PAMPAC user manual

D.A. Aruliah, Lennaert van Veen, Alex Dubitski

1 Overview

PAMPAC (Parallel Adaptive Method for Pseudo-Arclength Continuation) is a
C library using MPI (Message-Passing Interface) routines that allows users to
adapt serial codes for pseudo-arclength continuation to achieve a modest amount
of concurrent processing. Specifically, the library permits scientific researchers
to extend their continuation codes with a parallel strategy for concurrent com-
putation of corrector steps in a predictor-corrector framework. The details of
the algorithm are provided in the article [1] by the authors.
The user supplies a few basic routines with interfaces explained:

e a function main to act as a driver for the other routines;

e a function compute_residual for evaluating the nonlinear residual of the
system of nonlinear equations at a given point;

e a function single_corrector_step that, given a putative point on the
continuation curve and a tangent direction, computes an update (e.g., via
Newton’s method or some similar strategy) to obtain an improved point;

e a function write_coordinates for writing output as a user chooses; and
e a main function as typical for a C program to act as a driver.

In addition, the user must supply a text file storing the numerical values
corresponding to an initial point on the continuation curve and a text file with
parameters to control the core PAMPAC algorithm. An example application
(that solves a modified Kuramoto-Sivashinsky equation) is provided to serve as
a template from which users can build their own applications.

2 System requirements

PAMPAC has been developed using Linux/Unix systems with the following
configuration:

e a ISO/IEC 9899:1999-compliant C compiler (gcc 4.8.2 on our systems);

e an implementation of the Message Passing Interface (MPI-2, openmpi 1.6.5
on our systems);



e the GNU Scientific Library (GSL 1.16 on our systems); and

e the Automatically Tuned Linear Algebra Software (ATLAS 3.10.1 on our
systems).

In the core PAMPAC library, the GSL is used only as an interface to BLAS
routines (Basic Linear Algebra Subroutines). Users are welcome to link to BLAS
libraries tuned for their hardware when building the PAMPAC library instead.
The example application provided uses the GSL for computing FFTs (Fast
Fourier Transforms) and uses ATLAS as an interface for linear algebra solvers
packaged in LAPACK libraries. The dependence on ATLAS is strictly for the
example application (and not for the PAMPAC library itself).

3 Installation

After downloading and unpacking the source code, the INSTALL file in the top-
level directory provides the key instructions. Briefly, they are as follows.

1. Customize the file Make.config in the top-level directory to suit your
system.

2. make 1lib in the top-level directory to build the library.

3. Customize the file driver.config in the example directory to suit your
system.

4. make driver in the example directory to build the driver executable.

5. Edit the file parameters.txt in the example directory as suitable for your
run.

6. make run in the example directory to start a run. You will want to tune
the number of processors in the call to mpiexec to reflect your system.

The main PAMPAC library comes with template Makefiles for easy building;
some configuration of the files Make.config and example/driver.config is
required to ensure that all library dependencies are met on your system. The
build should work on any POSIX system; it has been tested on a cluster with
QDR Infiniband interconnects and 2.2GHz AMD Opteron processors as well as
desktop machines with two quad-core Intel Xeon X5482 processors.

More details are provided within the INSTALL file.

4 Structure of the code

The PAMPAC library is written in C (ISO/IEC 9899:1999) using MPI for par-
allelization. The PAMPAC library is modular in its design to aid in debugging
and understanding its structure; each of the core tasks is performed by a sep-
arate function, located in the /src directory. Many of the core routines in the



PAMPAC library require traversal of the rooted tree in a depth-first (using
recursion) or a breadth-first (using a queue) fashion. The node and queue data
structures for managing the tree are documented in pampac.h in the src subdi-
rectory. This file also describes a data structure for storing and communicating
the parameter options parsed from the user’s parameter file. The PAMPAC
library is designed so that users need not know the details of the implemen-
tations of these data structures (nor the routines for allocation/deallocation of
memory, management of pointers, etc.). The user need only specify the depth of
the underlying tree and the related tunable parameters that control the parallel
algorithm.

