
Coding Style Standard

Table of Contents

1Coding Style Standard


1Coding Guidelines


1Naming


2Namespaces


2Layout


2White Space


4Classes


5Miscellaneous


7Documentation Guidelines


7File Header and Footer


8Class Definitions


8Member Variables


8Member and Global Functions


9Miscellaneous


9Doxygen Command Summary


9Good Things To Do




Coding Style Standard

Coding Guidelines

This document describes the coding style standard for C++.  A coding style standard defines the visual layout of source code.  Presenting source code in a uniform fashion facilitates the use of code by different developers.  In addition, following a standard prevents certain types of coding errors.

All of the items below, unless otherwise noted, are guidelines.  They are recommendations about how to lay out a given block of code.  Use common sense and provide comments to describe any deviation from the standard.  Sometimes, violating a guideline may actually improve readability.

If you are working with code that does not follow the standard, bring the code up-to-date or follow the existing style.  Don’t mix styles.

Portions of this standard associated with the use of Doxygen for automatic documentation generation or SourceSafe for configuration management may be tailored to suit the particular needs of projects that do not use these tools.  An attempt should be made, however, to adhere to the standard using similar features from other tools.
Naming

The following guidelines are used to name identifiers.  Although some variables have prefixes to describe their scope, these prefixes are in addition to the standard guidelines.  All guidelines governing the use of variables still apply.  Hungarian notation is discouraged.

· Create identifiers using descriptive words and mixed case letters, with a capital letter beginning each word.  Underscores are generally not allowed, unless prescribed below.

· Begin types, functions, structures, and classes with a capital letter.  Use descriptive words and mixed case letters for the name, with a capital letter beginning each word.  Underscores are not allowed, unless prescribed below.

· Begin variables with lowercase letters.  Use descriptive words and mixed case letters for the name, with a capital letter beginning each word, but not including the first.  Underscores are not allowed, unless prescribed below.

· Identify data objects by scope.  Prefix global objects with a “g_,” prefix instance members with an “m_,” and prefix static members with an “s_.”  In addition, follow the prefix with lowercase letters since variable names begin with lowercase letters.  A notable exception is if you use the pimpl idiom (see Exceptional C++ items 26-30).  If you use this idiom you will often have lines like “m_impl->m_value = 2”, where the multiple “m_” makes things difficult.  In this situation prefer “m_impl->value = 2”.
· Do not use a prefix on local instances of objects or on fundamental types of objects.

· Use all uppercase letters with underscores between words for pre-processor definitions and macros.  The use of pre-processor definitions and macros is highly discouraged.

· Do not use leading underscores, as this infringes on the C Standard internal naming convention.

· Begin constants with a “k,” followed by an uppercase letter, and use the identifier naming convention described above.

· Begin enumeration members with an “e,” followed by an uppercase letter, and use the identifier naming convention described above.  When specifying a constant as an enumeration member within a class (due to Visual C++ 6.0 not supporting in-class static const initialization), start the constant with a “k” as described above.

· Use an underscore where mathematical notation would use a subscript; e.g., float velocity_x; // math notation is vx.

Namespaces

· In general, the number of namespaces should be kept to a minimum to simplify the interface to the contents of the namespaces.

· The top-level namespace, “Nektar” shall be the outermost namespace containing all code contained in the Nektar++ system.
· Within the Nektar namespace, the organization shall match the library structure as close as practical.  For example, “Nektar::SpatialDomains” is the namespace corresponding to the SpatialDomains library contained in Nektar++.
Layout

· Do not put multiple statements on the same line.  This includes multiple declarations.

· Always provide default values for all variables.

· When possible, conform to an 80-character maximum line.

· Enclose every program block (after an if, else, for, while, etc.) in braces, even if it is empty or only one line.

· Use one class per .cpp and .h file, unless the class contains nested classes.

· Define class functions in the implementation (*.cpp) file following the same order the functions were declared in the class definition (*.h) file.

· Template classes should be defined and implemented in a single .hpp file.  As above, limit the file to a single class.

· Do not put inline functions in the header file unless the function is trivial (accessor, empty destructor, etc.), or unless profiling indicates a need.

White Space

Adding an appropriate amount of white space enhances readability.  Too much white space, on the other hand, detracts from that readability. 

· Indent using a four-space tab.  Consistent tab spacing is necessary to maintain formatting.  Note that this means when a tab is pressed, four physical spaces are inserted into the source.
· Put a blank line at the end of a public/protected/private block.

· Put a blank line at the end of every file.

· Put a space after every keyword (if, while, for, etc.).

· Put a space after every comma, unless the comma is at the end of the line.

· Do not put a space before the opening parenthesis of an argument list to a function.

· Declare pointers and references with the * or & symbol next to the declarator, not the type; e.g., Object *object.  Do not put multiple variables in the same declaration.

· Place a space on both sides of a binary operator.

· Do not use a space to separate a unary operator from its operand.

· Place open and close braces on their own line.  No executable statements should appear on the line with the brace, but comments are allowed.  Indent opening braces at the same level as the statement above and indent the closing brace at the same level as the corresponding opening brace.

