
htucker – A Matlab toolbox for tensors in hierarchical Tucker

format∗

Daniel Kressner1 Christine Tobler1

November 11, 2013

– Extended version –

Abstract

The hierarchical Tucker format is a storage-efficient scheme to approximate and represent
tensors of possibly high order. This paper presents a Matlab toolbox, along with the
underlying methodology and algorithms, which provides a convenient way to work with this
format. The toolbox not only allows for the efficient storage and manipulation of tensors in
hierarchical Tucker format but also offers a set of tools for the development of higher-level
algorithms. Several examples for the use of the toolbox are given.

1 Introduction

A tensor X ∈ Cn1×n2×···×nd with n1, . . . , nd ∈ N is a d-dimensional array with entries Xi1i2···id ∈
C. Usually, d is called the order of the tensor and the focus of this paper is on tensors of higher
order, say, d = 5 or d = 10 or even d = 100. A typical scenario is that X represents a d-variate
function f : [0, 1]d → C sampled on a tensor grid or approximated in a tensorized basis.

It is in general impossible to store a higher-order tensor explicitly, simply because the number
of entries grows exponentially with d. Various data-sparse formats have been developed to
address this issue. Depending on the application, these formats may allow for the approximate
representation and manipulation of a tensor under dramatically reduced storage and computing
requirements. For example, consider the approximation of X by a rank-1 tensor:

vec(X) ≈ ud ⊗ ud−1 ⊗ · · · ⊗ u1, u1 ∈ Cn1 , . . . , ud ∈ Cnd , (1)

where vec stacks the entries of a tensor in reverse lexicographical order into a long column vector
and ⊗ denotes the standard Kronecker product. Then, instead of the n1 ·n2 · · ·nd entries of X ,
only the n1 + n2 + · · · + nd entries of u1, . . . , ud need to be stored. On the function level, this
corresponds to an approximation of f by a separable function.

A typical application we have in mind is when X arises from the discretization of a high-
dimensional or parameter-dependent partial differential equation and is only given implicitly as

1Chair of Numerical Algorithms and HPC, MATHICSE, EPF Lausanne, CH-1015 Lausanne, Switzerland.
{daniel.kressner,christine.tobler}@epfl.ch
∗Supported by the FNS research module Preconditioned methods for large-scale model reduction within the

FNS ProDoc Efficient Numerical Methods for Partial Differential Equations.

1

the solution to a typically huge (non)linear system or eigenvalue problem. There are two quite
different strategies to employ a data-sparse format for the solution of such problems. The more
straightforward one is to apply a standard iterative method, e.g., a conjugate gradient method,
and approximate each iterate in the data-sparse format. For this purpose, it is desirable to
keep the approximation error negligible; otherwise the accuracy and convergence of the method
may be compromised. Examples for this strategy can be found in [7, 22, 28, 30, 34]. The
second strategy is to reformulate the problem at hand as an optimization problem with the
admissible set of solutions restricted to data-sparse tensors, see [14, 25, 26, 31, 39, 40] and the
references therein. Beyond these two main strategies, there exist further approaches tailored to
particularly structured problems, see, e.g., [17, 33]. While the mathematical understanding is
still somewhat limited, there is strong numerical evidence that such data-sparse algorithms can
handle a wide variety of problems that are far from tractable by classical numerical methods.

In most applications, it is unlikely that a rank-1 representation (1) yields a satisfactory
approximation error. This can be improved by considering the more general CP (Canonical
Polyadic) decomposition [24, 10]

vec(X) ≈
R∑
j=1

u
(j)
d ⊗ u

(j)
d−1 ⊗ · · · ⊗ u

(j)
1 , u

(j)
1 ∈ Cn1 , . . . , u

(j)
d ∈ Cnd , (2)

which still requires little memory, provided that R does not become too large. Unfortunately,
developing a robust and efficient algorithm for this format, which yields an approximation to
any desirable accuracy, remains a subtle problem, see [1, 12] for recent progress. This problem
is much less subtle for the Tucker decomposition [42],

vec(X) ≈
(
Ud ⊗ Ud−1 ⊗ · · · ⊗ U1

)
vec(C), U1 ∈ Cn1×r1 , . . . , Ud ∈ Cnd×rd , (3)

with the so called core tensor C ∈ Cr1×r2×···×rd . The HOSVD (Higher-Order SVD) [11] provides
a simple, nearly optimal solution to the approximation problem (3). However, the need for
storing C still results in memory requirements that grow exponentially with d.

Motivated by the limitations of the two classical decompositions (2) and (3), various other
decompositions have been developed in the numerical analysis community with the aim of com-
bining the advantages of both. This includes the tensor train decomposition [29], the closely
related but somewhat more general HTD (hierarchical Tucker decomposition) [19, 23], and even
more general tensor networks [13]. In the computational physics community, matrix product
states and tensor networks play a central role in DMRG (density matrix renormalization group)
techniques for computing ground states of quantum many-body systems, see [40] for an introduc-
tion. In the case of tensors that contain values of a multivariate function, additional properties
inherited from the regularity of the function can in certain cases lead to a significantly higher
compression in HTD (and related decompositions) compared to Tucker, see, e.g., [21] for such
a discussion.

Existing Matlab toolboxes for working with low-rank tensor formats are the N-way toolbox
by Andersson and Bro [2], the Tensor Toolbox by Bader and Kolda [4, 5], as well as the TT-
Toolbox by Oseledets [37, 38]. TensorCalculus [15] is a C++ library for more general tensor
networks. In computational physics, a number of related software packages have been developed
in the context of DMRG techniques for simulating quantum networks, see, e.g., [9].

The main goal of this paper is to provide a convenient framework for the development and
implementation of algorithms based on the hierarchical Tucker decomposition. In particular,

2

methods for the truncation of a given tensor to HTD, i.e., the approximation by a low-rank
tensor in HTD, are implemented and discussed in Section 6. A set of advanced tools allows
for the development of higher-level algorithms. Moreover, this work contains a number of new
contributions:

• Efficient algorithms for HTD tensor-tensor contraction, including the inner product be-
tween two tensors, are given in Sections 5.3 and 5.4.

• A new variant of truncation to HTD without initial orthogonalization is presented in
Section 6.2.2 and demonstrated to result in an efficient and numerically robust way for
adding tensors in Section 6.3.

• New algorithms for exact and approximate elementwise multiplication of tensors in HTD
are presented in Section 7.

• A framework for representing linear operators in HTD is presented in Section 8 and an
explicit representation for a discretized Laplace operator has been given.

All our algorithms are mainly based on calls to level 3 BLAS and LAPACK functionality.
The rest of this paper is organized as follows. Section 2 introduces basic tools for working

with tensors as well as the HTD. In Section 3, we describe the basic functionality and data
structures of our Matlab toolbox htucker. Section 4 is concerned with basic operations on
tensors in HTD, such as µ-mode matrix products and orthogonalization, and their implemen-
tation in htucker. Tensor-tensor contractions are discussed in Section 5, including, e.g., inner
products. In Section 6, we present several methods for approximating a tensor either given
explicitly or given in HTD by a tensor in HTD (of lower rank). Section 7 is concerned with
elementwise multiplication, and Section 8 with the representation of linear operators on tensors
in HTD. Finally, several examples for working with htucker are given in Section 9 and a list
of the complete functionality of htucker can be found in Appendix A, while proofs of some of
the error bounds given in Section 6 can be found in Appendix B.

2 Preliminaries

This section summarizes the mathematical foundation of the hierarchical Tucker decomposition
(HTD) and our Matlab toolbox. Necessary tensor concepts will be briefly introduced. We refer
the reader to the survey paper [32] and to the book [21] for a more comprehensive introduction.

2.1 Matricization and HOSVD

To understand the principles behind HTD, it is helpful to recall the matricization and HOSVD
of tensors. A tensor X ∈ Cn1×n2×···×nd has d different modes 1, . . . , d. Consider a splitting of
these modes into two disjoint sets: {1, . . . , d} = t∪s with t = {t1, . . . , tk} and s = {s1, . . . , sd−k}.
Then the corresponding matricization of these modes is obtained by merging the first group
into row indices and the second group into column indices:

X(t) ∈ C(nt1 ···ntk)×(ns1 ···nsd−k) with
(
X(t)

)
(it1 ,...,itk),(is1 ,...,isd−k)

:= Xi1,...,id

for any indices i1, . . . , id in the multi-index set {1, . . . , n1}×· · ·×{1, . . . , nd}. Of course, the order
in which the indices are merged is important. In the following, we assume reverse lexicographical

3

X

X({1})

X({1,2})

Figure 1: Illustration of an n1 × 4× 3 tensor X with matricizations X({1}) and X({1,2}).

order of the multi-indices but any other consistently employed order would be suitable. Note
that the matricization is not independent of the ordering of the modes t1, . . . , tk and s1, . . . , sd−k
in the sets t and s, respectively. If not noted otherwise, we assume the modes to be in increasing
order.

As a special case, consider the so called µ-mode matricization

X(µ) ∈ Cnµ×(n1···nµ−1nµ+1···nd), µ = 1, . . . , d.

Then the tuple (r1, . . . , rd) with rµ = rank
(
X(µ)

)
is called the multilinear rank of X . To obtain

an approximation of lower multilinear rank (r̃1, . . . , r̃d), with r̃µ ≤ rµ ≤ nµ, we let Uµ ∈ Cnµ×r̃µ
contain the r̃µ dominant left singular vectors of X(µ), which can be obtained, e.g., from a
truncated SVD X(µ) ≈ UµΣµV

H
µ . Then the HOSVD takes the form of a Tucker decomposition

vec(X) ≈ vec(X̃) := (Ud ⊗ · · · ⊗ U1) vec(C), (4)

with the core tensor

vec(C) := (UHd ⊗ · · · ⊗ UH1) vec(X) ∈ Cr̃1×···×r̃d .

This choice of C minimizes ‖X − X̃‖2 for given U1, . . . , Ud with orthonormal columns. Here and
in the following, ‖Y‖2 denotes the Euclidean norm of the vectorization: ‖Y‖2 = ‖ vec(Y)‖2.
An important feature of the HOSVD, it can be shown [11] that the obtained approximation is
nearly optimal among all tensors of multilinear rank (r̃1, . . . , r̃d) or lower:

‖X − X̃‖2 ≤
√
d · inf

{
‖X − Y‖2 : rank(Y (µ)) ≤ r̃µ, µ = 1, . . . , d

}
. (5)

2.2 The Hierarchical Tucker Decomposition (HTD)

In contrast to the Tucker decomposition, HTD employs a hierarchy of matricizations, motivated
by the following nestedness property. Note that our use of the symbol ⊂ for set inclusion allows
for equal sets.

Lemma 2.1 ([18, Lemma 17]). Let X ∈ Cn1×···×nd and t = tl ∪ tr for tl = {il, il + 1, . . . , im}
and tr = {im + 1, . . . , ir}. Then span

(
X(t)

)
⊂ span

(
X(tr) ⊗X(tl)

)
.

4

Proof. Any column of X(t) = X(il,...,ir) can be considered as the vectorization of a tensor
C ∈ Cnil×···×nir . The columns of the matricization C(tl) are clearly contained in span

(
X(tl)

)
and hence

C(tl) = X(tl)
(
X(tl)

)+
C(tl),

where M+ denotes the Moore-Penrose pseudoinverse of a matrix M . Analogously,(
C(tl)

)T
= C(tr) = X(tr)

(
X(tr)

)+
C(tr).

