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Challenges for this talk at CCDSC 2016

(€ Challenge #1: how to “uncan” my talk to meet the
expectations of the workshop

({ Challenge #2: how to make an interesting talk in the morning
... after the first visit to the cave

(€ Challenge #3: how to speak aft fhterest

Waggle: An Open Platform for Intelligent Sensors
Exploming Disruptive Technology, Edge Computing, Resdwent Deugn




Goal of the presentation

(€ Why we do not compare Spark to PyYCOMPSs?
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ABSTRACT General Terms

In this paper we present a framework to enable data-intensive
Spark workloads on MareNostrum, a petascale supercom-
puter designed mainly for compute-intensive applications.
As far as we know, this is the first optimized deployment
of Spark on a petascale HPC setup, and the largest deploy-
ment of Spark ever. We detail the design of the framework
and present some benchmark data to provide insights into
the scalability of the system. We examine the impact of dif-
ferent configurations including parallelism, storage and net-
working alternatives, and we discuss several aspects in exe-
cuting Big Data workloads on & high-end computing system
based on the compute-centric paradigm. Further, we de-
rive conclusions aiming to pave the way towards systematic
and optimized methodologies for fine-tuning data-intensive

o o om large o1 - i con

figurations.

Categories and Subject Descriptors

H34 ion Storage and i Systems
and Software; D.4.8 [Software]: Performance—measure-
ments

*BSC stands for Barcelona Supercomputing Center (BSC)
and UPC for Universitat Politécnica de Catalunya.
TAUTH stands for Aristotle University of Thessaloniki,
Greece; work conducted while visting BSC & UPC.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use s granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to
lists, req: i

Performance

Keywords
Spark, MareNostrum, HPC, big data

1. INTRODUCTION

‘Traditional HPC (High-Performance Computing) systems
are designed according to the compute-centric paradigm,
with focus on computing power, and the goal to process as
many floating-point operations per second as possible. How-
ever, the growing importance of data-intensive applications
is currently pushing the transition of many computing fa-
cilities into a data-centric paradigm, for which the variable
to maximize is the amount of data, measured in records or
bytes, processed per second to perform data analysis.

The emergent focus on big data and the potential paradigm
shift poses a dilemma to the managers of traditional HPC
facilities, who have to choose between deploying dedicated
systems for data analytics or to evolve their existing infras-
tructure to meet the new demands. The work described in
this paper explores the second option, adapting an exist-
ing HPC setup to host a massively parallel dataflow plat-
form able to execute big data workloads. Among the differ-
ent massively parallel dataflow frameworks, we have chosen
Apache Spark [29]. Spark may be decmed as an evolution
of MapReduce [5] and Hadoop [26], aiming to benefit from
memory availability, elegantly handling iterations and be-
ing suitable for both batch and streaming jobs; overall it
is shown to outperform Hadoop for many applications by
orders of magnitude [28], [27).

We have deployed Apache Spark 1.3.0 on a real-world,
petascale, HPC setup, the MareNostrum supercomputer,
built on top of commodity hardware'. To achieve this, we
have designed and developed a framework (named Spark for
MareNostrum or SparkMN) to efficiently run  Spark clus-

republish, to post on servers or
permission and/or a fee.
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(( COMPSs vs Spark

— Architecture

— Programming
— Runtime

— MN deployment

({ Codes and results
— Examples: Wordcount, Kmeans, Terasort
— Programming differences
— Some performance numbers

(€ Conclusions
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Architecture comparison
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Programming with PyCOMPSs/COMPSs

({
({

({
({
({

(

({

Sequential programming
General purpose programming language + annotations/hints
— To identify tasks and directionality of data

Task based: task is the unit of work
Simple linear address space

Builds a task graph at runtime that express potential concurrency
— Implicit workflow
Exploitation of parallelism
(C ... and of distant parallelism
Agnostic of computing
platform

