
Ncpol2sdpa Manual

Peter Wittek
University of Borås

1 Introduction
Ncpol2sdpa is a tool to convert a polynomial optimization problem of noncommuting
variables to a sparse semidefinite programming (SDP) problem that can be processed
by the SDPA1 family of solvers Yamashita et al. (2003). The optimization problem can
be unconstrained or constrained by equalities and inequalities.

The objective is to be able to solve very large scale optimization problems. For
example, a convergent series of lower bounds can be obtained for ground state problems
with arbitrary Hamiltonians.

The implementation has an intuitive syntax for entering Hamiltonians and it scales
for a larger number of noncommuting variables using a sparse representation of the
SDP problem. The code is available in the Python Package Index at https://pypi.
python.org/pypi/ncpol2sdpa/ and the development version is at http://
peterwittek.github.io/ncpol2sdpa/.

2 Dependencies and compilation
The implementation requires SymPy2≥ 0.7.2 (Joyner et al., 2012) and SciPy3 in the
Python search path. The code is compatible with both Python 2 and 3, but using version
3 incurs a major decrease in performance. Follow the standard procedure for installing
Python modules:

$ sudo pip install ncpol2sdpa

If you use the development version, install it from the source code:

$ sudo python setup.py install

3 Usage
The implementation follows an object-oriented design. The core object is SdpRelax-
ation. There are three steps to generate the relaxation:

1http://sdpa.sourceforge.net/
2http://sympy.org/
3http://scipy.org/

1

https://pypi.python.org/pypi/ncpol2sdpa/
https://pypi.python.org/pypi/ncpol2sdpa/
http://peterwittek.github.io/ncpol2sdpa/
http://peterwittek.github.io/ncpol2sdpa/
http://sdpa.sourceforge.net/
http://sympy.org/
http://scipy.org/

1. Instantiate the SdpRelaxation object.

2. Get the relaxation.

3. Write the relaxation to a file or solve the problem.

The second step is the most time consuming, often running for hours as the number
of noncommuting variables increases.

To instantiate the SdpRelaxation object, you need to specify the noncommuting
variables:

X = ... # Define noncommuting variables
sdpRelaxation = SdpRelaxation(X)

Getting the relaxation also follows an almost identical syntax. It requires all the
information about the polynomial optimization problem itself: the objective function,
an associative array of the inequalities, equalities, the monomial substitutions, and also
the order of the relaxation:

sdpRelaxation.get_relaxation(obj, inequalities, equalities,
monomial_substitution, order)

The last step in is to write out the relaxation to a sparse SDPA file. The method
(write_to_sdpa) takes one parameter, the file name. Alternatively, if SDPA is in
the search path, then it can be solved by invoking a helper function (solve_sdp).

4 Example 1: Toy example
We provide a simple usage example here; this example comes with the code (test-
examplencpol.py and test/exampleNcPol.cpp).

Consider the following polynomial optimization problem (Pironio et al., 2010):

min
x∈R2

x1x2 + x2x1

such that

−x22 + x2 + 0.5 ≥ 0

x21 − x1 = 0.

Entering the objective function and the inequality constraint is easy. The equality
constraint is a simple projection. We either substitute two inequalities to replace the
equality, or treat the equality as a monomial substitution. The second option leads to a
sparser SDP relaxation. The code samples below take this approach. In this case, the
monomial basis is {1, x1, x2, x1x2, x2x1, x22}. The corresponding relaxation is written
as

min
y
y12 + y21

2

such that
1 y1 y2 y12 y21 y22
y1 y1 y12 y12 y121 y122
y2 y21 y22 y212 y221 y222
y21 y21 y212 y212 y2121 y2122
y12 y121 y122 y1212 y1221 y1222
y22 y221 y222 y2212 y2221 y2222

 � 0

 −y22 + y2 + 0.5 −y221 + y21 + 0.5y1 −y222 + y22 + 0.5y2
− y221 + y21 + 0.5y1 −y1221 + y121 + 0.5y1 −y1222 + y122 + 0.5y12
−y222 + y22 + 0.5y2 −y1222 + y122 + 0.5y12 −y2222 + y222 + 0.5y22

 � 0.