These two relations imply

C(tl) = X(tl)
((
X(tl)

)+
C(tl)

(
X(tr)

)+T)︸ ︷︷ ︸
=:V

(
X(tr)

)T ⇒ vec(C) =
(
X(tr) ⊗X(tl)

)
vec(V).

Given any bases Ut, Utl , Utr for the column spaces of X(t), X(tl), X(tr), the result of Lemma 2.1
implies the existence of a so called transfer matrix Bt such that

Ut = (Utr ⊗ Utl)Bt, Bt ∈ Crtlrtr×rt , (6)

where rt, rtl , rtr denote the ranks of the corresponding matricizations. Applying this relation
recursively, until tl and tr become singletons, leads to the HTD.

Example 2.2. Repeated application of (6) for d = 4:

vec(X) = X({1,2,3,4}) = (U34 ⊗ U12)B1234

U12 = (U2 ⊗ U1)B12

U34 = (U4 ⊗ U3)B34

⇒ vec(X) = (U4 ⊗ U3 ⊗ U2 ⊗ U1)(B34 ⊗B12)B1234. (7)

It is often advantageous to reshape the transfer matrices:

B1234 ∈ Cr12r34×1 ⇒ B1234 ∈ Cr12×r34×1,

B12 ∈ Cr1r2×r12 ⇒ B12 ∈ Cr1×r2×r12 ,
B34 ∈ Cr3r4×r34 ⇒ B34 ∈ Cr3×r4×r34 .

To avoid cluttering the notation we write B12 instead of B{1,2}, U12 instead of U{1,2}, r12 instead
of r{1,2}, and so on.

An illustration of the hierarchical structure and the data to be stored for the HTD (7) is
given in Figure 2.

The general construction of an HTD requires a hierarchical splitting of the modes 1, . . . , d.

Definition 2.3. A binary tree T with each node represented by a subset of {1, . . . , d} is called
a dimension tree if the root node is {1, . . . , d}, each leaf node is a singleton, and each parent
node is the disjoint union of its two children. In the following, we denote:

L(T) set of all leaf nodes;
N (T) set of all non-leaf nodes, N (T) = T \ L(T).

5

B12

U1

U2

U3

U4

B34

B1234
(n2 × r2)

(n3 × r3)

(n4 × r4)

(n1 × r1)

(r1r2 × r12)(r1r2 × r12)

(r3r4 × r34)

(r12r34 × 1)

B1234

U3

U2

U4

B12

U1

B34

Figure 2: Illustration of the HTD (7) for d = 4.

{1, 2} {3, 4} {5} {6, 7}

{1} {2} {3} {4} {6} {7}

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4} {5, 6, 7}

Figure 3: A dimension tree for d = 7.

Remark 2.4. For convenience of notation, we impose the following additional assumption on
the left and right children tl, tr of a node t in the dimension tree: Each element of tl is smaller
than any element of tr. Note that this assumption can always be satisfied by an appropriate
reordering of the modes.

It is not hard to see that the number of non-leaf nodes is always d − 1. An example of a
dimension tree is given in Figure 3.

Having prescribed a maximal rank kt for each node t ∈ T , the set of hierarchical Tucker
tensors of hierarchical rank at most (kt)t∈T is defined as

H-Tucker
(
(kt)t∈T

)
=
{
X ∈ Cn1×···×nd : rank

(
X(t)

)
≤ kt for all t ∈ T

}
.

Such a hierarchical Tucker tensor X is stored in the hierarchical Tucker format as follows. At
each leaf node {µ} a basis Uµ ∈ Cnµ×rµ , where rµ := rank

(
X(µ)

)
≤ kµ, is stored. At each parent

node t with children tl and tr, the third-order transfer tensor Bt ∈ Crtl×rtr×rt satisfying (6) with

Bt ≡ B({1,2})
t is stored. Equivalently, (6) can be written as

(Ut):,q =

rtl∑
i=1

rtr∑
j=1

(
(Utr):,j ⊗ (Utl):,i

)
(Bt)i,j,q, q = 1, 2, . . . , rt. (8)

The HTD for X is obtained by recursively inserting (6) as illustrated in Example 2.2.

6

In summary, the hierarchical Tucker format is represented by d matrices Uµ and (d − 1)
transfer tensors Bt. Hence, if r = max{rt : t ∈ T } and n = max{n1, . . . , nd}, the storage
requirements are bounded by

dnr + (d− 2)r3 + r2, (9)

where we have used that the transfer tensor at the root can actually be considered as a matrix
of size at most r × r. While the complexity bound (9) appears to indicate linear dependence
in d, it is important to note that such a conclusion only holds when the maximal hierarchical
rank r can be assumed to stay constant as d increases. This is a rather strong assumption that
is satisfied only in specific applications.

3 Basic Functionality of the Toolbox

To conveniently work with tensors in HTD, we have implemented a new Matlab class htensor,
inspired by the classes ktensor (for tensors in CP decomposition) and ttensor (for tensors in
Tucker decomposition) available in the Tensor Toolbox [4]. In the following, we describe the
structure of htensor as well as its basic functionality.

3.1 Fields and properties of htensor

An instance of htensor contains two arrays specifying the dimension tree, an orthogonalization
flag, as well as the matrices and transfer tensors representing an HTD corresponding to this
dimension tree.

Each node of the dimension tree is associated with an index i ∈ {1, . . . , 2d − 1}, such that
each child node has a larger index than the parent node. Consequently, the root node has
index 1. The (2d− 1)× 2 integer array children specifies the structure of the dimension tree
as follows: children(i, 1) is the left child of node i, and children(i, 2) is the right child of
node i. Both entries are zero if node i is a leaf node. The 1× d integer array dim2ind gives the
index of the leaf node associated with each mode µ = 1, . . . , d. The matrices Ut and transfer
tensors Bt are stored in the cell arrays U and B, respectively. Note that U{i} is a matrix if i is a
leaf node and an empty array for any other node. Finally, the boolean flag is orthog indicates
whether the HTD is orthogonalized, see Section 4.3.

htensor for d = 4 (see also Example 2.2):

x.children: [2, 3; 4, 5; 6, 7; 0, 0; 0, 0; 0, 0; 0, 0]

x.dim2ind: [4 5 6 7]

x.U: {[] [] [] [4x4 double] [5x4 double] [6x6 double] [7x3 double]}

x.B: {[4x5 double] [4x4x4 double] [6x3x5 double] [] [] [] []}

x.is_orthog: false

Apart from the fields defining the HTD, htensor has additional fields for accessing frequently
required properties.

7

Properties of htensor:
x.nr nodes number of nodes in the dimension tree.
x.parent(i) returns the index of the parent of node i.
x.sibling(i) returns the index of the sibling of node i.
x.is leaf(i) true if node i is a leaf node.
x.is left(i) true if node i is a left child.
x.is right(i) true if node i is a right child.
x.lvl(i) level of node i (distance from root node).
x.dims{i} modes represented by node i.
x.bin dims(i, :) modes represented by node i (logical array).
x.rank(i) hierarchical rank at node i.

3.2 Constructors of htensor

There are several ways to construct an htensor instance. In the following, we only illustrate
the most common ways and refer to the documentation, e.g., help htensor/htensor, for more
details.

Examples for constructors of htensor:
x = htensor([4 5 6 7]) constructs a zero htensor of size 4× 5× 6× 7.
x = htensor([4 5 6 7], ’TT’) constructs a zero htensor of size 4 × 5 × 6 × 7, with a
degenerate, TT-like dimension tree.
x = htensor({U1, U2, U3}) constructs an htensor from the CP tensor defined by
X (i1, i2, i3) =

∑R
j=1 U1(i1, j)U2(i2, j)U3(i3, j).

x = htenones([4 5 6 7]) constructs an htensor of size 4×5×6×7, with all entries one.
x = htenrandn([4 5 6 7]) constructs an htensor of size 4×5×6×7, with random ranks
and random entries.

By default, any htensor has a balanced dimension tree. The motivation for the option ’TT’

is to resemble the structure of the TTD (tensor train decomposition). However, it is important
to note that there is no exact correspondence between HTD and TTD, as TTD does not require
the storage of basis matrices. An arbitrary dimension tree can be generated by supplying the
fields children and dim2ind to the constructor. Users of the Tensor Toolbox may also provide
a ktensor for constructing an htensor from a CP decomposition, instead of providing the
factors in a cell array as illustrated above.

3.3 Basic functionality of htensor

Table 1 in the appendix contains all basic functions for working with htensor objects. The
following example illustrates their use for a 5× 4× 6× 3 tensor X in HTD as in Example 2.2.

x(1, 3, 4, 2) returns the entry X1,3,4,2.
x(1, 3, :, :) returns an htensor representing the 6× 3 tensor of the slice X1,3,:,:.
full(x) returns the full tensor represented by X .

8

Dim. 1, 2, 3, 4, 5, 6

Dim. 1, 2, 3

Dim. 4, 5, 6

Dim. 1

Dim. 2, 3

Dim. 4

Dim. 5, 6

Dim. 2

Dim. 3

Dim. 5

Dim. 6

Dim. 1, 2, 3

Dim. 4, 5, 6

Dim. 1

Dim. 2, 3

Dim. 4

Dim. 5, 6

Dim. 2

Dim. 3

Dim. 5

Dim. 6

Figure 4: Examples for spy and plot sv

x(:) returns the vectorization of X .
size(x) returns the array of dimensions, [5, 4, 6, 3].
ndims(x) returns the order of the tensor, 4.
disp(htenrandn([5 4 6 3])) returns the tree structure and the sizes of the transfer ten-
sors/basis matrices
1-4 1; 6 3 1

1-2 2; 3 4 6

1 4; 5 3

2 5; 4 4

3-4 3; 3 3 3

3 6; 6 3

4 7; 3 3

disp all(x) additionally displays all transfer tensors and basis matrices.
spy(x) displays the dimension tree with spy plots of Ut and Bt, see Figure 4.
plot sv(x) displays the dimension tree with semi-log plots of the singular values of the
matricizations at each node, see Figure 4.

4 Basic operations

This section describes algorithms and implementations for a range of typically required basic
operations.

4.1 µ-mode matrix products

Given a tensor X ∈ Cn1×···×nd , the µ-mode product with a matrix A ∈ Cm×nµ is defined via
the µ-mode matricization:

Y = A ◦µ X ⇔ Y (µ) = AX(µ).

This operation can easily be performed if X is in HTD: The µth basis matrix Uµ is simply
replaced by AUµ. We provide a function ttm for performing this operation. The calling sequence

9

of ttm is nearly identical with the function ttm in the Tensor Toolbox. A notable difference is
that we allow the matrix the matrix A to be provided implicitly as a handle to a function that
returns the product of A with the input matrix.

y = ttm(x, A, 2) applies the matrix A to an htensor in mode 2.
y = ttm(x, {A, B, C}, [2, 3, 4]) successively applies A,B,C to X in modes 2, 3, 4.
y = ttm(x, @(x)(fft(x)), 2) applies the fast Fourier transformation to X in mode 2.
y = ttm(x, {A, B, C}, [2, 3, 4], ’h’) successively applies AH , BH , CH to X in
modes 2, 3, 4.

In the special case of µ-mode multiplication with a row vector, the µth mode becomes a
singleton dimension. The function ttv treats this case differently by eliminating the µth mode
after performing the product vT ◦µ X for a vector v ∈ Cnµ . The following example illustrates
the difference.

x = htenrandn([5, 4, 6, 3]); u = randn(4, 1);
y = ttm(x, u.’, 2) results in an htensor Y of size 5× 1× 6× 3
y = ttv(x, u, 2) results in an htensor Y of size 5× 6× 3

Note that there is also a function squeeze for eliminating singleton dimensions.