The main function performs two primary tasks: it initializes and finalizes
MPI communication and it divides work between the master and the slave
processes (this is typical in the Single-Program-Multiple-Processor (SPMP)
paradigm). Within the main function, the master processor parses the user-
provided parameter file to determine the algorithm-tuning parameters; if it does
so successfully, the master process broadcasts the number of degrees of freedom
(N_DIM) to the other processes and initiates the principal algorithm by invoking
the routine master_process. After some preprocessing, such as loading the ini-
tial point from the user’s input file and computing an initial tangent direction,
the master process initiates the parallel algorithm. The slave processes all call
the function slave_process in which they idle until receiving data from the
master process—the data being a point z and some tangent direction T from
which a corrector iteration can be computed. The only interprocess communi-
cation during the continuation loop consists of the root process sending these
data to the slaves and each slave returning the result of a corrector step to the
root process. The routines master_process and slave_process package the
core components of the PAMPAC algorithm in a manner that alleviates the
burden of managing the parallel computation from the user. The corrector it-
erations are independent and should be much more expensive than the cost of
inter-process communication in order for PAMPAC to yield a speed-up.

User-supplied functions
To use the PAMPAC library, the user needs to supply functions with the fol-
lowing signatures:

int main (int argc, char *argv[]) or alternatively,
void main (int argc, char *argv[])

int computer_residual (int N_dim, double *z, double *res)
int single_corrector_step (int N_dim, double *z, double *T)
write_coordinates (int N_dim, double *z)

The function main is a standard entry point that can accept command-line
arguments. The function compute_residual evaluates the residual of the non-
linear function that determines whether points lie on the continuation curve.



The input parameter z is an array (vector) of N_dim double precision values;
the computed residual res is an array of N_.dim-1 double precision values. The
function single_corrector_step is a routine to compute the updated correc-
tor iterate using the input point z and the tangent vector T. The corrected
value of z overwrites the array T on exit from this function. Finally, the func-
tion write_coordinates is a user-tuned output routine for recording points
computed on the continuation curve. These user-supplied functions need to be
compiled with main.c—and any user-required dependencies—to produce an ex-
ecutable that can be run in parallel on numerous processors. Assuming that the
user’s Makefile is suitably configured, the user can link the executable with
external library functions required by their routines.

Notice that, relative to the mathematical description of the template con-
tinuation problem in [1], N_dim= n + 1, i.e., N_dim refers to the dimension
of the vector z = (x,\) rather than the dimension of the vector x. Thus, in
compute_residual, the “input” values are the (integer) dimension N_dim of the
problem and the N_dim-vector pointed to by the pointer z; the “output” is the
residual vector of the nonlinear problem, stored in an array of length N_dim-1 in
memory pointed to by the pointer res. Similarly, in single_corrector_step,
the “input” values are the (integer) dimension N_dim of the problem, the N_dim-
vector pointed to by the pointer z, and the N_dim-vector pointed to by the
pointer T (corresponding to T). After calling single_corrector_step, the
array pointed to by z has been overwritten with the updated corrector iterate.

The parameter file

Parameters controlling the parallel continuation algorithm are loaded from a
plain text file at run-time by the master processor. A template is provided in
the file example/parameters.txt. Notice in the template example/main. c file,
the name of the parameter file is read as a command-line argument and passed
into the function parse_parameters directly.

The parameters in the parameter file are all denoted by the string @param@
preceding the parameter’s name and value. The parameter identifiers are as
follows:

e N_DIM: the number of unknowns/degrees of freedom n + 1;

e LAMBDA_MIN and LAMBDA_MAX: bounds on the interval [Amin, Amax] in which
the continuation parameter X lies;

e LAMBDA_INDEX: integer between O and N_DIM-1 that is the index of the
parameter A in any N_DIM-vector;

e DELTA_LAMBDA: parameter for initial corrector iterations to generate a sec-
ond point on the curve from the first (required to bootstrap the algorithm);

e H_MIN and H_MAX: the minimal, maximal and initial pseudo-arclength step-
size;



H_INIT: the initial step-length used to determine the initial secant direc-
tion on the continuation curve. Notice that if H.INIT < 0, the initial
secant direction points backwards with respect to the parameter A.

e MAX_ITER: the maximum number of corrector steps before a node is des-
ignated as FAILED;

e TOL_RESIDUAL: the threshold for accepting CONVERGED nodes (i.e., when
r) H < TOL_RESIDUAL);
2

e MU: the threshold reduction in residual for FAILED nodes
(i.e., when ‘Trg/"‘) > MU Hr&”"‘_l)‘ );
2 2

e GAMMA: the threshold rate of residual reduction for CONVERGING nodes
(i.c., when GAMMA log Hr&”a) H < log TOL_RESIDUAL;
2

e MAX_DEPTH: the maximum depth of the tree, D (excluding the root node);

e MAX_GLOBAL_ITER: the maximum number of global PAMPAC iterations
before continuation is halted;

e SCALE_FACTOR: a real,positive factor tx by which step-sizes are multiplied
when a new predictor step is spawned from a given point;

e VERBOSE: an integer parameter controlling the verbosity of output;

e INPUT_FILENAME: a string giving the path to the input file from which the
initial point is read; and

e TREE_BASE_FILENAME: a string giving the path and the base filename that
can be used if visualizations of the rooted trees at each stage of the algo-
rithm are to be generated by the program.