— Enabled by the runtime
for clusters, clouds and grids

— Cloud federation

@ Phasing _ Association test
Pre-imputation . Imputation Quality filtering
filtering

o Post-imputation () Data merging

Barcelona ‘ Filtering (i) Summary statistics

Supercomputing “~" and tophits results
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Programming with Spark

({ Sequential programming

(€ General purpose programming language + operators

(€ Main abstraction: Resilient Distributed Dataset (RDD)
— Collection of read-only elements partitioned across the nodes of the

cluster that can be operated on in parallel

(€ Operators transform RDDs

— Transformations
— Actions

(€ Simple linear address space

(€ Builds a DAG of operators applied to the RDDs

(€ Somehow agnostic of computing platform
— Enabled by the runtime for clusters and clouds

®
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COMPSs Runtime behavior

®

User code +
task
annotations
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Spark runtime

({
({

({

({
({

-~ \\ ~ ~ 2 ’ N
e —phe b —owbm 2B
HadoopRDD > FilteredRDD —»| MappedRDD
Barcelona
Supercomputing

Runtime generates a DAG derived from the transformations and actions

RDD is partitioned in chunks and each transformation/action will be applied
to each chunk

— Chunks mapped in different workers — possibility of replication

— Tasks scheduled where the data resides
RDDs are best suited for applications that apply the same operation to all
elements of a dataset

— Less suitable for applications that make asynchronous fine-grained updates to shared
state

Intermediate RDD can persist in-memory

Lazy execution:
— Actions trigger the execution of a pipeline of transformations

Center 10
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COMPSs @ MN

(€ MareNostrum version

(€ Results from COMPSs release 2.0 beta

®

— Specific script to generate LSF scripts and
submit them to the scheduler: enqueue compss

— N+1 MareNostrum nodes are allocated

— One node runs the runtime, N nodes run worker processes
« Each worker process can execute up to 16 simultaneous tasks
— Files in GPFS
* No data transfers
» Temporal files created in local disks

— To be released at SC16
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SPARK @ MN - spark4mn

(€ Spark deployed in MareNostrum supercomputer

(€ Spark jobs are deployed as LSF jobs

— HDFS mapped in GPFS storage
— Spark runs in the allocation

(( Set of commands and templates

— Sparkdmn

» sets up the cluster, and launches applications,
everything as one job.

— sparkdmn_benchmark
N jobs

— sparkdmn_plot
* metrics

Data
Transfer LD::E
Machines

— | |

. GPFS Storage
Barcelona User Data GPFS Storage
Supercomputing
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(€ Three examples from Big Data workloads

— Wordcount
— K-means
— Terasort

(€ Programming language

— Scala for Spark
— Java for COMPSs
— ... since Python was not available in the MN Spark installation




Code comparison — WordCount (Scala/Java)

Spark

JavaRDD<String> file = sc.textFile(inputDirPath+"/*.txt");
JavaRDD<String> words = file.flatMap(new FlatMapFunction<String,
String>() {
public Iterable<String> call(String s) {
return Arrays.asList(s.split(" "));

}
;
JavaPairRDD<String, Integer>
pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
1
JavaPairRDD<String, Integer>
counts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>()
{
public Integer call(Integer a, Integer b) {
return a + b;

}
s

counts.saveAsTextFile(outputDirPath);
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int neighbor=1;
while (neighbor<I){
for (int result=0; result<I; result+=2*neighbor){
if (result+neighbor < [){
partialResult[result] = reduceTask (partialResult[result],
partialResult[result+neighbor]);
}
}
neighbor*=2;
}

int elems = saveAsFile(partialResult[0]);

public interface Wordcountltf {
@Method (declaringClass = "wordcount.multipleFilesNTimesFine.Wordcount")
public HashMap<String, Integer> reduceTask(

@Parameter HashMap<String, Integer> m1,

@Parameter HashMap<String, Integer> m2 );
@Method (declaringClass = "wordcount.multipleFilesNTimesFine.Wordcount")
public HashMap<String, Integer> wordCount(

@Parameter (type = Type.FILE, direction = Direction.IN) String filePath );}



Code comparison — WordCount (Python)

