
www.bsc.es

CCDSC 2016, La Maison des Contes, 3-6 October 2016

Rosa M Badia
Barcelona Supercomputing Center

Task-based programming in COMPSs to
converge from HPC to Big Data

2

Challenges for this talk at CCDSC 2016
Challenge #1: how to “uncan” my talk to meet the
expectations of the workshop
Challenge #2: how to make an interesting talk in the morning
… after the first visit to the cave
Challenge #3: how to speak after Pete and keep your interest

3

Goal of the presentation
Why we do not compare Spark to PyCOMPSs?

4

Outline
COMPSs vs Spark
– Architecture
– Programming
– Runtime
– MN deployment

Codes and results
– Examples: Wordcount, Kmeans, Terasort
– Programming differences
– Some performance numbers

Conclusions

COMPSS VS SPARK

5

6

Architecture comparison

Apache SPARK

Spark
SQL Streaming MLlib Graphx

MESOS YARN

Standalone
with local
storage

Public
Clouds

Python
App

SCALA
App

Java
App

PySpark

Storage

HDFSS3

COMPSs

Binding-commons

Python
Binding

C/C++
Binding

Python
App

C/C++
App

Java
App

task

Grid Cluster Clouds

task
task

Storage

H
ec

ub
a

da
ta

C
la

y

7

Programming with PyCOMPSs/COMPSs
Sequential programming
General purpose programming language + annotations/hints
– To identify tasks and directionality of data

Task based: task is the unit of work
Simple linear address space
Builds a task graph at runtime that express potential concurrency
– Implicit workflow

Exploitation of parallelism
… and of distant parallelism

Agnostic of computing
platform
– Enabled by the runtime

for clusters, clouds and grids
– Cloud federation

8

Programming with Spark
Sequential programming
General purpose programming language + operators
Main abstraction: Resilient Distributed Dataset (RDD)
– Collection of read-only elements partitioned across the nodes of the

cluster that can be operated on in parallel
Operators transform RDDs
– Transformations
– Actions

Simple linear address space
Builds a DAG of operators applied to the RDDs
Somehow agnostic of computing platform
– Enabled by the runtime for clusters and clouds

COMPSs Runtime behavior

Grids	
Clusters
Clouds

Files,
objects

Tasks

TDG
User	code	+	

task	
annotations

Runtime

10

Spark runtime
Runtime generates a DAG derived from the transformations and actions
RDD is partitioned in chunks and each transformation/action will be applied
to each chunk

– Chunks mapped in different workers – possibility of replication
– Tasks scheduled where the data resides

RDDs are best suited for applications that apply the same operation to all
elements of a dataset

– Less suitable for applications that make asynchronous fine-grained updates to shared
state

Intermediate RDD can persist in-memory
Lazy execution:

– Actions trigger the execution of a pipeline of transformations

11

COMPSs @ MN
MareNostrum version
– Specific script to generate LSF scripts and

submit them to the scheduler: enqueue_compss
– N+1 MareNostrum nodes are allocated
– One node runs the runtime, N nodes run worker processes

• Each worker process can execute up to 16 simultaneous tasks
– Files in GPFS

• No data transfers
• Temporal files created in local disks

Results from COMPSs release 2.0 beta
– To be released at SC16

12

SPARK @ MN - spark4mn
Spark deployed in MareNostrum supercomputer
Spark jobs are deployed as LSF jobs

– HDFS mapped in GPFS storage
– Spark runs in the allocation

Set of commands and templates
– Spark4mn

• sets up the cluster, and launches applications,
everything as one job.

– spark4mn_benchmark
• N jobs

– spark4mn_plot
• metrics

CODES AND RESULTS

13

Codes
Three examples from Big Data workloads
– Wordcount
– K-means
– Terasort

Programming language
– Scala for Spark
– Java for COMPSs
– … since Python was not available in the MN Spark installation

15

Code comparison – WordCount (Scala/Java)

JavaRDD<String> file = sc.textFile(inputDirPath+"/*.txt");
JavaRDD<String> words = file.flatMap(new FlatMapFunction<String,
String>() {

public Iterable<String> call(String s) {
return Arrays.asList(s.split(" "));

}
});
JavaPairRDD<String, Integer>

pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) {

return new Tuple2<String, Integer>(s, 1);
}

});
JavaPairRDD<String, Integer>

counts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>()
{

public Integer call(Integer a, Integer b) {
return a + b;

}
});
counts.saveAsTextFile(outputDirPath);

int l = filePaths.length;
for (int i = 0; i < l; ++i) {

String fp = filePaths[i];
partialResult[i] = wordCount(fp);

}
int neighbor=1;
while (neighbor<l){

for (int result=0; result<l; result+=2*neighbor){
if (result+neighbor < l){

partialResult[result] = reduceTask (partialResult[result],
partialResult[result+neighbor]);

}
}
neighbor*=2;

}
int elems = saveAsFile(partialResult[0]);

public interface WordcountItf {
@Method (declaringClass = "wordcount.multipleFilesNTimesFine.Wordcount")
public HashMap<String, Integer> reduceTask(

@Parameter HashMap<String, Integer> m1,
@Parameter HashMap<String, Integer> m2);