Most of the parameters are self-explanatory. For instance, the parameters
MAX_ITER and TOL_RESIDUAL are used to assess convergence of corrector iter-
ations and to circumvent stagnating corrector loops respectively. In the de-
scriptions above, the quantity r(ay") is the nonlinear residual (i.e., the vector
yielded by evaluating the function compute_residual) by node « when the
local iteration counter is v,.

The parameter GAMMA is used to classify corrector iterations as CONVERGING
GAMMA
(Va)

according to the relation Hra < TOL_RESIDUAL (i.e., the next iterate
2

computed from that iterate is expected to have converged onto the continuation

curve). The parameter MU is used to classify corrector iterations as FAILED

according to whether v, > MAX_ITER or ’ vedll > My Hr&"“_l)H (i.e., either
2 2

e
the maximum number of corrector iterations is exceeded or the reduction of
the residual is insufficient in consecutive corrector iterations). Tuning these
parameters determines how the PAMPAC algorithm will preserve or destroy
prospective corrector iteration sequences by deciding which iterates are deemed
to be making sufficient progress to keep.




The parameter LAMBDA_INDEX provides additional flexibility by permitting
the user to specify any integer index of z—using 0-based indexing as is conven-
tional in C—for the continuation parameter. That is, the parameter A does not
need to be the (n + 1) component of the (n + 1)-vector z.

The user specifies the depth of the tree in the parameter MAX_DEPTH. By
contrast, the maximum number of children any node can spawn is given by
the number of lines containing the keywordSCALE_FACTOR. That is, rather than
specifying the width of the tree—that is, the number of children each node can
potentially spawn—in the parameter, the user specifies a sequence of lines with
the keyword SCALE_FACTOR. The numerical value in each of these lines is the
multiplicative factor t; that the PAMPAC algorithm uses to scale the pseudo-
arclength step-size in generating predictor steps to seed concurrent corrector
iterations.

To bootstrap the algorithm, the master processor requires an initial tangent
direction in addition to the initial point loaded from the user’s input file. It
generates an approximate tangent direction by carrying out a few corrector
iterations to generate another point near the initial point and computing a secant
direction between those two points. At any given point on the continuation
curve, there are two anti-parallel tangent directions; as such, the sign of H_INIT
is used to fix the initial direction of the continuation (i.e., the tangent direction
used to generate the second point on the curve is oriented in the direction of
A increasing or decreasing when H_INIT> 0 or H_INIT< 0, respectively). The
user also needs to specify DELTA_LAMBDA (roughly how far from the initial point
to look for the neighboring point) to control this bootstrapping process.

The user can specify an integer parameter VERBOSE to control output gen-
erated at run-time. No output is generated unless the parameter VERBOSE is
positive; With VERBOSE>=1, the master process displays diagnostic messages to
standard output as the algorithm progresses. When VERBOSE>=2, the master
process also creates data files in a user-specified path that display the struc-
ture of the rooted trees. The data files generated are compatible with the
dot language for specifying directed graphs with the GRAPHVIZ software for
visualization of graphs (see www.graphviz.org). Such graphs are useful for
performance-tuning, i.e., for understanding how the data in parameters.txt
affect the use of processors.

5 Determining the number of processors

The user specifies the number of available CPUs using the -np flag in the call to
mpiexec when running an executable compiled against the PAMPAC library.
For a given tree of width W and depth D (D is measured excluding the root
node), the maximal number of nodes—including the root node—is

{D+1 W =1
NPmax =

D+1 X



If the user-specified number of available CPUs is smaller than npy.x, PAMPAC
will occasionally need to select a number of nodes to stall. This is done by
traversing the tree breadth-first, i.e., first over increasing step-sizes at each
level of the tree and then over an increasing number of extrapolations. Thus,
the processes corresponding to the tentative solutions with the largest step-size
and the most extrapolations from not-quite-converged results are stalled first;
this strategy makes sense since these are the iterates that are most likely to
fail. They are not pruned, though, and the corrector sequences corresponding
to these nodes may resume in the next iteration of the main loop.

References
[1] D. A. Aruliah, Lennaert van Veen, and Alex Dubitski. Pampac: a parallel

adaptive method for arclength continuation. ACM Trans. Math. Software,
2014.