Apart from the matrices being symmetric, notice other regular patterns between the
elements. These are taken care of as additional constraints in the implementation. The
optimum for the objective function is −3/4. The implementation reads as follows:

from ncpol2sdpa import generate_variables, SdpRelaxation

Number of Hermitian variables
n_vars = 2
Order of relaxation
order = 2

Get Hermitian variables
X = generate_variables(n_vars, hermitian=True)

Define the objective function
obj = X[0] * X[1] + X[1] * X[0]

Inequality constraints
inequalities = [-X[1] ** 2 + X[1] + 0.5]

Equality constraints
equalities = []

Simple monomial substitutions
monomial_substitution = {}
monomial_substitution[X[0] ** 2] = X[0]

Obtain SDP relaxation
sdpRelaxation = SdpRelaxation(X)
sdpRelaxation.get_relaxation(obj, inequalities, equalities,

monomial_substitution, order)
sdpRelaxation.write_to_sdpa(’example_noncommutative.dat-s’)

3

5 Solving the problem
The relaxation in sparse format will be identical to the one outlined in the previous
section. Any flavour of SDPA family of solvers will solve the exported problem:

$ sdpa examplenc.dat-s examplenc.out

If the SDPA solver is in the search path, we can invoke the solver from Python:

from ncpol2sdpa import solve_sdp
primal, dual = solve_sdp(sdpRelaxation)

The relevant part of the output shows the optimum for the objective function:

objValPrimal = -7.5000001721851994e-01
objValDual = -7.5000007373829902e-01

This is close to the analytical optimum of −3/4.

6 Example 2: Bosonic system
A more sophisticated application is also supplied with the code (test-harmonic oscillator.py),
which implements the Hamiltonian of a bosonic system on a 1D line. Since it uses non-
Hermitian variables, a C++ implementation is currently not feasible.

The system Hamiltonian describes N harmonic oscillators with a parameter ω. It is
the result of second quantization and it is subject to bosonic constraints on the ladder
operators ak and a†k (see, for instance, Section 22.2 in Fayngold and Fayngold (2013)).
The Hamiltonian is written as

H = ~ω
∑
i

(
a†iai +

1

2

)
. (1)

Here † stands for the adjoint operation. The constraints on the ladder operators are
given as

[ai, a
†
j] = δij (2)

[ai, aj] = 0

[a†i , a
†
j] = 0,

where [., .] stands for the commutation operator [a, b] = ab− ba.
Clearly, most of the constraints are monomial substitutions, except [ai, a

†
i] = 1,

which needs to be defined as an equality. The Python code for generating the SDP
relaxation is provided below. We set ω = 1, and we also set Planck’s constant ~ to one,
to obtain numerical results that are easier to interpret.

from sympy.physics.quantum.dagger import Dagger
from ncpol2sdpa import generate_variables, \

bosonic_constraints, \

4

SdpRelaxation, solve_sdp

Order of relaxation
order = 2

Number of variables
N = 4

Parameters for the Hamiltonian
hbar, omega = 1, 1

Define ladder operators
a = generate_variables(N, name=’a’)

hamiltonian = 0
for i in range(N):

hamiltonian += hbar*omega*(Dagger(a[i])*a[i]+0.5)

monomial_substitutions, equalities = bosonic_constraints(a)
inequalities = []

time0 = time.time()
#Obtain SDP relaxation
print("Obtaining SDP relaxation...")
verbose = 1
sdpRelaxation = SdpRelaxation(a)
sdpRelaxation.get_relaxation(hamiltonian, inequalities, equalities,

monomial_substitutions, order, verbose)
#Export relaxation to SDPA format
print("Writing to disk...")
sdpRelaxation.write_to_sdpa(’harmonic_oscillator.dat-s’)

Solving the SDP for N = 4, for instance, gives the following result:

objValPrimal = +1.9999998358414430e+00
objValDual = +1.9999993671869802e+00

This is very close to the analytic result of 2. The result is similarly precise for arbitrary
numbers of oscillators.

It is remarkable that we get the correct value at the first order of relaxation, but this
property is typical for bosonic systems (Navascués et al., 2013).

References
Fayngold, M. and Fayngold, V. (2013). Quantum Mechanics and Quantum Information.

Wiley-VCH.

5

Joyner, D., Čertı́k, O., Meurer, A., and Granger, B. E. (2012). Open source computer
algebra systems: SymPy. ACM Communications in Computer Algebra, 45(3/4):225–
234.

Navascués, M., Garcı́a-Sáez, A., Acı́n, A., Pironio, S., and Plenio, M. B. (2013). A
paradox in bosonic energy computations via semidefinite programming relaxations.
New Journal of Physics, 15(2): 023026.

Pironio, S., Navascues, M., and Acı́n, A. (2010). Convergent relaxations of polynomial
optimization problems with noncommuting variables. SIAM Journal on Optimization,
20(5):2157–2180.

Yamashita, M., Fujisawa, K., and Kojima, M. (2003). SDPARA: Semidefinite program-
ming algorithm parallel version. Parallel Computing, 29(8):1053–1067.

6

	Introduction
	Dependencies and compilation
	Usage
	Example 1: Toy example
	Solving the problem
	Example 2: Bosonic system

