND RESULTS

(€ Three examples from Big Data workloads

— Wordcount
— K-means
— Terasort

(€ Programming language

— Scala for Spark
— Java for COMPSs
— ... since Python was not available in the MN Spark installation

Code comparison — WordCount (Scala/Java)

Spark

JavaRDD<String> file = sc.textFile(inputDirPath+"/*.txt");
JavaRDD<String> words = file.flatMap(new FlatMapFunction<String,
String>() {
public Iterable<String> call(String s) {
return Arrays.asList(s.split(" "));

}
;
JavaPairRDD<String, Integer>
pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
1
JavaPairRDD<String, Integer>
counts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>()
{
public Integer call(Integer a, Integer b) {
return a + b;

}
s

counts.saveAsTextFile(outputDirPath);

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

sesesesessesssensss

3 g

int neighbor=1;
while (neighbor<I){
for (int result=0; result<I; result+=2*neighbor){
if (result+neighbor < [){
partialResult[result] = reduceTask (partialResult[result],
partialResult[result+neighbor]);
}
}
neighbor*=2;
}

int elems = saveAsFile(partialResult[0]);

public interface Wordcountltf {
@Method (declaringClass = "wordcount.multipleFilesNTimesFine.Wordcount")
public HashMap<String, Integer> reduceTask(

@Parameter HashMap<String, Integer> m1,

@Parameter HashMap<String, Integer> m2);
@Method (declaringClass = "wordcount.multipleFilesNTimesFine.Wordcount")
public HashMap<String, Integer> wordCount(

@Parameter (type = Type.FILE, direction = Direction.IN) String filePath);}

Code comparison — WordCount (Python)

Spark

from _ future__ import print_function
import sys

from operator import add

from pyspark import SparkContext

if _name__ ==" main_ "
if len(sys.argv) != 2:
print("Usage: wordcount <file>", file=sys.stderr)
exit(-1)

sc = SparkContext(appName="PythonWordCount")
lines = sc.textFile(sys.argv[1], 1)
counts = lines.flatMap(lambda x: x.split(* ")) \
.map(lambda x: (x, 1)) \
.reduceByKey(add)
output = counts.collect()

for (word, count) in output:
print("%s: %i" % (word, count))

sc.stop()

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

from collections import defaultdict
import sys

if _name_ ==" main__ "
from pycompss.api.api import compss_wait_on
pathFile = sys.argv[1]
sizeBlock = int(sys.argv[2])

result=defaultdict(int)

for block in read_file_by block(pathFile, sizeBlock):
presult = word_count(block)
reduce_count(result, presult)

output = compss_wait_on(result)
for (word, count) in output:
print("%s: %i" % (word, count))

@task(returns=dict)
def word_count(collection):
@task(dict_1=INOUT) result = defaultdict(int)
def reduce_count(dict_1, dict_2): for word in collection:
for k, v in dict_2.iteritems(): resultjword] += 1
dict_1[K] +=v return result

16

Kmeans — code structure

(€ Algorithm based on the Kmeans scala code available at MLIib
(COMPSs code written in Java, following same structure

(€ Input: N points x M dimensions, to be clustered in K centers
— Randomly generated —ee. =2
— Split in fragments

((Iterative process until convergence
— For each fragment: Assign pointstocl
— Compute new centers s

& QT \NZXT PRGN P
Barcelona “ -
Supercomputing =z
Center 17
Centro Nacional de Supercomputacion

(€ Algorithm based on the Terasort scala code available at
github by Ewan Higgs

(€ COMPSs code written in Java, following same structure
({ Data partitioned in fragments

({ Points in a range are filtered from each fragment

({ All the points in a range are then sorted

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

18

Code comparison

WordCount Kmeans Terasort
COMPSs Spark COMPSs Spark COMPSs Spark
Total #lines 152 46 538 871 942 259
#lines tasks 35 o6 42
#lines interface 20 35 34
#tasks / #operators 2 5 4 12 4 4

({ Spark codes more compact
({ Less flexible interface

Barcelona

Supercomputing

Center 19
Centro Nacional de Supercomputacion

WordCount performance

Elapsed Time
Strong scaling

({ Strong scaling

— 1024 files / 1GB each =1TB

— Each worker node runs up to
16 tasks in parallel

(€ Weak scaling

®

— 1 GB / task

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

3000
2500

2000

g
21500
jv]