4.2 Addition

The addition of tensors in HTD can be performed at no arithmetic cost by a simple embedding.
The underlying principle can easily be seen for two factorized matrices A = UAΣAV

H
A and

B = UBΣBV
H
B :

A+B =
[
UA UB

] [ΣA 0
0 ΣB

] [
VA VB

]H
.

This embedding is performed similarly for the addition of two or more tensors in HTD, by
concatenation of the leaf matrices and a block diagonal embedding of the transfer tensors.
We refrain from giving a technical description and refer to Figure 5 for an illustration. It is
important to note that the storage requirements grow cubically in the number of tensors to be
added if the block diagonal structure of the transfer tensors is not exploited. Such an alternative
method is discussed in Section 6.3.

Addition is implemented in the command plus, which overloads the binary operator + for
htucker objects. Subtraction is implemented in the command minus, which overloads the
binary operator -.

4.3 Orthogonalization

An HTD of a tensor X is called orthogonalized if the columns of Ut form an orthonormal basis
for each node t except for the root node. Recall that the basis matrices Ut are defined recursively
according to (6). As will be seen later, orthogonalized HTDs simplify some important operations
related to tensor contraction. Moreover, they reduce the risk of numerical cancellation.

10

U
[4]
1

U
[4]
2

U
[4]
3

U
[4]
4

B[1]
12

B[2]
12

B[3]
12

B[4]
12

B[1]
34

B[2]
34

B[3]
34

B[4]
34

B[1]
1234

B[2]
1234

B[3]
1234

B[4]
1234

U
[3]
1U

[2]
1U

[1]
1

U
[3]
3

U
[3]
2U

[2]
2

U
[2]
3U

[1]
3

U
[1]
2

U
[3]
4U

[2]
4U

[1]
4

Figure 5: Addition of four tensors X1 + X2 + X3 + X4 in HTD.

We illustrate the process of orthogonalization for the tensor in standard HTD from Exam-
ple 2.2:

vec(X) = (U4 ⊗ U3 ⊗ U2 ⊗ U1)(B34 ⊗B12)B1234.

In the first step, QR decompositions of the basis matrices are performed: Ut = ŨtRt for t =
1, . . . , 4. Here and in the following, “economic” QR decompositions [16] are performed, i.e., Ut
and Ũt have the same number of columns. Propagating the factors Rt into the transfer matrices
results in

vec(X) = (Ũ4 ⊗ Ũ3 ⊗ Ũ2 ⊗ Ũ1)(B̂34 ⊗ B̂12)B1234

with B̂34 := (R4 ⊗ R3)B34, B̂12 := (R2 ⊗ R1)B12. In the next step, QR decompositions B̂34 =
B̃34R34, B̂12 = B̃12R12 are performed, resulting in

vec(X) = (Ũ4 ⊗ Ũ3 ⊗ Ũ2 ⊗ Ũ1)(B̃34 ⊗ B̃12)B̃1234 (10)

with B̃1234 := (R34 ⊗ R12)B1234. Clearly, (10) constitutes an orthogonalized HTD, completing
the orthogonalization procedure.

This procedure easily extends to the general case, see Algorithm 1. Properly implemented,
orthogonalization requires O(dnr2 + dr4) operations. Unless r is very small, the factor dr4,
caused by the QR decompositions of the transfer matrices, will be dominant.

In the htucker toolbox, orthogonalization is performed by calling x = orthog(x). On
return, the flag is orthog of the htensor object x is set to true. This prevents unnecessary or-
thogonalization in subsequent calls to orthog. When this property is destroyed by an operation,
such as addition and µ-mode matrix products, the flag is orthog is set to false.

5 Tensor-Tensor Contraction

The contraction of two tensors X ∈ Cm1×···×mc and Y ∈ Cn1×···×nd is a fundamental operation
which generalizes the concepts of inner product, outer product, and matrix multiplication. In

11

Algorithm 1 Orthogonalization of a tensor in HTD
Input: Basis matrices Ut and transfer tensors Bt defining a general HTD of a tensor X .
Output: Basis matrices Ũt and transfer tensors B̃t defining an orthogonalized HTD of X .

for t ∈ L(T): Compute QR decomposition Ut =: ŨtRt.
for t ∈ N (T) (visiting both child nodes before the parent node) do

Form B̂t = (Rtr ⊗Rtl)Bt.
if t is root node then

Set B̃t = B̂t.
else

Compute QR decomposition B̂t =: B̃tRt.
end if

end for

its most general form, we select a tuple of modes s = (i1, . . . , ip) from X and another tuple of
modes t = (j1, . . . , jp) from Y. Then the corresponding contraction of X and Y amounts to
taking the inner product with respect to each pair (iµ, jµ) of selected modes. This implicitly
assumes that the sizes of the selected modes match, i.e., niµ = mjµ for µ = 1, . . . , p. Contraction
results in a tensor Z whose order equals the number of non-selected modes. For example, for
c = 4, d = 3, and s = (3, 1), t = (2, 3), the contracted tensor Z ∈ Cm2×m4×n1 is given by

Zi1,i2,i3 = 〈X ,Y〉(3,1),(2,3) :=

n3∑
j=1

n1∑
k=1

X̄k,i1,j,i2Yi3,j,k. (11)

A matrix-matrix multiplication XHY for X ∈ Cn1×n2 , Y ∈ Cm1×m2 with n1 = m1 can be
seen as the contraction corresponding to s = (1), t = (1). Conversely, a general tensor-tensor
contraction of X ∈ Cm1×···×mc and Y ∈ Cn1×···×nd along p selected pairs of nodes can be defined
via matrix-matrix multiplication:

Z(t̄) =
(
〈X ,Y〉(t;s)

)(t̄)
:= (X(t))HY (s), with t̄ = (1, 2, . . . , c− p). (12)

Note that the matricization needs to respect the order of the modes in t and s, see also Sec-
tion 2.1.

5.1 Tensor Network Diagrams

In the following, we briefly introduce tensor network diagrams (also called Penrose diagrams)
to conveniently describe algorithms for contractions of tensors in HTD, see also [25, 26]. Such a
diagram represents a tensor in terms of contractions of other tensors. Each node in the diagram
represents a tensor and each edge represents a mode. An edge connecting two nodes corresponds
to the contraction of these tensors in the associated pair of modes. We allow for dangling edges,
which are connected to only one node and correspond to modes that are not contracted. Hence,
the order of the tensor represented by the network is given by the number of dangling edges.

To illustrate the concept of tensor network diagrams, let us consider the contraction given
in (11). This is represented by the following diagram:

3

14

2
2

3

1

X Y

12

(v)(i) (ii) (iii) (iv)

1 1

2

1

2

1

2 1

2

1

3

2

2

1 1

2

1

3

2

2

1

21

Figure 6: Tensor network diagrams representing (i) a vector, (ii) a matrix, (iii) a matrix-matrix
multiplication, (iv) a tensor in Tucker decomposition, and (v) a tensor in HTD.

The node X has four edges, each corresponding to one of the four different modes of the tensor
X . Similarly, the node Y has three edges. Since mode 3 of X is contracted with mode 2 of Y, the
nodes share the corresponding edge. Similarly, the contraction of modes 1 and 3 is represented
by another shared edge.

Some further examples of tensor network diagrams are given in Figure 6. Note that we will
only indicate the precise mode(s) belonging to an edge when necessary. In the case of HTD,
each edge connecting two nodes corresponds to a matricization X(t) for some t ∈ T .

5.2 Inner Product and Norm for Tensors in HTD

The inner product of two tensors X ,Y ∈ Cn1×···×nd is an important special case of contraction:

〈X ,Y〉 =

n1∑
i1=1

· · ·
nd∑
id=1

X̄i1,...,idYi1,...,id

or, equivalently, 〈X ,Y〉 = 〈vec(X), vec(Y)〉. In terms of tensor network diagrams, this operation
corresponds to a pairwise connection of the dangling edges of X̄ and Y.

To illustrate how to evaluate inner products of tensors in HTD efficiently, we first consider
two tensors of order 4:

〈X ,Y〉 = (Bx
1234)H(Bx

34 ⊗Bx
12)H(Ux4 ⊗ Ux3 ⊗ Ux2 ⊗ Ux1)H(Uy4 ⊗ U

y
3 ⊗ U

y
2 ⊗ U

y
1)(By

34 ⊗B
y
12)By

1234.

This product is evaluated from inside to outside or, when considering the hierarchical tree, from
the leaves to the root node. In a first step, the matrices

Mt =
(
Uxt
)H
Uyt , t = 1, . . . , 4,

are computed. Then the product

Mt = (Uxt)HUyt = (Bx
t)H

(
Mtr ⊗Mtl

)
By
t (13)

is computed for t = {1, 2} and t = {3, 4}. Note that the matrix Mtr ⊗ Mtl is not formed
explicitly but the matrices Mtl and Mtr are applied to the modes 1 and 2 of By

t , respectively.
The product (13) then requires 6r4 operations if both X and Y have constant hierarchical rank

13

Step 1 Step 2 Step 3

M1 M2 M3 M4

M12 M34

Figure 7: Inner product of two tensors of order 4 in HTD.

r. In the last step, 〈X ,Y〉 is obtained by evaluating (13) for t = {1, 2, 3, 4}. Figure 7 illustrates
the described procedure with tensor network diagrams.

The generalization to tensors of arbitrary order is straightforwardand summarized in Algo-
rithm 2. Note that the algorithm assumes that X and Y have the same dimension tree. This
requirement can be slightly relaxed as discussed in the next section for a more general setting.
In total, forming the inner product of two tensors with constant hierarchical rank r requires
6(d − 1)r4 +

∑d
µ=1 2nµr

2 operations. Algorithm 2 is implemented in the htucker function
innerprod.

Algorithm 2 Inner product of two tensors in HTD
Input: Tensors X ,Y in HTD, of equal dimension tree T and equal size n1 × · · · × nd, defined by basis

matrices Ux
t , U

y
t and transfer tensors Bxt ,B

y
t .

Output: Inner product 〈X ,Y〉.
for t ∈ L(T) do

Form Mt = (Ux
t)HUy

t .
end for
for t ∈ N (T) (visiting both child nodes before the parent node) do

Form Mt = (Bx
t)H

(
Mtr ⊗Mtl

)
(By

t).
end for
Return 〈X ,Y〉 = Mtroot .

In principle, the Euclidean norm of a tensor X in HTD can be calculated from ‖X‖2 =√
〈X ,X〉 by means of an inner product. However, it is well known that such an approach

suffers from numerical instabilities and may introduce an error proportional to the square root
of machine precision. A usually more accurate alternative is to first orthogonalize the HTD
of X and then compute the norm. Note that the second part is trivial; it is easy to see that
‖X‖2 = ‖B1,2,...,d‖F in the case of an orthogonalized HTD. The orthogonalization step makes the
second approach slightly more expensive. The accuracy difference between the two approaches
is illustrated in the following Matlab example.