Spark

from _ future__ import print_function
import sys

from operator import add

from pyspark import SparkContext

if _name__ ==" main_ "
if len(sys.argv) != 2:
print("Usage: wordcount <file>", file=sys.stderr)
exit(-1)

sc = SparkContext(appName="PythonWordCount")
lines = sc.textFile(sys.argv[1], 1)
counts = lines.flatMap(lambda x: x.split(* ")) \
.map(lambda x: (x, 1)) \
.reduceByKey(add)
output = counts.collect()

for (word, count) in output:
print("%s: %i" % (word, count))

sc.stop()
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from collections import defaultdict
import sys

if _name_ ==" main__ "
from pycompss.api.api import compss_wait_on
pathFile = sys.argv[1]
sizeBlock = int(sys.argv[2])

result=defaultdict(int)

for block in read_file_by block(pathFile, sizeBlock):
presult = word_count(block)
reduce_count(result, presult)

output = compss_wait_on(result)
for (word, count) in output:
print("%s: %i" % (word, count))

@task(returns=dict)
def word_count(collection):
@task(dict_1=INOUT) result = defaultdict(int)
def reduce_count(dict_1, dict_2): for word in collection:
for k, v in dict_2.iteritems(): resultjword] += 1
dict_1[K] +=v return result

16



Kmeans — code structure

(€ Algorithm based on the Kmeans scala code available at MLIib
( COMPSs code written in Java, following same structure

(€ Input: N points x M dimensions, to be clustered in K centers
— Randomly generated —ee. =2
— Split in fragments

(( Iterative process until convergence
— For each fragment: Assign pointstocl
— Compute new centers s

& QT \NZXT PRGN P
Barcelona “ -
Supercomputing =z
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(€ Algorithm based on the Terasort scala code available at
github by Ewan Higgs

(€ COMPSs code written in Java, following same structure
({ Data partitioned in fragments

({ Points in a range are filtered from each fragment

({ All the points in a range are then sorted
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Code comparison

WordCount Kmeans Terasort
COMPSs Spark COMPSs Spark COMPSs Spark
Total #lines 152 46 538 871 942 259
#lines tasks 35 o6 42
#lines interface 20 35 34
#tasks / #operators 2 5 4 12 4 4

({ Spark codes more compact
({ Less flexible interface
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WordCount performance

Elapsed Time
Strong scaling

({ Strong scaling

— 1024 files / 1GB each =1TB

— Each worker node runs up to
16 tasks in parallel

(€ Weak scaling

®

— 1 GB / task
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Large variability due

WordCount traces - strong scaling  to reads to gpfs
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Kmeans performance

({ Strong scaling — total dataset:
Points 131.072,000
Dimensions 100

Centers
Iterations
Fragments 1024

Total dataset size: ~100 GB

({ Weak Scaling — dataset per worker:
Points 2.048,000
Dimensions
Centers
lterations 10
Fragments

Dataset size: ~1.5 GB
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Terasort performance

Strong scaling
1600

(€ Strong Scaling

1200

— 256 files / 1 GB each

— Total size 256 GB ;oo I I I .

# Worker Nodes

({ Weak scaling
— 4 files / 1 GB per worker

Elapsed Time
Weak scaling
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Terasort traces — weak scaling
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Conclusions

( Summary of comparison
— Spark code is more compact
— COMPSs offers more flexibility, both in programming model and runtime behavior
— Performance results slightly better for COMPSs
— Need to better understand reasons for better performance
( Ongoing work:
— Integration with new storage technologies:
» dataClay, Hecuba
»  Will improve current issues with traditional file systems (gpfs)
— Support to end-to-end HPC workflows
* COMPSs runtime enabled to run MPI workloads as tasks
» Support for streaming
(€ Future plans
— Promotion of PyCOMPSs in Python community
» Enablement of automatic installation (pip install)
(€ Distribution
— compss.bsc.es
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Maybe we will not kill the giant...

...but we will try hard
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Thank you!




