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Challenges for this talk at CCDSC 2016
Challenge #1: how to “uncan” my talk to meet the 
expectations of the workshop
Challenge #2: how to make an interesting talk in the morning
… after the first visit to the cave
Challenge #3: how to speak after Pete  and keep your interest
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Goal of the presentation
Why we do not compare Spark to PyCOMPSs? 
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Outline
COMPSs vs Spark
– Architecture
– Programming 
– Runtime
– MN deployment 

Codes and results
– Examples: Wordcount, Kmeans, Terasort
– Programming differences
– Some performance numbers

Conclusions



COMPSS VS SPARK
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Architecture comparison
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Programming with PyCOMPSs/COMPSs
Sequential programming
General purpose programming language + annotations/hints
– To identify tasks and directionality of data

Task based: task is the unit of work
Simple linear address space
Builds a task graph at runtime that express potential concurrency
– Implicit workflow

Exploitation of parallelism
… and of distant parallelism

Agnostic of computing 
platform
– Enabled by the runtime 

for clusters, clouds and grids 
– Cloud federation
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Programming with Spark
Sequential programming
General purpose programming language + operators
Main abstraction: Resilient Distributed Dataset (RDD) 
– Collection of read-only elements partitioned across the nodes of the 

cluster that can be operated on in parallel
Operators transform RDDs
– Transformations
– Actions 

Simple linear address space
Builds a DAG of operators applied to the RDDs 
Somehow agnostic of computing platform
– Enabled by the runtime for clusters and clouds



COMPSs Runtime behavior
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Spark runtime
Runtime generates a DAG derived from the transformations and actions
RDD is partitioned in chunks and each transformation/action will be applied 
to each chunk

– Chunks mapped in different workers – possibility of replication
– Tasks scheduled where the data resides 

RDDs are best suited for applications that apply the same operation to all 
elements of a dataset

– Less suitable for applications that make asynchronous fine-grained updates to shared 
state

Intermediate RDD can persist in-memory
Lazy execution:

– Actions trigger the execution of a pipeline of transformations 
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COMPSs @ MN 
MareNostrum version
– Specific script to generate LSF scripts and 

submit them to the scheduler: enqueue_compss
– N+1 MareNostrum nodes are allocated
– One node runs the runtime, N nodes run worker processes 

• Each worker process can execute up to 16 simultaneous tasks 
– Files in GPFS

• No data transfers
• Temporal files created in local disks 

Results from COMPSs release 2.0 beta 
– To be released at SC16
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SPARK @ MN - spark4mn
Spark deployed in MareNostrum supercomputer
Spark jobs are deployed as LSF jobs

– HDFS mapped in GPFS storage
– Spark runs in the allocation

Set of commands and templates
– Spark4mn

• sets up the cluster, and launches applications,
everything as one job.

– spark4mn_benchmark
• N jobs

– spark4mn_plot
• metrics



CODES AND RESULTS 
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Codes
Three examples from Big Data workloads
– Wordcount
– K-means
– Terasort

Programming language
– Scala for Spark
– Java for COMPSs
– … since Python was not available in the MN Spark installation 
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Code comparison – WordCount (Scala/Java)

JavaRDD<String> file = sc.textFile(inputDirPath+"/*.txt");
JavaRDD<String> words = file.flatMap(new FlatMapFunction<String, 
String>() {

public Iterable<String> call(String s) { 
return Arrays.asList(s.split(" ")); 

}
});
JavaPairRDD<String, Integer> 

pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) { 

return new Tuple2<String, Integer>(s, 1); 
}

});
JavaPairRDD<String, Integer> 

counts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() 
{

public Integer call(Integer a, Integer b) { 
return a + b; 

}
});    
counts.saveAsTextFile(outputDirPath);

int l = filePaths.length;
for (int i = 0; i < l; ++i) {

String fp = filePaths[i];
partialResult[i] = wordCount(fp);

}
int neighbor=1;
while (neighbor<l){

for (int result=0; result<l; result+=2*neighbor){
if (result+neighbor < l){

partialResult[result] = reduceTask (partialResult[result], 
partialResult[result+neighbor]);

}
}
neighbor*=2;

}
int elems = saveAsFile(partialResult[0]);

public interface WordcountItf {
@Method (declaringClass = "wordcount.multipleFilesNTimesFine.Wordcount")
public HashMap<String, Integer> reduceTask(