14

Step 1 Step 2 Step 3

Figure 8: Example for which the elimination of a cycle creates a temporary node of larger
degree.

x = htenrandn([5, 4, 6, 3]);

norm(x - x)/norm(x)

1.5355e-08

norm(orthog(x - x))/norm(x)

5.6998e-16

5.3 General Contraction of Tensors in HTD

In tensor network diagrams, a general contraction of two tensors in HTD is performed by
connecting the corresponding pairs of dangling edges. This will create a tensor network with
cycles, which need to be eliminated. This elimination is performed by successive contraction
of tensors, similarly as above, until the network becomes a tree. This can only be organized
efficiently if the maximum degree of all intermediate tensor networks does not become too large.
Figure 8 provides a simple example where the maximum degree inevitably grows. To avoid this
effect, we assume that the maximum degree remains at most 3. This also ensures that the
eventually obtained tensor network corresponds to an HTD. In fact, the super node containing
the aggregation of all cycles can be shown to have degree 2. Hence, it is natural to use this
node as the root node in the HTD of the contraction.

Under the conditions mentioned above, the algorithm for performing a general contraction
is a direct, but rather technical extension of Algorithm 2. For implementation details, we refer
to [41, Sec. 3.5.2] and the source code of the function ttt in the htucker toolbox, which
provides an implementation of the sketched algorithm.

x = htenrandn([4, 2, 3]); y = htenrandn([3, 4, 2]);

z = ttt(x, y,[1 3],[2 1]); Contracted product, connecting mode 1 of X with mode 2
of Y, and mode 2 of X with mode 1 of Y. Results in Z ∈ R2×2.
ttt(x, x, 1:3); Inner product, identical with innerprod(x, x).
z = ttt(x, y); Outer product Z ∈ R4×2×3×3×4×2.

15

t

Ut

Gt

t

Ut

Figure 9: Reduced Gramian of a tensor of order 8. The reduced Gramian Gt corresponds to
the left subnetwork encircled by a dashed line.

5.4 Reduced Gramians of a Tensor in HTD

An important application of contractions is the calculation of reduced Gramians, which are
defined as follows. For every t ∈ T , the matrix Ut defined in (6) contains a basis for the column
span of the matricization X(t). Hence, there is a matrix Vt such that X(t) = UtV

H
t . The reduced

Gramian at t is then defined as the Hermitian positive semi-definite matrix Gt = V H
t Vt ∈ Crt×rt .

Reduced Gramians are a central tool in the truncation of tensors. For example, they provide
an efficient way to compute the singular values of X(t), which is used in the function plot sv.
From

X(t)(X(t))H = UtV
H
t VtU

H
t = UtGtU

H
t (14)

it follows that the singular values of X(t) are the square roots of the eigenvalues of the reduced
Gramian Gt, provided that UHt Ut = Irt . This condition is always satisfied after the HTD has
been orthogonalized.

In the following, we briefly discuss the computation of a reduced Gramian Gt via contraction.
The standard, unreduced Gramian corresponds to the contracted product of X with itself along
the modes tc = {1, . . . , d} \ t: 〈X ,X〉tc , for which the matricization is given by (14), see also
Figure 9 for an illustration. It can be seen from the figure that Gramians are closely related
to contraction. In particular, this relation implies that Gt can be calculated by a sequence of
matrix-tensor and tensor-tensor products, similar to Algorithm 2.

Typically, not the reduced Gramian at one node t is required, but reduced Gramians Gt
for all nodes t ∈ T . These can be computed simultaneously by exploiting relations between
different reduced Gramians. The relationship between the reduced Gramians Gt and Gtr , where
tr is the right child node of t, is illustrated in Figure 10 for the case of a general non-leaf node
t. From the tensor network diagram, it can be seen that

Gtr = (B
({1,3})
t)H(Gt ⊗ UHtl Utl)B

({1,3})
t ,

Gtl = (B
({2,3})
t)H(Gt ⊗ UHtr Utr)B

({2,3})
t .

(15)

Formally setting Gtroot = 1, this defines a recursive algorithm for the calculation of all reduced
Gramians, see Algorithm 3. An efficient algorithm for calculating Mt = UHt Ut is already

16

t

t

Gt

tr

tl tr

Utr

Utr

Utr

Utr1

1

3

3 Gtr

⇒ Gt UH
tl
UtlUH

tl
Utl

1

tl

2 3

32

1

t

2

2

t

Figure 10: How to calculate Gtr from Gt, Utl and Bt, where t is a general non-leaf node. The
gray lines represent arbitrary subtrees.

described in Section 5.2and given in Algorithm 2. Note that all Mt are identity matrices for a
tensor in orthogonalized HTD.

For a general HTD, Algorithm 3 requires O(dnr2 + (d − 2)r4) operations. For an orthog-
onalized HTD, this reduces to O((d − 2)r4) operations (but orthogonalization itself requires
O(dnr2 + (d− 2)r4) operations).

G = gramians(x); Reduced Gramians of X in cell array G, orthogonalizing the HTD of X
if necessary.
G = gramians nonorthog(x); Reduced Gramians of X in cell array G, without orthogo-
nalizing.
sv = singular values(x); Singular values of X in cell array sv.

Algorithm 3 Reduced Gramians of a tensor in HTD
Input: Basis matrices Ut and transfer tensors Bt defining a general HTD of a tensor X .
Output: Reduced Gramians Gt for all t ∈ T .

for t ∈ L(T) do
Form Mt = (Ut)

HUt.
end for
for t ∈ N (T) (visiting both child nodes before the parent node) do

Form Mt = (Bt)
H
(
Mtr ⊗Mtl

)
(Bt).

end for
Set Gtroot = 1.
for t ∈ N (T) (visiting parent nodes before their children) do

Form Gtr = (B
({1,3})
t)H(Gt ⊗Mtl)B

({1,3})
t .

Form Gtl = (B
({2,3})
t)H(Gt ⊗Mtr)B

({2,3})
t .

end for

17

6 Truncation of tensors

Truncation of tensors to HTD is one of the most important and most frequently used operations
in htucker.

6.1 Truncation of explicit tensors

We start with the truncation of an explicitly given tensor X ∈ Cn1×···×nd . Although this
situation is limited to small dimensions/sizes, it provides a gentle introduction and illustration
of the general concepts. Truncation to HTD is done by successive projections to the subspaces
span(Wt), which typically represent approximations to the column spaces of X(t) ∈ Cnt×ntc . For
a subset t ⊂ {1, . . . , d}, we define nt :=

∏
µ∈t nµ. We require Wt ∈ Cnt×rt to have orthonormal

columns and define the orthogonal projections

πt := WtW
H
t . (16)

In the following, we use the shorthand notation πtX for πt ◦tX . As shown in [19, Lemma 3.15],
applying these projections in the correct order leads to a tensor in HTD, with hierarchical ranks
bounded by rt.

6.1.1 Root-to-leaves truncation

The simplest way to construct the projections πt in (16) is to let each matrix Wt contain the
rt dominant left singular vectors of the corresponding matricization X(t). To obtain a tensor
in HTD, X̃ ∈ H-Tucker

(
(rt)t∈T

)
, the projections need to be applied from the root node to the

leaves. This is illustrated by the following example for order 4:

vec(X̃) = (W4W
H
4 ⊗W3W

H
3 ⊗W2W

H
2 ⊗W1W

H
1)(W34W

H
34 ⊗W12W

H
12) vec(X) (17)

= (W4 ⊗W3 ⊗W2 ⊗W1)([WH
4 ⊗WH

3]W34︸ ︷︷ ︸
=:B34

⊗ [WH
2 ⊗WH

1]W12︸ ︷︷ ︸
=:B12

) ([WH
34 ⊗WH

12] vec(X))︸ ︷︷ ︸
=:B1234

.

The computation for the general case is described in Algorithm 4. Note that the HTD of the
resulting tensor is not orthogonalized, only the matrices in the leaf nodes have orthonormal
columns. Setting n = maxt nt, the computational complexity of root-to-leaves truncation is
of order dn3d/2 in the case of a balanced tree. An efficient way to calculate Wt is through an
eigenvalue decomposition of the Gramian: X(t)(X(t))H = WtΣ

2WH
t . The resulting tensor X̃

satisfies the following error bound [19, Theorem 3.11]:

∥∥X − X̃∥∥
2
≤
√∑
t∈T ′

δrt(X
(t))2 ≤

√
2d− 3

∥∥X − Xbest

∥∥
2
, (18)

where Xbest represents the best approximation of X in H-Tucker((rt)t∈T), T ′ := T \{troot, tchild}
where tchild is a child of the root node troot, and

δrt(X
(t))2 :=

nt∑
j=rt+1

σj(X
(t))2. (19)

18

Algorithm 4 Root-to-leaves truncation of a tensor

Input: Tensor X ∈ Cn1×···×nd , dimension tree T and desired hierarchical ranks (rt)t∈T of the truncated
tensor.

Output: Tensor X̃ in HTD, with rank(X̃(t)) ≤ rt for all t ∈ T .
for t ∈ T (visiting both child nodes before the parent node) do

if t ∈ L(T) then

Compute singular value decomposition X(t) =: ÛtΣ̂tV̂
H
t .

Set Ut := Ût(:, 1 : rt).
else if t is the root node then

Form Bt := (UH
tr ⊗ U

H
tl

) vec(X).
else

Compute singular value decomposition X(t) =: ÛtΣ̂tV̂
H
t .

Set Ut := Ût(:, 1 : rt).
Form Bt := (UH

tr ⊗ U
H
tl

)Ut.
end if

end for

Remark 6.1. The error bound (18) allows us to choose the hierarchical ranks (rt)t∈T such that
a certain error bound is satisfied:∥∥X − X̃∥∥

2
≤ εabs, choose rt s.t. δrt(X

(t)) ≤ εabs√
2d− 3

∀t ∈ T \ {troot},∥∥X − X̃∥∥
2
≤ εrel ‖X‖2, choose rt s.t. δrt(X

(t)) ≤
εrel ‖X‖2√

2d− 3
∀t ∈ T \ {troot}.

Similar adaptive choices of the hierarchical ranks are possible for all other truncation methods
discussed in the following.

opts.max rank = 10; maximal rank at truncation, mandatory argument.
opts.rel eps = 1e-6; maximal relative truncation error, optional argument.
opts.abs eps = 1e-6; maximal absolute truncation error, optional argument.
Condition max rank takes precedence over rel eps and abs eps.
y = htensor.truncate rtl(x, opts); takes a Matlab multidimensional array and re-
turns the truncation to lower rank HTD.

6.1.2 Leaves-to-root truncation

Root-to-leaves truncation is very costly, the most expensive part being the computation of the
singular value decomposition of every X(t) ∈ Cnt×ntc , where both nt and ntc can become very
large. Leaves-to-root truncation can be considerably faster. To illustrate the idea, consider a
fourth order tensor. For each leaf node t, we define Wt to contain the rt dominant left singular
vectors of X(t) and set

vec(C1) := (WH
4 ⊗WH

3 ⊗WH
2 ⊗WH

1) vec(X), C1 ∈ Cr1×r2×r3×r4 .

In the next step, we consider the nodes t = {1, 2}, t = {3, 4}, and define St to contain the rt

dominant left singular vectors of C
(t)
1 :

vec(C0) = (SH34 ⊗ SH12) vec(C1), C0 ∈ Cr12×r34 .

19

The resulting tensor is in HTD:

vec(X̃) = (W4 ⊗W3 ⊗W2 ⊗W1)(S34 ⊗ S12) vec(C0).

For the case of a general tensor, see Algorithm 5. Note that h(T) denotes the height of T , and
the set of all nodes with distance ` (` = 0, . . . , h(T)) to the root node is denoted by T`.

