*************************************************************************** * box 3-dimensional function * more, garbow, and hillstrom, acm toms vol. 7 no. 1 (march 1981) 17-41 *************************************************************************** subroutine getfun( x, n, f, m, ftf, fj, lfj, g, mode) implicit double precision (a-h,o-z) integer n, m, lfj, mode double precision x(n), f(m), ftf, fj(lfj,n), g(n) integer nprob, nprobs, nstart, nstrts common /PROBLM/ nprob, nprobs, nstart, nstrts integer nout common /IOUNIT/ nout logical lf, lj integer na, nb, nc, nd, nt, nh integer i, j double precision x1, x2, x3 double precision e1, e2, ti, t3 double precision ddot intrinsic dble, exp double precision zero, one, point1, ten parameter (zero = 0.d0, one = 1.d0) parameter (point1 = .1d0, ten = 10.d0) *======================================================================= if (mode .eq. 0) goto 20 if (mode .eq. -1) goto 10 if (mode .eq. -2) goto 30 x1 = x(1) x2 = x(2) x3 = x(3) na = mode / 1000 nt = mode - na*1000 nb = nt / 100 nh = nt - nb*100 nc = nh / 10 nd = nh - nc*10 lf = (na .ne. 0) .or. (nb .ne. 0) .or. (nd .ne. 0) lj = (nc .ne. 0) .or. (nd .ne. 0) if (lf .and. lj) goto 300 if (lf) goto 100 if (lj) goto 200 *----------------------------------------------------------------------- 10 continue nprobs = 1 nstrts = 1 n = 3 m = 10 if (nout .gt. 0) write( nout, 9999) n, m return *----------------------------------------------------------------------- 20 continue x(1) = 0.d0 x(2) = 10.d0 x(3) = 20.d0 return *----------------------------------------------------------------------- 30 continue ftf = zero return *----------------------------------------------------------------------- 100 continue do 110 i = 1, m ti = dble(i)*point1 e1 = exp(-ti*x1) e2 = exp(-ti*x2) t3 = exp(-ti) - exp(-ti*ten) f(i) = e1 - e2 - x3*t3 110 continue if (nb .ne. 0) ftf = ddot( m, f, 1, f, 1) return 200 continue do 210 i = 1, m ti = dble(i)*point1 e1 = exp(-ti*x1) e2 = exp(-ti*x2) t3 = exp(-ti) - exp(-ti*ten) fj( i, 1) = -ti*e1 fj( i, 2) = ti*e2 fj( i, 3) = -t3 210 continue return 300 continue do 310 i = 1, m ti = dble(i)*point1 e1 = exp(-ti*x1) e2 = exp(-ti*x2) t3 = exp(-ti) - exp(-ti*ten) f(i) = e1 - e2 - x3*t3 fj( i, 1) = -ti*e1 fj( i, 2) = ti*e2 fj( i, 3) = -t3 310 continue if (nb .ne. 0) ftf = ddot( m, f, 1, f, 1) if (nd .eq. 0) return do 320 j = 1, n g(j) = ddot( m, fj( 1, j), 1, f, 1) 320 continue return 9999 format(/'1',70('=')//, *' box 3-d function (more et al.) '//, *' number of variables =', i4, ' ( 3 )'/, *' number of functions =', i4, ' ( >= 3 )'//, * ' ',70('=')/) end ************************************************************************ ************************************************************************ subroutine dfjdxk ( k, x, n, dfj, ldfj, m, nonzro) implicit double precision (a-h,o-z) integer k, n, ldfj, m, nonzro(n) double precision x(n), dfj(ldfj,n) integer i, j intrinsic dble, exp double precision zero, point1 parameter (zero = 0.d0, point1 = .1d0) *======================================================================= goto ( 210, 220, 230), k 210 continue x1 = x(1) nonzro(1) = 1 nonzro(2) = 0 nonzro(3) = 0 do 215 i = 1, m ti = point1*dble(i) dfj( i, 1) = ti*ti*exp(-ti*x1) dfj( i, 2) = zero dfj( i, 3) = zero 215 continue return 220 continue x2 = x(2) nonzro(1) = 0 nonzro(2) = 1 nonzro(3) = 0 do 225 i = 1, m ti = point1*dble(i) dfj( i, 1) = zero dfj( i, 2) = ti*ti*exp(-ti*x2) dfj( i, 3) = zero 225 continue return 230 continue do 235 j = 1, n nonzro(j) = 0 call dcopy( m, zero, 0, dfj( 1, j), 1) 235 continue return end ************************************************************************ ************************************************************************ subroutine dfkdij( k, x, n, hess, lhess, linear) implicit double precision (a-h,o-z) logical linear integer k, n, lhess double precision x(n), hess(lhess,n) double precision tk, ts intrinsic dble, exp double precision zero, point1 parameter (zero = 0.d0, point1 = .1d0) *======================================================================= linear = .false. tk = point1*dble(k) ts = tk*tk hess(1,1) = ts*exp(-tk*x(1)) hess(1,2) = zero hess(1,3) = zero hess(2,1) = zero hess(2,2) = ts*exp(-tk*x(2)) hess(2,3) = zero hess(3,1) = zero hess(3,2) = zero hess(3,3) = zero return end