@Method (declaringClass = "wordcount.multipleFilesNTimesFine.Wordcount")
public HashMap<String, Integer> wordCount(

@Parameter (type = Type.FILE, direction = Direction.IN) String filePath);}

Code comparison – WordCount (Python)

16

from __future__ import print_function
import sys
from operator import add
from pyspark import SparkContext

if __name__ == "__main__":
if len(sys.argv) != 2:

print("Usage: wordcount <file>", file=sys.stderr)
exit(-1)

sc = SparkContext(appName="PythonWordCount")

lines = sc.textFile(sys.argv[1], 1)
counts = lines.flatMap(lambda x: x.split(' ')) \

.map(lambda x: (x, 1)) \

.reduceByKey(add)
output = counts.collect()

for (word, count) in output:
print("%s: %i" % (word, count))

sc.stop()

@task(dict_1=INOUT)
def reduce_count(dict_1, dict_2):

for k, v in dict_2.iteritems():
dict_1[k] += v

from collections import defaultdict
import sys

if __name__ == "__main__":
from pycompss.api.api import compss_wait_on
pathFile = sys.argv[1]
sizeBlock = int(sys.argv[2])

result=defaultdict(int)
for block in read_file_by_block(pathFile, sizeBlock):

presult = word_count(block)
reduce_count(result, presult)

output = compss_wait_on(result)
for (word, count) in output:

print("%s: %i" % (word, count))

@task(returns=dict)
def word_count(collection):

result = defaultdict(int)
for word in collection:

result[word] += 1
return result

Kmeans – code structure
Algorithm based on the Kmeans scala code available at MLlib
COMPSs code written in Java, following same structure
Input: N points x M dimensions, to be clustered in K centers
– Randomly generated
– Split in fragments

Iterative process until convergence:
– For each fragment: Assign points to closest center
– Compute new centers

17

Terasort
Algorithm based on the Terasort scala code available at
github by Ewan Higgs
COMPSs code written in Java, following same structure
Data partitioned in fragments
Points in a range are filtered from each fragment
All the points in a range are then sorted

18

Code comparison

19

WordCount Kmeans Terasort
COMPSs Spark COMPSs Spark COMPSs Spark

Total #lines 152 46 538 871 542 259
#lines tasks 35 56 44
#lines interface 20 35 34
#tasks / #operators 2 5 4 12 4 4

Spark codes more compact
Less flexible interface

20

WordCount performance
Strong scaling
– 1024 files / 1GB each = 1TB
– Each worker node runs up to

16 tasks in parallel
Weak scaling
– 1 GB / task

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 4 8 16 32 64

Ti
m

e
(s

ec
)

Worker Nodes

Average Elapsed Time (Weak scaling experiment)

COMPSs
Spark

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64

Ti
m

e
(s

ec
s)

Worker Nodes

Elapsed Time
Strong scaling

COMPSs
Spark

21

WordCount traces - strong scaling

32 nodes

64 nodes

Large variability due
to reads to gpfs

22

Kmeans performance
Strong scaling – total dataset:
– Points 131.072,000
– Dimensions 100
– Centers 1000
– Iterations 10
– Fragments 1024
– Total dataset size: ~100 GB

Weak Scaling – dataset per worker:
– Points 2.048,000
– Dimensions 100
– Centers 1000
– Iterations 10
– Fragments 16
– Dataset size: ~1.5 GB

0

100

200

300

400

500

600

700

800

16 32 64

Ti
m

e
(s

ec
s)

Worker Nodes

Elapsed Time
Strong scaling

COMPSs

Spark

0

50

100

150

200

250

1 2 4 8 16 32 64

Ti
m

e
(s

ec
)

Worker Nodes

Elapsed Time
Weak scaling

COMPSs Spark

23

Terasort performance
Strong Scaling
– 256 files / 1 GB each
– Total size 256 GB

Weak scaling
– 4 files / 1 GB per worker
– 4 GB / worker

0

200

400

600

800

1000

1200

1400

1600

8 16 32 64

Ti
m

e
(s

ec
s)

Worker Nodes

Elapsed Time
Strong scaling

COMPSs
Spark

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64

Ti
m

e
(s

ec
)

Worker Nodes

Elapsed Time
Weak scaling

COMPSs
Spark

24

Terasort traces – weak scaling

32 nodes

16 nodes

Sort task duration
increases significantly
+ large variability
Reads/writes from file

25

Conclusions
Summary of comparison

– Spark code is more compact
– COMPSs offers more flexibility, both in programming model and runtime behavior
– Performance results slightly better for COMPSs
– Need to better understand reasons for better performance

Ongoing work:
– Integration with new storage technologies:

• dataClay, Hecuba
• Will improve current issues with traditional file systems (gpfs)

– Support to end-to-end HPC workflows
• COMPSs runtime enabled to run MPI workloads as tasks
• Support for streaming

Future plans
– Promotion of PyCOMPSs in Python community

• Enablement of automatic installation (pip install)
Distribution

– compss.bsc.es

26

Maybe we will not kill the giant…
…but we will try hard

www.bsc.es

Thank you!

27