Algorithm 5 can be interpreted in terms of projections WtW
H
t , with the definition Wt =

(Wtr ⊗Wtl)St. As the subspaces defined by Wt are nested, it can be seen that all projections πt
commute, see also Lemma B.1. Combined with [19, Lemma 3.15], this shows that the resulting
tensor is in H-Tucker((rt)t∈T). The computational complexity of leaves-to-root truncation is

Algorithm 5 Leaves-to-root truncation of a tensor

Input: Tensor X ∈ Cn1×···×nd , dimension tree T and desired hierarchical ranks (rt)t∈T of the truncated
tensor.

Output: Tensor X̃ in HTD, with rank(X̃(t)) ≤ rt for all t ∈ T .
for t ∈ L(T) do

Compute singular value decomposition X(t) =: ÛtΣ̂tV̂
H
t .

Set Ũt := Ût(:, 1 : rt).
end for
Form CL−1 := (ŨH

d ⊗ · · · ⊗ ŨH
1)X .

for ` = h(T)− 1, . . . , 1 do
for t ∈ T` \ L(T) do

Compute singular value decomposition C
(t)
` =: ŜtΣ̂tV̂

H
t .

Set Bt := Ŝt(:, 1 : rt).
end for
Form C`−1 :=

(∏
t∈T` B

H
t ◦t

)
C`.

end for
Set Btroot := vec(C0).

O(dnd+1), which is a significant reduction compared to the root-to-leaves method, while the error
bound (18) still holds, see Lemma B.2. Moreover, the resulting tensor X̃ is in orthogonalized
HTD.

x = htensor.truncate ltr(x, opts); takes a Matlab multidimensional array and re-
turns the truncation to lower rank HTD.

6.2 Truncation of H-Tucker decomposition to lower rank

The truncation of a tensor which is already given in HTD to a tensor in HTD of lower rank is
an essential operation in most algorithms based on this format. In Section 6.2.1, we describe an
efficient method for performing such a truncation. This will be the method of choice for general
tensors. However, for structured tensors resulting, e.g., from the addition of several tensors in
HTD, a different approach described in Section 6.2.2 is preferable.

6.2.1 Truncation of a tensor in HTD

Truncation of a tensor X in HTD can be performed by a fairly straightforward adaptation of
the root-to-leaves method. For this purpose, we recall that Section 5.4 describes an efficient

20

method for computing the reduced Gramians Gt in the decomposition

X(t)(X(t))H = UtGtU
H
t ,

where Ut has orthonormal columns and is implicitly represented as illustrated in Figure 10. After
orthogonalizing the HTD of X ∈ H-Tucker

(
(kt)t∈T

)
and calculating the reduced Gramians, we

compute an orthonormal basis St ∈ Ckt×rt for the rt dominant eigenvectors of the symmetric
matrix Gt. As above, we define Wt := UtSt and obtain the truncated tensor X̃ from subsequent
application of the projections πt = WtW

H
t .

To illustrate how these projections can be applied to a tensor in HTD, let us consider the
example of a tensor X of order 4:

vec(X̃) = (W4W
H
4 ⊗W3W

H
3 ⊗W2W

H
2 ⊗W1W

H
1)(W34W

H
34 ⊗W12W

H
12) vec(X)

= (U4S4 ⊗ U3S3 ⊗ U2S2 ⊗ U1S1) · · ·
· · · ((SH4 ⊗ SH3)B34S34︸ ︷︷ ︸

=:B̃34

⊗ (SH2 ⊗ SH1)B12S12︸ ︷︷ ︸
=:B̃12

) (SH34 ⊗ SH12)B1234︸ ︷︷ ︸
=:B̃1234

.

Hence, an HTD for X̃ is obtained by updating the leaf matrices Ũ1 := U1S1, . . ., Ũ4 := U4S4,
and the transfer matrices. Note that the matrices Wt are never calculated explicitly.

This update can be extended to the general case in a direct way:

Ũt := UtSt ∀t ∈ L(T),

B̃t := (SHtr ⊗ S
H
tl

)BtSt ∀t ∈ N (T).

Note that the update for the root node t ≡ troot simplifies to B̃t := (SHtr ⊗ S
H
tl

)Bt.

Algorithm 6 Truncation of a tensor in HTD

Input: Tensor X in HTD and desired hierarchical ranks (rt)t∈T of the truncated tensor.

Output: Tensor X̃ in HTD, with rank(X̃(t)) ≤ rt ∀t ∈ T .
Orthogonalize X (as described in Algorithm 1).
Calculate reduced Gramians Gt (as described in Algorithm 3).
for t ∈ T \ {troot} do

Compute symmetric eigenvalue decomposition Gt =: ŜtΣ̂
2
t Ŝ

H
t .

Set St := Ŝt(:, 1 : rt).
end for
Stroot = 1

for t ∈ L(T): Set Ũt := UtSt.

for t ∈ N (T): Set B̃t := (SH
tr ⊗ S

H
tl

)BtSt.

Algorithm 6, which describes this procedure, is implemented in truncate std(x, opts),
and requires O(dnr2 + dr4) operations. As this algorithm is mathematically identical to the
explicit root-to-leaves algorithm described in Section 6.1.1, the error bound (18) holds. Note
that the resulting tensor X̃ is not in orthogonalized HTD.

xt = truncate std(x, opts); takes an htensor X and returns a truncated htensor X̃ .

21

6.2.2 Truncation of a tensor in HTD without initial orthogonalization

The method of truncation introduced in the last section represents the default method for
truncating a tensor in HTD. However, in certain situations, it can be beneficial to exploit
additional structure in the HTD. For example, a tensor resulting from addition of tensors in
HTD has block diagonal transfer tensors. In the standard method of truncation, such structures
are immediately destroyed by the initial orthogonalization step. In the following, we discuss a
method that avoids this step.

In a first step, the reduced Gramians Gt in the decomposition

X(t)(X(t))H = UtGtU
H
t

are calculated without the initial orthogonalization. Note, however, that the singular value
decomposition of X(t) cannot be computed directly from Gt, as the columns of Ut are not
orthonormal.

In a second step, the proposed method successively orthonormalizes the matrices Ut. Let
us first consider the leaf nodes t, for which we compute the rt dominant left singular vectors
of X(t) as follows: Compute the QR decomposition Ut =: QtRt, and determine the matrix St
containing the rt dominant eigenvectors of RtGtR

H
t . Then the projection πt = WtW

H
t , with

Wt = QtSt, is applied to X . Note that the updated leaf nodes Ũt := QtSt are orthonormal.
Non-leaf nodes are processed in a similar manner with a recursive algorithm, traversing the

tree such that every parent node is visited after its child nodes. Assume we are at node t, and
let Ũt account for all updates from previous operations on the descendants of t. Based on the

original decomposition X(t) = UtV
H
t , we set X̃

(t)
t := ŨtV

H
t and observe that the corresponding

Gramian takes the form
X̃

(t)
t (X̃

(t)
t)H = ŨtGtŨ

H
t .

To orthogonalize Ũt = (Ũtr ⊗ Ũtl)B̃t, it is sufficient to calculate the QR decomposition of

B̃t = (SHtrRtr ⊗ S
H
tl
Rtl)Bt, as the columns of Ũtl and Ũtr are orthonormal. Then, we calculate

the rt dominant left singular vectors of X̃
(t)
t as in the case of the leaf nodes.

A more detailed description of truncation to HTD without initial orthogonalization can be
found in Algorithm 7. The result of this algorithm satisfies practically the same error bound as
in (18), see also Lemma B.3.

The computational complexities of Algorithm 6 and Algorithm 7 are the same, but the latter
requires more operations.

xt = truncate nonorthog(x, opts); takes an htensor X and returns a truncated
htensor X̃ .

6.3 Combined Addition and Truncation

As explained in Section 4.2, the addition of tensors in HTD leads to a significant growth of the
hierarchical ranks. For example, the sum of s tensors of hierarchical ranks r has hierarchical
ranks sr. Truncation of this tensor back to hierarchical rank r requires O(dns2r2 + ds4r4)
operations, which is too expensive unless s is very small.

22

Algorithm 7 Truncation of a tensor in HTD without initial orthogonalization

Input: Tensor X in HTD and desired hierarchical ranks (rt)t∈T of the truncated tensor.

Output: Tensor X̃ in HTD, with rank(X̃(t)) ≤ rt.
Calculate reduced Gramians Gt (as described in Algorithm 3).
for t ∈ L(T) do

Compute QR decomposition Ut =: QtRt.
Compute symmetric eigenvalue decomposition RtGtR

H
t =: ŜtΣ̂

2
t Ŝ

H
t .

Set St := Ŝt(:, 1 : rt).
Form Ut := QtSt.

end for
for t ∈ N (T) \ {troot} (visiting both child nodes before the parent node) do

Compute QR decomposition (SH
trRtr ⊗ SH

tl
Rtl)Bt =: QtRt.

Compute symmetric eigenvalue decomposition RtGtR
H
t =: ŜtΣ̂

2
t Ŝ

H
t .

Set St := Ŝt(:, 1 : rt).
Form Bt := QtSt.

end for
Form Btroot := (SH

trRtr ⊗ SH
tl
Rtl)Btroot with child nodes tl and tr of troot.

A cheaper alternative is to add the s tensors successively and truncate immediately after
each addition. After setting Ỹ1 := X1, we compute for j = 1, . . . , s− 1:

Form Yj+1 := Ỹj + Xj .
Truncate Yj+1 to Ỹj+1.

(20)

However, one can easily construct examples for which this scheme suffers from severe cancellation
(see example cancellation.m in the toolbox).

To avoid cancellation and still increase efficiency, we propose to apply truncation without
initial orthogonalization (Section 6.2.2) directly to the sum of tensors and exploit the block
diagonal structures illustrated in Figure 5. This results in significant savings when calculating
the reduced Gramians. Computing the reduced Gramians Gt at a non-leaf node requires only
O(s2r4) instead of O(s4r4) operations. Hence, the computational cost of the whole addition
and truncation process reduces to O(dns2r2 + ds2r4 + ds3r3).

With a numerical experiment we examine the execution time required for the addition and
truncation of s random tensors of order d = 5, with size n = 500 and rank r = 20. The
number of summands s varies between 2 and 10 (see Figure 11). This numerical experiment
was performed in Matlab, version 7.6, on an Intel Xeon CPU E31225 with 3 GHz and 6MB L2
Cache and 8GB RAM. The execution time of the new method increases proportionally with s2,
indicating that the term s3r3 does not dominate the cost for this rather typical setting. Note
that the execution time of the new method is relatively high for small s. However, this only
reflects the additional overhead of this method in a Matlab implementation; even for s = 2,
the operation count of the new method is smaller compared to applying standard truncation to
the sum of tensors.

xt = truncate sum({x1, x2, x3}, opts); takes htensor objects X1,X2,X3 and returns
a truncated htensor X̃ ≈ X1 + X2 + X3.

23

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

Number of summands

R
u

n
ti
m

e
 [

s
e

c
.]

Truncation with Alg. 6

Truncation with Alg. 7

Subsequent add+truncate

O(s
4
)

O(s
2
)

O(s)

Figure 11: Execution times for truncating a sum of tensors in HTD. Red: Standard truncation
of the sum. Green: Truncation of the sum with using combined addition and truncation, as
described in Section 6.3. Blue: Successive addition and truncation, see (20).

7 Elementwise multiplication

The elementwise multiplication of two tensors is an important operation in connection with
function-related tensors and can be performed efficiently for tensors in HTD. In particular, this
operation corresponds to the pointwise multiplication f(ξ1, . . . , ξd) = f1(ξ1, . . . , ξd)f2(ξ1, . . . , ξd)
of the functions f1, f2 represented by the two tensors.

