



# WaggleVision

Pete Beckman, Charlie Catlett, Rajesh Sankaran, Nicola Ferrier, Rob Jacob, Mike Papka, and more....



#### **Little Sensor Science**









Small, Cheap, Imprecise, Many

# Polluted air affects 92% of global population, says WHO

① 27 September 2016 | Health







## Waggle: An Open Platform for *Intelligent* Sensors

Exploiting Disruptive Technology, Edge Computing, Resilient Design









Supported by collaborating institutions and the U.S. National Science Foundation.
Industry In-Kind partners: AT&T, Cisco, Intel, Microsoft, Motorola Solutions, Schneider Electric, Zebra





#### **New Advanced Sensors**

(via a partnership with Intel & SPEC)

- NO2 (Nitrogen Dioxide): <2 ppb</li>
- O3 (Ozone) < 5 ppb</li>
- CO (Carbon Monoxide) < 1 ppm</li>
- SO2 (Sulfer Dioxide) < 15 ppb</li>
- H2S (Hydrogen Sulfide) < 2 ppb</li>
- TOX (total oxidizing index) < 1 ppm CO equiv</li>
- TOR (total reducing index) < 2 ppb NO2 equiv</li>
- Future:
  - HCHO (Formaldehyde)
  - VOC (Volatile Organic Compound)
  - CH4 (Methane)

### Resilient & Hackable + "Deep Space Probe" Design

Multiple boot media (μSD / eMMC)







Real time clock Internal sensors









Waggle / AoT Robust Testing





# In-Situ/Edge Computing Analysis and Feature Recognition



- Parallel Computing
- Open Platform
- Deep Learning



## Waggle Machine Learning & Edge Computing



- We are exploring Caffe & OpenCV
  - Convolutional Neural Networks
- Training will be done on systems at Argonne
- Classification on Waggle













#### Waggle: A Platform for Research

- Machine Learning: Computer Vision
  - Data must be reduced in-situ
- Novel Sensors: Nano / MEMS / Graphene
  - Explosion of nano/MEMS & imaging tech
- Low-Power CPUs: GPU / Smartphones
  - Powerful, low-power, smartphone CPUs
- Open Source / Open Platform
  - Reusable, extensible software communities



CNM carbon nanotube methane sensor

### **Opportunity**: Big Data + Predictive Models

Smart Sensors + Supercomputers/Cloud Computing = predictions and analysis



## **Team & Collaborators**





















# Why HPC Geeks Should Care

- New sensors are programmable parallel computers
  - Multicore + GPUs & OpenCL or OpenMP
  - New algorithms for in-situ data analysis, feature detection, compression, deep learning
  - Need new progmod for "stackable" in-situ analysis (for sensors and HPC)
  - Need advanced OS/R resilience, cybersecurity, networking, over-the-air programming
- 1000s of nodes make a distributed computing "instrument"
  - New streaming programming model needed
  - New techniques for machine learning for scientific data required
    - Both for within a "node" and collectively across time series
- How will HPC streaming analytics and simulation be connected to live data?
  - Can we trigger HPC simulations after first approximations? (weather, energy, transportation)
  - Unstructured database with provenance and metadata for QA/collaboration
- Use novel HPC hardware to solve power issue?
  - Can we use neuromorphic or FPGAs to reduce power for in-situ analysis & compression?
- We are trading precision & cost for greater spatial resolution: What is possible?

# Questions?



http://www.wa8.gl



http://arrayofthings.github.io