@Parameter HashMap<String, Integer> m1,
@Parameter HashMap<String, Integer> m2 );

@Method (declaringClass = "wordcount.multipleFilesNTimesFine.Wordcount")
public HashMap<String, Integer> wordCount(

@Parameter (type = Type.FILE, direction = Direction.IN) String filePath );}



Code comparison – WordCount (Python)
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from __future__ import print_function
import sys
from operator import add
from pyspark import SparkContext

if __name__ == "__main__":
if len(sys.argv) != 2:

print("Usage: wordcount <file>", file=sys.stderr)
exit(-1)

sc = SparkContext(appName="PythonWordCount")

lines = sc.textFile(sys.argv[1], 1)
counts = lines.flatMap(lambda x: x.split(' ')) \

.map(lambda x: (x, 1)) \

.reduceByKey(add)
output = counts.collect()

for (word, count) in output:
print("%s: %i" % (word, count))

sc.stop()

@task(dict_1=INOUT)
def reduce_count(dict_1, dict_2):

for k, v in dict_2.iteritems():
dict_1[k] += v

from collections import defaultdict
import sys

if __name__ == "__main__":
from pycompss.api.api import compss_wait_on
pathFile = sys.argv[1]
sizeBlock = int(sys.argv[2])

result=defaultdict(int)
for block in read_file_by_block(pathFile, sizeBlock):

presult = word_count(block)
reduce_count(result, presult)

output = compss_wait_on(result)
for (word, count) in output:

print("%s: %i" % (word, count))

@task(returns=dict)
def word_count(collection):

result = defaultdict(int)
for word in collection:

result[word] += 1
return result



Kmeans – code structure 
Algorithm based on the Kmeans scala code available at MLlib
COMPSs code written in Java, following same structure
Input: N points x M dimensions, to be clustered in K centers
– Randomly generated 
– Split in fragments

Iterative process until convergence: 
– For each fragment: Assign points to closest center 
– Compute new centers 
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Terasort
Algorithm based on the Terasort scala code available at 
github by Ewan Higgs
COMPSs code written in Java, following same structure
Data partitioned in fragments
Points in a range are filtered from each fragment 
All the points in a range are then sorted
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Code comparison
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WordCount Kmeans Terasort
COMPSs Spark COMPSs Spark COMPSs Spark

Total #lines 152 46 538 871 542 259
#lines tasks 35 56 44
#lines interface 20 35 34
#tasks / #operators 2 5 4 12 4 4

Spark codes more compact
Less flexible interface 
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WordCount performance
Strong scaling
– 1024 files / 1GB each = 1TB
– Each worker node runs up to 

16 tasks in parallel
Weak scaling
– 1 GB / task 
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WordCount traces - strong scaling

32 nodes

64 nodes

Large variability due 
to reads to gpfs
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Kmeans performance
Strong scaling – total dataset:
– Points 131.072,000
– Dimensions 100
– Centers 1000
– Iterations 10
– Fragments  1024
– Total dataset size: ~100 GB

Weak Scaling – dataset per worker:
– Points 2.048,000 
– Dimensions     100
– Centers 1000
– Iterations 10
– Fragments  16
– Dataset size: ~1.5 GB
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Terasort performance 
Strong Scaling
– 256 files / 1 GB each
– Total size 256 GB

Weak scaling
– 4 files / 1 GB per worker
– 4 GB / worker
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Terasort traces – weak scaling

32 nodes

16 nodes

Sort task duration 
increases significantly
+ large variability
Reads/writes from file 
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Conclusions
Summary of comparison

– Spark code is more compact 
– COMPSs offers more flexibility, both in programming model and runtime behavior
– Performance results slightly better for COMPSs
– Need to better understand reasons for better performance 

Ongoing work:
– Integration with new storage technologies:

• dataClay, Hecuba
• Will improve current issues with traditional file systems (gpfs) 

– Support to end-to-end HPC workflows 
• COMPSs runtime enabled to run MPI workloads as tasks
• Support for streaming 

Future plans
– Promotion of PyCOMPSs in Python community

• Enablement of automatic installation (pip install) 
Distribution

– compss.bsc.es
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Maybe we will not kill the giant…
…but we will try hard 
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Thank you!
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