For illustration, we first consider the elementwise multiplication of two low-rank matrices
X = UxSx(V x)H and Y = UySy(V y)H , with Sx, Sy ∈ Cr×r. Then the elementwise product
(also called Hadamard product) can be written as

(X ? Y)i,j := XijYij =
∑
α,β,γ,δ

Uxi,αU
y
i,γS

x
α,βS

y
γ,δV

x
j,βV

y
j,δ

= (Ux �T Uy)(Sx ⊗ Sy)(V x �T V y)H ,

where �T denotes a transposed variant of the Khatri-Rao product [32]. More specifically, for a
matrix A ∈ Cn×k with rows aTj and a matrix B ∈ Cn×r with rows bTj , we define

A�T B =


aT1
aT2
...
aTn

�T

bT1
bT2
...
bTn

 :=


aT1 ⊗ bT1
aT2 ⊗ bT2

...
aTn ⊗ bTn

 ∈ Cn×kr.

Note that A�T B = (AT �BT)T , where � is the usual Khatri-Rao product.
For the elementwise multiplication of two tensors X ,Y in HTD, the same technique can be

used to construct the leaf matrices Ut and transfer tensors Bt for an HTD of X ? Y:

Ut = Uxt �T U
y
t for leaf nodes t and Bt = Bxt ⊗ B

y
t for non-leaf nodes t,

where ⊗ represents a direct generalization of the Kronecker product to tensors: For two tensors
X ∈ Cn1×···×nd , X̂ ∈ Cn̂1×···×n̂d we define (X ⊗ X̂)J1,...,Jd := Xi1,...,idX̂j1,...,jd , with Jµ = (iµ −

24

1)n̂µ + jµ. As a consequence, the hierarchical rank rt of X ? Y is the product rxt r
y
t of the

hierarchical ranks of X and Y.
It would be useful to avoid the rank growth of X ? Y and directly calculate a truncated

version, similarly as for the sum of s tensors in Section 6.3. Unfortunately, it is not clear how to
transfer the ideas from Section 6.3 to the elementwise product; the Kronecker structure of the
transfer tensors does not lead in an obvious way to a reduction of computational or storage cost.
However, we can exploit the fact that the elementwise product is contained in the Kronecker
product. More specifically, there is a (0, 1)-matrix Jn ∈ Rn2×n with orthonormal columns such
that

a ? b = JHn (a⊗ b),

for any two vectors a, b ∈ Cn. This extends in a direct fashion to tensors:

JH(X ⊗ Y) := (JHnd ⊗ · · · ⊗ J
H
n1

)(X ⊗ Y) = X ? Y. (21)

Hence, we can implicitly form the Kronecker product X⊗Y in HTD and extract the elementwise
product after truncation.

The HTD of the Kronecker product X⊗Y of two tensors X ,Y in HTD is particularly simple:

Ut := Uxt ⊗ U
y
t ∀t ∈ L(T),

Bt := Bx
t ⊗B

y
t ∀t ∈ N (T).

This implies that the reduced Gramians have Kronecker structure, Gt = Gxt ⊗G
y
t , as well as their

singular value decompositions used in the standard truncation to lower rank. Consequently, this
allows for a particularly efficient HTD truncation Z of X ⊗Y. Using (21), the extracted tensor
JHZ represents an approximation of X ? Y satisfying the error bound∥∥X ? Y − JHZ

∥∥
2

=
∥∥JH(X ⊗ Y − Z)

∥∥
2
≤
∥∥X ⊗ Y − Z∥∥

2
≤ εabs.

Although the hierarchical ranks of JHZ are typically much smaller compared to X ? Y, the
error bound above is far from being sharp. It is therefore recommended to truncate JHZ again
after the extraction.

z = x .* y elementwise product of X and Y.
z = elem mult(x, y, opts) approximate elementwise product, with opts defined as in
truncate.

8 HTD of linear operators on tensors

The use of tensors in PDE-related applications often requires the efficient storage and application
of a linear operator to tensors. In many cases, such a linear operator can be written as a short
sum of Kronecker products:

vec(A(X)) =
R∑
j=1

(
A

(d)
j ⊗ · · · ⊗A

(1)
j

)
vec(X), with A

(µ)
j ∈ Cmµ×nµ . (22)

For example, a discretized Laplace operator in d dimensions takes this form with R = d, see
Example 8.1 below. The operation (22) can be implemented by first applying µ-mode matrix

25

products (ttm) and then using an algorithm for computing a sum of tensors in HTD, see
Section 6.3. In general, this is a reasonable approach. However, for particular linear operators,
a much more efficient scheme can be devised.

This scheme is based on interpreting a linear operator as a tensor, an idea which goes back to
the computational physics community [40]. For example, the operator in (22) can be vectorized
into

Ã =
R∑
j=1

vec
(
A

(d)
j

)
⊗ · · · ⊗ vec

(
A

(1)
j

)
.

Note that this format is a CP decomposition. More generally, there is an isomorphism

Ψ : L
(
Cn1×···×nd ,Cm1×···×md

)
→ Cn1m1×···ndmd ,

which takes the matrix representation AM ∈ C(m1···md)×(n1···nd) of a linear operator A, and
permutes and reshapes its entries into a tensor Ã = Ψ(A) of order d.

The tensor Ã = Ψ(A) can now be approximated in HTD by the methods described in this
paper. When applying a linear operator implicitly represented as a tensor in HTD with leaf
bases UAt ∈ Cmtnt×st and transfer tensors BAt , it is convenient to reinterpret the columns of the

leaf bases as matrices A
(j)
t :

UAt (:, j) = vec
(
A

(j)
t

)
.

Then the application of A to a tensor X of conforming size in HTD with hierarchical ranks rt
again results in an HTD with

Ut =
[
A

(1)
t Uxt , . . . , A

(st)
t Uxt

]
, Bt = BAt ⊗ BXt .

Hence, the hierarchical ranks grow to strt, which illustrates the importance of keeping the
hierarchical ranks st of A low.

The sesquilinear product 〈X ,Y〉A can be computed without applying A to one of the tensors,
by interpreting the product as a tensor network and contracting the network. This amounts to
a computational complexity of O(d(sn2r + snr2 + 3s2r4 + s3r2)), where X ,Y are in HTD with
sizes n and hierarchical ranks r, while Ã is in HTD with hierarchical ranks s.

The composition of two linear operators (i.e., the multiplication of the corresponding matrix
representations) in HTD can be calculated in a similar way as the application of a linear operator
in HTD.

y = apply mat to vec(A, x) returns Y = A(X) for a linear operator A in HTD.
s = innerprod mat(x, y, A) returns s = 〈X ,Y〉A.
C = apply mat to mat(A, B, p) returns C = A ◦ B for two linear operators A ∈
L
(
Cp1×···×pd ,Cn1×···×nd

)
and B ∈ L

(
Cm1×···×md ,Cp1×···×pd

)
.

Note that a truncation of a linear operator A to HTD produces a quasi-optimal approxima-
tion in the Frobenius norm. Therefore, its effect on the smallest eigenvalues of A is likely to
be significant and its use for the direct solution of linear systems questionable. However, this
approximation may still be useful in the construction of preconditioners, and there are some
notable cases for which an exact representation in HTD of low rank is possible.

26

Example 8.1. A discretized Laplace-like operator of the form

A(d) ⊗ I ⊗ · · · ⊗ I + I ⊗A(d−1) ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗A(1) (23)

can be represented exactly in HTD with hierarchical rank 2 for any dimension tree T :

Ut =
[

vec(I), vec(A(t))
]
∀t ∈ L(T)

Bt =


1 0
0 1
0 1
0 0

 ∀t ∈ N (T) \ {troot}, Btroot =


0
1
1
0

 .
A similar decomposition has been proposed for the TT decomposition in [27].

9 Examples

In the following, we will show two examples for the use of the described htucker toolbox.
One relatively simple example is concerned with a tensor containing function samples, and
another example is concerned with a tensor containing solutions to a parameter-dependent
partial differential equation.

Example 9.1. The tensor X is defined to contain all function values of the d-variate function

f(ξ1, . . . , ξd) =
1

ξ1 + · · ·+ ξd

on a uniform tensor grid in [1, 10]d. The following commands create this tensor as a standard
Matlab multidimensional array (see examples/example sum reciproc.m):

n = 50; d = 4;

xi = linspace(1, 10, n)’;

xil = xi*ones(1, n^(d-1)); xil = reshape(xil, n*ones(1, d));

xisum = xil;

for ii=2:d

xisum = xisum + permute(xil, [ii, 2:ii-1, 1, ii+1:d]);

end

x = 1./xisum;

We then truncate this full tensor X to HTD:

opts.max_rank = 10; opts.rel_eps = 1e-5;

x_ht = truncate(x, opts);

rel_err = norm(x(:) - x_ht(:))/norm(x(:))

> 1.3403e-06

27

Note that this approach is limited to small values of d, as X is constructed explicitly. An
alternative approach relies on the following identity

1

ξ1 + · · ·+ ξd
=

∫ ∞
0

exp(−t · (ξ1 + · · ·+ ξd))dt ≈
M∑

j=−M
ωj

d∏
µ=1

e−αjξµ .

Suitable coefficients αj , ωj are described in [17, 20]. Sampling the function on the right-hand
side directly results in a CP decomposition of rank 2M + 1. This can then be converted to the
HTD format, where it can be truncated further, resulting in much smaller ranks; from tensor
rank 51 to hierarchical rank 5 in our example:

M = 25; j = (-M:M);

xMin = d*min(xi);

hst = pi/sqrt(M);

alpha = -2*log(exp(j*hst)+sqrt(1+exp(2*j*hst)))/xMin;

omega = 2*hst./sqrt(1+exp(-2*j*hst))/xMin;

x_cp = cell(1, d);

for ii=1:d, x_cp{ii} = exp(xi*alpha); end

x_cp{1} = x_cp{1}*diag(omega);

x_cp = htensor(x_cp);

rel_err = norm(x(:) - x_cp(:))/norm(x(:))

> 1.4848e-06

x_trunc_cp = truncate(x_cp, opts);

rel_err = norm(x(:) - x_trunc_cp(:))/norm(x(:))

> 2.0001e-06

The approach above is limited to functions of a very specific structure. A more generally
applicable method relies on a Newton-Schultz iteration for finding the elementwise reciprocal
of a tensor in HTD, see examples/elem reciprocal.m in the htucker toolbox. In the context
of low-rank tensors, such an iteration was already proposed by Oseledets in [36].

Construction of X using Newton-Schulz iteration

xisum_cp = cell(1, d);

for ii=1:d

xisum_cp{ii} = ones(n, d); xisum_cp{ii}(:, ii) = xi;

end

opts.elem_mult_max_rank = 50; opts.elem_mult_abs_eps = 1e-2;

opts.max_rank = 50; opts.rel_eps = 1e-5;

x0 = htenones(size(x)) / (d*max(xi));

x_rec = elem_reciprocal(htensor(xisum_cp), opts, x0);

rel_err = norm(x(:) - x_rec(:))/norm(x(:))

> 1.3595e-06

Note that, independent of the choice of the three methods above, the obtained htensor

objects x ht, x trunc cp, x rec all have hierarchical ranks 5, and very similar singular value

28

1 10
10

−6

10
−4

10
−2

10
0 Dim. 1, 2

1 10
10

−6

10
−4

10
−2

10
0 Dim. 3, 4

1 10
10

−6

10
−4

10
−2

10
0 Dim. 1

1 10
10

−6

10
−4

10
−2

10
0 Dim. 2

1 10
10

−6

10
−4

10
−2

10
0 Dim. 3

1 10
10

−6

10
−4

10
−2

10
0 Dim. 4

Figure 12: Singular value tree of tensors x ht, x trunc cp, x rec in HTD (Example 9.1),
produced by the function plot sv.

decay (see Figure 12). Having obtained an approximation of the sampled tensor through any
of the methods described above, we will now show how to use this approximation to evaluate
an integral of the form ∫ 10

1
· · ·
∫ 10

1

1

ξ1 + · · ·+ ξd
dξ1 · · · dξd.