£
F1000

50

o

0

2000
1800
1600
1400
< 1200
o
=~ 1000
£
£ 800
600
400
200
0

14111)

Worker Nodes

Average Elapsed Time (Weak scaling experiment)

1 2 4 8 16 32 64

Worker Nodes

B COMPSs
ESpark

BCOMPSs
H Spark

20

Large variability due

WordCount traces - strong scaling to reads to gpfs

[SEER::NE E-NN N NEWIN |

THREAD 1.1.1 n
. 1
B | L
THREAD 1.5.15 . - i
THREAD 1.9.15 : 32 l lOd eS Ail [
i L
THREAD 1.13.15
THREAD 1.17.15 [1
f 3
THREAD 1.21.15 e
. i
- i
THREAD 1.2%.15 :
[
i
3 .
THREAD 1.29.15 l !
THREAD 1 !
wardCount
THREAD 1.9.3 [1.26221e+11..1.27471e+11) 0 ns
THREAD 1.1. F G B 3D } - Q ‘ HH ||
L o A
THREAD 1.9.15
£ a
. 64 nodes
4
THREAD 1.25.15
THREAD 1.33.15
THREAD 1.41.15
THREAD 1.43.15
. o
'.F_ -
THREAD 1.57.15 na

THREAD 1.85.18 _—— E— . ;
Supercomputing THREAD 1.32.6 [6.24856e+10..6.37353e+10) = 0ns
Center 21
Centro Nacional de Supercomputacion

Kmeans performance

({ Strong scaling — total dataset:
Points 131.072,000
Dimensions 100

Centers
Iterations
Fragments 1024

Total dataset size: ~100 GB

({ Weak Scaling — dataset per worker:
Points 2.048,000
Dimensions
Centers
lterations 10
Fragments

Dataset size: ~1.5 GB

Supercomputing

0 Nacional de Supercomputacion

800
700
600

_.500

400

£ 300
200
100

250

200

150

Time (sec)

100

50

B COMPSs
= Spark
16 32

Elapsed Time
Strong scaling

Worker Nodes

Elapsed Time
Weak scaling

I I I I -

8 16 32 64

LL

Terasort performance

Strong scaling
1600

(€ Strong Scaling

1200

— 256 files / 1 GB each

— Total size 256 GB ;oo I I I .

Worker Nodes

({ Weak scaling
— 4 files / 1 GB per worker

Elapsed Time
Weak scaling

600

— 4 GB / worker

400 COMPSs

3 n
.g 300 ®Spark
£
200
0
1 2 4 8 16 32 64

Worker Nodes

Barcelona

Supercomputing

Center 23
Centro Nacional de Supercomputacion

o

Terasort traces — weak scaling

(RN K-S N EININ |

i

16 nodes

S
AT

I'l

4

3

o

[! |II
C I
N

1]

o

'l
"

Al '
) 1.17.5 [5.92216e+10..5.97966e+10) = O ns

(cHel:RE E-SN N EININ |

32 nodes

- Sort task duration
increases significantly

Barcelona + large variability
@ Conter. " Reads/writes from file 24

Centro Nacional de Supercomputacion

Conclusions

(Summary of comparison
— Spark code is more compact
— COMPSs offers more flexibility, both in programming model and runtime behavior
— Performance results slightly better for COMPSs
— Need to better understand reasons for better performance
(Ongoing work:
— Integration with new storage technologies:
» dataClay, Hecuba
» Will improve current issues with traditional file systems (gpfs)
— Support to end-to-end HPC workflows
* COMPSs runtime enabled to run MPI workloads as tasks
» Support for streaming
(€ Future plans
— Promotion of PyCOMPSs in Python community
» Enablement of automatic installation (pip install)
(€ Distribution
— compss.bsc.es

Barcelona

Supercomputing

Center 25
Centro Nacional de Supercomputacion

Maybe we will not kill the giant...

...but we will try hard

Barcelona

Supercomputing

Center 26
Centro Nacional de Supercomputacion

WWW.bSsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Thank you!