We use Simpson’s rule in each variable to perform numerical quadrature on the tensor grid.

Quadrature using approximation in HTD

% Construction of quadrature weights

h = 9/(n-1);

w = 4*ones(n, 1); w(3:2:end-2) = 2; w(1) = 1; w(end) = 1;

w = h/3*w;

% Inner product between weights and function values by repeated contraction

for ii=1:d, w_cell{ii} = w; end

ttv(x_ht, w_cell)

�

Example 9.2. In the following, we consider an example from [34] concerning the solution of
parameter-dependent linear systems. More specifically, let x(α) with α = (α1, α2, α3, α4) denote
the solution of A0 +

4∑
µ=1

αµAµ

 x(α) = b. (24)

Then we take m samples {α(µ)
1 , . . . , α

(µ)
m } for each parameter αµ and stack the sampled solutions

29

into a “snapshot” tensor X ∈ Rn×m×m×m×m as follows:

X (:, i1, i2, i3, i4) = x
(
α

(1)
i1
, α

(2)
i2
, α

(3)
i3
, α

(4)
i4

)
, iµ = 1, . . . ,m.

As explained in [34], this tensor can be interpreted as the solution of a (huge) symmetric positive
definite linear systemA(X) = B. This allows us to approximate the solution in HTD by applying
a low-rank variant of the preconditioned CG method to A(X) = B, see examples/cg tensor.m.

Our specific example from [34, Sec. 4] is the stationary heat equation on a square domain
with Dirichlet boundary conditions. The heat conductivity coefficient σ(ξ) is piecewise constant
and depends on the four parameters as follows:

σ(ξ) =

{
1 + αµ for ξ ∈ Ωµ, µ = 1, . . . , 4,

1 for ξ /∈
⋃4
µ=1 Ωµ,

where Ω1, . . . ,Ω4 are mutually disjoint discs inside the domain. A finite element discretization
results in a parameter-dependent linear system (24) of size n = 1580. We choose the samples

{α(µ)
1 , . . . , α

(µ)
m } = {0, 1, . . . , 100} and hence m = 101. The matrices A0, . . . , A4 as well as the

vector b are contained in the file examples/cookies matrices 2x2.mat, and the following code
can be found in examples/example cookies.m.

load cookies_matrices_2x2

A_handle = handle_lin_mat(A, {[], 0:100, 0:100, 0:100, 0:100});

M_handle = handle_inv_mat(A{1});

e = ones(101, 1); b_cell = {b, e, e, e, e};

b_tensor = htensor(b_cell);

opts.max_rank = 30; opts.rel_eps = 1e-10;

opts.maxit = 50; opts.tol = 0;

[x, norm_r] = cg_tensor(A_handle, M_handle, b_tensor, opts);

From the resulting tensor X ∈ R1580×101×101×101×101, we calculate the sample mean and variance
of x, see also Figure 13.

x_mean = full(ttv(x, {e,e,e,e}, [2 3 4 5])) / 101^4;

x_diff = x - htensor({x_mean,e,e,e,e});

x_var = diag(full(ttt(x_diff, x_diff, [2 3 4 5]))) / (101^4 - 1);

�

10 Conclusions and ongoing work

The main goal of this work was to provide a convenient way to work with tensors in HTD.
Several extensions of this work are possible and currently under consideration.

The most expensive operations of the htucker toolbox are typically calls to level 3 BLAS
and LAPACK functions, and hence there is a simple to gain performance by, e.g., linking to
multi-threaded BLAS. However, in order to address challenging applications that feature high

30

Figure 13: Sample mean and variance of the parameter-dependent stationary heat equation
(Example 9.2).

ranks, there is clearly a need for a more advanced implementation fine-tuned to modern high-
performance and parallel machines.

One of the most challenging aspects in using low-rank tensor decompositions, such as HTD,
is the a priori choice of a suitable decomposition. This also includes the choice of the dimension
tree in HTD, which at the moment is ad hoc. The development of rational criteria or effective
heuristics for these choices is an important open question.

The work on low-rank tensor decompositions is quickly expanding. As new methods emerge
and mature, they will be added to future versions of the htucker toolbox. Candidates include
dynamical low-rank methods for HTD [3, 35] and low-rank tensor cross approximation for
HTD [6, 8]. For both, preliminary implementations are already available see http://anchp.

epfl.ch/htucker.

References

[1] E. Acar, D. M. Dunlavy, and T. G. Kolda. A scalable optimization approach for fitting
canonical tensor decompositions. J. Chemometrics, 25(2):67–86, 2011.

[2] C. A. Andersson and R. Bro. The N -way toolbox for MATLAB. Chemometrics and
Intelligent Laboratory Systems, 52(1):1–4, 2000. Available from http://www.models.life.

ku.dk/nwaytoolbox.

[3] A. Arnold and T. Jahnke. On the approximation of high-dimensional differential equations
in the hierarchical Tucker format. Technical report, KIT, Karlsruhe, Germany, 2012.

[4] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm
prototyping. ACM Trans. Math. Software, 32(4):635–653, 2006. Available from http:

//csmr.ca.sandia.gov/~tgkolda/TensorToolbox/.

[5] B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse and factored
tensors. SIAM J. Sci. Comput., 30(1):205–231, 2007.

31

[6] J. Ballani. Fast evaluation of near-field boundary integrals using tensor approximations.
Dissertation, Universität Leipzig, 2012.

[7] J. Ballani and L. Grasedyck. A projection method to solve linear systems in tensor format.
Numer. Linear Algebra Appl., 20(1):27–43, 2013.

[8] J. Ballani, L. Grasedyck, and M. Kluge. Black box approximation of tensors in hierarchi-
cal Tucker format. Technical report, RWTH Aachen, Germany, 2012. To be published,
available at http://dx.doi.org/10.1016/j.laa.2011.08.010.

[9] B. Bauer et al. The ALPS project release 2.0: open source software for strongly correlated
systems. J. Stat. Mech., 5, 2011.

[10] J. Carroll and J.-J. Chang. Analysis of individual differences in multidimensional scaling
via an n-way generalization of ”Eckart-Young” decomposition. Psychometrika, 35:283–319,
1970.

[11] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decompo-
sition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[12] M. Espig and W. Hackbusch. A regularized Newton method for the efficient approximation
of tensors represented in the canonical tensor format. Numer. Math., 122(3):489–525, 2012.

[13] M. Espig, W. Hackbusch, S. Handschuh, and R. Schneider. Optimization problems in
contracted tensor networks. Computing and Visualization in Science, 14:271–285, 2011.

[14] M. Espig, W. Hackbusch, T. Rohwedder, and R. Schneider. Variational calculus with sums
of elementary tensors of fixed rank. Numer. Math., 122(52):469–488, 2012.

[15] M. Espig, M. Schuster, A. Killaitis, N. Waldren, P. Wähnert, S. Handschuh, and H. Auer.
TensorCalculus library, 2012. Available from http://gitorious.org/tensorcalculus.

[16] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore (MD), third edition, 1996.

[17] L. Grasedyck. Existence and computation of low Kronecker-rank approximations for large
linear systems of tensor product structure. Computing, 72(3-4):247–265, 2004.

[18] L. Grasedyck. Hierarchical low rank approximation of tensors and multivariate functions,
2010. Lecture notes of Zürich summer school on ”Sparse Tensor Discretizations of High-
Dimensional Problems”.

[19] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal.
Appl., 31(4):2029–2054, 2010.

[20] W. Hackbusch. Approximation of 1/x by exponential sums. Available from http://www.

mis.mpg.de/scicomp/EXP_SUM/1_x/tabelle. Retrieved August 2008.

[21] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer, 2012.

[22] W. Hackbusch, B. N. Khoromskij, S. A. Sauter, and E. E. Tyrtyshnikov. Use of tensor
formats in elliptic eigenvalue problems. Numer. Linear Algebra Appl., 19(1):133–151, 2012.

32

[23] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J. Fourier Anal.
Appl., 15(5):706–722, 2009.

[24] R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an
”explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics, 16:1–84,
1970.

[25] S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme for tensor opti-
mization in the Tensor Train format. SIAM J. Sci. Comput., 34(2):A683–A713, 2012.

[26] T. Huckle, K. Waldherr, and T. Schulte-Herbrüggen. Computations in quantum tensor
networks. Linear Algebra Appl., 438(2):750–781, 2013.

[27] V. A. Kazeev and B. N. Khoromskij. Low-rank explicit QTT representation of Laplace
operator and its inverse. SIAM J. Matrix Anal. Appl., 33(3):742–758, 2012.

[28] B. N. Khoromskij and I. V. Oseledets. Quantics-TT collocation approximation of
parameter-dependent and stochastic elliptic PDEs. Comput. Methods Appl. Math.,
10(4):376–394, 2010.

[29] B. N. Khoromskij and I. V. Oseledets. QTT approximation of elliptic solution operators
in higher dimensions. Russian J. Numer. Anal. Math. Modelling, 26(3):303–322, 2011.

[30] B. N. Khoromskij and Ch. Schwab. Tensor-structured Galerkin approximation of paramet-
ric and stochastic elliptic PDEs. SIAM J. Sci. Comput., 33(1):364–385, 2011.

[31] O. Koch and C. Lubich. Dynamical tensor approximation. SIAM J. Matrix Anal. Appl.,
31(5):2360–2375, 2010.

[32] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

[33] D. Kressner and C. Tobler. Krylov subspace methods for linear systems with tensor product
structure. SIAM J. Matrix Anal. Appl., 31(4):1688–1714, 2010.

[34] D. Kressner and C. Tobler. Low-rank tensor Krylov subspace methods for parametrized
linear systems. SIAM J. Matrix Anal. Appl., 32(4):1288–1316, 2011.

[35] Ch. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken. Dynamical approximation
of hierarchical Tucker and tensor-train tensors. Technical report, July 2012.

[36] I. V. Oseledets. MATLAB TT-Toolbox Version 1.0, May 2009. See http://spring.inm.

ras.ru/osel/?page_id=24.

[37] I. V. Oseledets. MATLAB TT-Toolbox Version 2.1, May 2011. See http://spring.inm.

ras.ru/osel/?page_id=24.

[38] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–2317,
2011.

[39] I. V. Oseledets and B. N. Khoromskij. DMRG+QTT approach to high-dimensional quan-
tum molecular dynamics. Preprint 69/2010, Max-Planck-Institut für Mathematik in den
Naturwissenschaften, 2010.

33

[40] U. Schollwöck. The density-matrix renormalization group in the age of matrix product
states. Annals of Physics, 326, 2011.

[41] C. Tobler. Low-rank Tensor Methods for Linear Systems and Eigenvalue Problems. PhD
thesis, ETH Zürich, Switzerland, 2012.

[42] L. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279–
311, 1966.

34

A List of Matlab functions

Tables 1, 2, and 3 give an overview of the complete functionality of our Matlab toolbox
htucker. More details for the use of each function can be obtained using the command help.

Construction of htensor objects.
htensor Construct a tensor in HTD and return htensor object.
define tree Define dimension tree.

Basic functionality
cat Concatenate two htensor objects.
change dimtree Change dimension tree of htensor.
change root Change root of the dimension tree.
check htensor Check internal consistency of htensor.
conj Complex conjugate of htensor.
disp Command window display of dimension tree of htensor.
display Command window display of dimension tree of htensor.
disp all Command window display of htensor.
end Last index in one mode of htensor.
equal dimtree Compare dimension trees of two htensor objects.
full Convert htensor to a (full) tensor.
full block Return subblock of htensor as a (full) tensor.
full leaves Convert leaf matrices Ut to dense matrices.
ipermute Inverse permute dimensions of htensor.
isequal Check whether two htensors are equal.
mrdivide (/) Scalar division for htensor.
mtimes (*) Scalar multiplication for htensor.
ndims Order (number of dimensions) of htensor.
ndofs Number of degrees of freedom in htensor.
norm Norm of htensor.
norm diff Norm of difference between htensor and full tensor.
nvecs Dominant left singular vectors for matricization of htensor.
permute Permute dimensions of htensor.
plot sv Plot singular value tree of htensor.
rank Hierarchical ranks of htensor.
singular values Singular values for matricizations of htensor.
size Size of htensor.
sparse leaves Convert leaf matrices Ut to sparse matrices.
spy Plot sparsity pattern of the nodes of htensor.
squeeze Remove singleton dimensions from htensor.
subsasgn Subscripted assignment for htensor.
subsref Subscripted reference for htensor.
subtree Return all nodes in the subtree of a node.
uminus Unary minus (-) of htensor.
uplus Unary plus for htensor.

Table 1: List of functions in htucker toolbox (part 1).

35

Operations with htensor objects.
elem mult Approximate element-by-element multiplication for htensor.
innerprod Inner product for htensor.
minus (-) Binary subtraction for htensor.
plus (+) Binary addition for htensor.
power (.^2) Element-by-element square for htensor.
times (.*) Element-by-element multiplication for htensor.
ttm N -mode multiplication of htensor with matrix.
ttt Tensor-times-tensor for htensor.
ttv Tensor-times-vector for htensor.

Orthogonalization and truncation.
gramians Reduced Gramians of htensor in orthogonalized HTD.
gramians cp Reduced Gramians of CP tensor.
gramians nonorthog Reduced Gramians of htensor.
gramians sum Reduced Gramians for sum of htensor objects.
left svd gramian Left singular vectors and values from Gramian.
left svd qr Left singular vectors and values.
orthog Orthogonalize HTD of htensor.
trunc rank Return rank according to user-specified parameters.
truncate Truncate full tensor/htensor/CP to htensor.
truncate cp Truncate CP tensor to lower-rank htensor.
truncate ltr Truncate full tensor to htensor, leaves-to-root.
truncate nonorthog Truncate htensor to lower-rank htensor.
truncate rtl Truncate full tensor to htensor, root-to-leaves.
truncate std Truncate htensor to lower-rank htensor.
truncate sum Truncate sum of htensor objects to lower-rank htensor. .

Linear Operators.
apply mat to mat Applies an operator in HTD to another operator in HTD.
apply mat to vec Applies an operator in HTD to htensor.
full mat Full matrix represented by an operator in HTD.
innerprod mat Weighted inner product for htensor.

Interface with Tensor Toolbox.
ktensor approx Approximation of htensor by ktensor.
mttkrp Building block for approximating htensor by ktensor.
ttensor Convert htensor to a Tensor Toolbox ttensor.

Table 2: List of functions in htucker toolbox (part 2).

36

Auxiliary functions for full tensors.
dematricize Determine (full) tensor from matricization.
diag3d Return third-order diagonal tensor.
isindexvector Check whether input is index vector.
khatrirao aux Khatri-Rao product.
khatrirao t Transposed Khatri-Rao product.
matricize Matricization of (full) tensor.
spy3 Plot sparsity pattern of order-3 tensor.
ttm N -mode multiplication of (full) tensor with matrix.
ttt Tensor times tensor (full tensors).

Example tensors.
gen invlaplace htensor for approx. inverse of Laplace-like matrix.
gen laplace htensor for Laplace-like matrix.
gen sin cos Function-valued htensor for sine and cosine.
htenones htensor with all elements one.
htenrandn Random htensor.
laplace core Core tensor for Laplace operator.
reciproc sum Function-valued tensor for 1/(ξ1 + · · ·+ ξd).

Examples
cg tensor Truncated Conjugate Gradient method for htensor.
demo basics Demonstration of basic htensor functionality.
demo constructor Demonstration of htensor constructors.
demo elem reciprocal Demonstration of element-wise reciprocal.
demo function Demonstration of htensor function approximation.
demo invlaplace Demonstration of approximate inverse Laplace.
demo operator Demonstration of operator-HTD format.
elem reciprocal Iterative computation of elementwise reciprocal for htensor.
example cancellation Cancellation in tan(x) + 1/x− tan(x).
example cancellation2 Cancellation in exp(−x2) + sin(x)2 + cos(x)2.
example cookies Apply CG method to a parametric PDE.
example maxest Example for computing element of maximal absolute value.
example spins Demonstration of operator-HTD for 1D spin system.
example sum reciproc Apply element-wise reciprocal method to sum of tensors.
example truncation Comparison of speed for different truncation methods.
handle inv mat Function handle to Kronecker structured matrix multiplication.
handle lin mat Function handle to Kronecker structured matrix multiplication.
maxest Approximate element of maximal absolute value.

Table 3: List of functions in htucker toolbox (part 3).

37

B Proofs of approximation results

In this appendix, we provide and prove bounds on the approximation error of the leaves-to-
root method (Section 6.1.2) and of truncation in HTD without initial orthogonalization (Sec-
tion 6.2.2). The proofs will be based on the following basic result.

Lemma B.1. Consider a dimension tree T and orthogonal projections πt = WtW
H
t for t ∈ T .

If the projections are nested:

span(Wt) ⊂ span(Wtr ⊗Wtl) for all t ∈ N (T),

then all projections πs and πt commute.

Proof. Any two nodes s, t ∈ T are either disjoint (s ∩ t = ∅) or nested (w.l.o.g., s ⊂ t):

1. s ∩ t = ∅: In this case, the statement of the lemma follows directly from

WsW
H
s ◦sWtW

H
t ◦t X = WtW

H
t ◦tWsW

H
s ◦s X ,

for any tensor X .

2. s ⊂ t: Without loss of generality, we may assume that the modes contained in node s are
the leading modes of t. Then span(Wt) ⊂ span(I⊗Ws) and the statement is an immediate
consequence of the obvious fact that projections onto nested subspaces commute.

To simplify the presentation, we require some additional notation. All truncation methods
involve a sequence of projections to some subspaces R(Wt) for nodes t ∈ T . Note that there is
no projection associated with the root node. Moreover, the truncations for both children tl, tr of
the root node arise from essentially the same singular value decomposition, as X(tl) = (X(tr))T .
Thus, it is sufficient to consider only one of them for the error bound. We therefore define the
set T ′ to contain all nodes of T , except for the root node and one of its children.

The leaves-to-root method described in Algorithm 5 can be written recursively in terms of
projections as

X̃L := X , X̃`−1 =
∏
t∈T ′`

πtX̃`, X̃ := X̃0,

with T ′L = L(T) ∩ T ′ and T ′` = (T` ∩ T ′) \ L(T), ` = 1, . . . , L − 1. Defining the matrix Wt

to contain the kt dominant left singular vectors of X̃
(t)
` for t ∈ T ′` and ` ∈ {1, . . . , L}, we set

πt = WtW
H
t .

Lemma B.2. The truncation error of the leaves-to-root method described in Algorithm 5 sat-
isfies

‖X − X̃‖2 ≤

√√√√√ L∑
`=1

∑
t∈T ′`

δkt(X̃
(t)
`)2 ≤

√
2d− 3 ‖X − Xbest‖2,

where Xbest is a best approximation of X in H-Tucker((kt)t∈T), and the low-rank approximation
error δkt is defined as in (19).

38

Proof. We expand X − X̃ into a sum:

X − X̃ =

L∑
`=1

X̃` − X̃`−1 =

L∑
`=1

(I − π`)π`+1 · · ·πLX , with π` :=
∏
t∈T ′`

πt.

As the projections πt commute, each summand is orthogonal to all subsequent summands and
therefore ‖X − X̃‖22 =

∑L
`=1 ‖X̃` − π`X̃`‖22. A similar reasoning for the projections on level `

leads to ‖X̃` − π`X̃`‖22 ≤
∑

t∈T ′`
‖X̃` − πtX̃`‖22, showing the first inequality of the lemma.

For the second inequality, we will prove that ‖X̃`−πtX̃`‖2 ≤ ‖X −Xbest‖2 for all nodes t. We
start by defining Xt,best to be a best approximation of X under the condition that the rank of
the t-matricization is not larger than kt. Clearly,

∥∥X − Xt,best

∥∥
2
≤
∥∥X − Xbest

∥∥
2
. Furthermore,

we define the set

St :=
{
Y ∈ Cn1×···×nd

∣∣ rank(Y (t)) ≤ kt and span(Y (s)) ⊂ span(Ws) ∀s ∈
L⋃

j=`+1

T ′j
}
.

Note that πtX̃` is a minimizer of ‖X̃`−Y‖2 on St, as πt is based on the SVD of X̃
(t)
` . Furthermore,

π`+1 · · ·πLXt,best is a member of St (from [19, Lemma 3.15]). In conclusion,∥∥X̃` − πtX̃`∥∥2
≤
∥∥π`+1 · · ·πLX − π`+1 · · ·πLXt,best

∥∥
2
≤
∥∥X − Xt,best

∥∥
2
≤
∥∥X − Xbest

∥∥
2
.

Truncation in HTD without initial orthogonalization is described in Algorithm 7 and can also
be written recursively in terms of projections: X̃ :=

∏
t∈T ′ πtX , where πt is the orthogonal

projection onto the subspace spanned by the kt dominant left singular vectors of

ŨtV
H
t =

(∏
s∈T ′,s(t

πs

)
X(t) =: X̃

(t)
t . (25)

Thus, we can equivalently define X̃ = X̃troot .

Lemma B.3. The truncation error of HTD without initial orthogonalization described in Al-
gorithm 7 satisfies:

‖X − X̃‖2 ≤
√∑
t∈T ′

δkt(X̃
(t)
t)2 ≤

√
2d− 3 ‖X − Xbest‖2,

where Xbest is a best approximation of X in H-Tucker((kt)t∈T).

Proof. We define the projections π̃t by the recursion

π̃t =

{
πt if t is a leaf node,
π̃tl π̃trπt otherwise,

where we have formally set πtroot to the identity. Note that the projections π̃t commute. Let us
now consider X̃t = π̃tl π̃trX for a non-leaf node t:

‖X − π̃tX‖22 = ‖X − π̃tlX + π̃tlX − π̃tl π̃trX + π̃tl π̃trX − πtπ̃tl π̃trX‖
2
2

≤ ‖X − π̃tlX‖
2
2 + ‖X − π̃trX‖22 + ‖X̃t − πtX̃t‖22.

39

Successive application of this inequality shows the first inequality of the lemma:

‖X − X̃‖22 = ‖X − π̃trootX‖22 ≤
∑
t∈T ′
‖X̃t − πtX̃t‖22.

For the second inequality, the proof is analogous to the one of Lemma B.2.

40