· Indent all statements following an open brace by one tab.  Developer Studio puts any specifier terminated with a colon at the same indentation level as the enclosing brace.  Examples of such specifiers include case statements, access specifiers (public, private, protected), and goto labels.  This is not acceptable and should be manually corrected so that all statements appearing within a block and delineated by braces are indented.

· Break a line into multiple lines when it becomes too long to read.  Use at least two tabs to start the new line, so it does not look like the start of a block.

· Follow C++ style comments with one space.  It is also preferable to consider any text that follows C++ style comments as a sentence and to begin this text with a capital letter.  This helps to distinguish the line from a continuation of a previous line; i.e., // This is my comment.

· As a general rule, don’t keep commented out source code in the final baselined product.  Such code leads the reader to believe there was uncertainty in the code as it currently exists.

· Place the # of a preprocessor directive at column one.  An exception is the use of nested #ifdefs where the bodies only contain other preprocessor directives.  Add tabs to enhance readability.

void foo()

{


for(int I = 0; I < 10; ++i)


{

#ifdef BAR

do_something();

#endif



for_loop_code();


}

}

· Use tabular white space if it enhances readability.

· Use only one return statement.  Structure the code so that only one return statement is necessary.

Classes

The following standards apply to classes:

· Use only one “public:,” “protected:,” and “private:” block, and declare them in that order.  An empty public, protected, or private block is acceptable if no declarations reside in the block.

· Group members into categories that make sense for the class.  Start a category with a // comment line, have a list of members without vertical space, and end with a blank line.  Some sample categories are “Types,” “Static Functions,” “Construction/Destruction,” “Attributes,” “Operators,” and “Operations.”

· Within a block, order your categories as follows: nested types, static functions, member functions, static data, and member data.

Example:

class Database 

{








public:



// Types



enum Direction



{




eFORWARD,




eREVERSE



};



// Static Functions



static Database* GetInstance(void);



// Construction/Destruction



~Database();



// Operations


void Sort(Direction direction = eFORWARD) = 0;

protected:


private:



// Construction/Destruction



Database(void);



// Static Data


static Database* s_instance;



// Member Data 



int m_size;



Object* m_object;
// “m_” signifying a member variable


   
 



// indicating a pointer type declarator.

}; // class ObjectDatabase
Database::Database() :


m_size(0),


m_object(NULL)

{

}

Miscellaneous

Header Files

· Always bracket header files as indicated below.  Replace PROJ_NAME with the name of the project (i.e. NEKTAR), LIB_NAME with the name of the library (i.e. LINALG), and FILENAME_H with the name of the header file in all uppercase, and replace the .h portion of the file with _H.

Some compilers (Visual C++, Codewarrior, Borland) are more efficient if you also include the #pragma once directive.  If the code is ported to a difference compiler, use the #ifndef even if you choose to use the #pragma once directive

#pragma once

#ifndef PROJ_NAME_LIB_NAME_FILENAME_H

#define PROJ_NAME_LIB_NAME_FILENAME_H

…

#endif PROJ_NAME_LIB_NAME_FILENAME_H

· Label the #else and #endif statements so it is easy to identify where they came from.  See the #endif FILENAME_H above.

· When including header files from the Nektar project, use the following format:

#include <ModuleName/headerName.h>

For example:

#include <LibUtilities/nekPoint.hpp>

The makefiles will be created so they can correctly find the header files.  All include files will be copied to the $INSTALL_DIR/include/LibName directories.

· Never use the “using” keyword in a header file outside of function scope.  Within function scope is acceptable, but liberal use of the “using” keyword minimizes the benefits of namespaces (see “Good Things To Do,” below).
#include <iostream>
// Unacceptable use of using keyword.

using namespace std;

class scopetest
{

public:
    scopetest(void):
    testval(10)
    {
    }

    void printtestval(void)
    {
  // Acceptable use of using keyword
        using std::cout;

  using std::endl;

        cout << testval << endl;
    }


private:
    int testval;
};
· Always use forward declarations instead of #include statements when possible.
Function Syntax

When defining functions, place the entire function declaration on one line, if possible.  If it does not fit on one line, break the line after a comma in the argument list.  Place the template part of the declaration on its own line.

void GlobalFunction(int argument1, char argument2,


    int argument3)

inline const char* AnotherFunction()

void Database::Sort(Direction direction)

template<class TYPE>

int Array<TYPE>::GetSize() const

Documentation Guidelines

This section describes the basic requirements for writing documentation in your code when using the automatic documentation generator tool Doxygen.

If you want Doxygen to capture a particular comment, place the comment in a line that starts with /// (note the extra slash.  If the comment is more than one line long, place the /// on their own lines.  Indent once (4 spaces) for lines in the comment block.  

Use C++ style comments “//”for comments not to be read by Doxygen.  Never user the three backslash comment for normal comments, use them only for Doxygen comments.

Note that in general there are two target audiences for our documented code: developers of the core application and users of the application.  The type of documentation presented to these groups is different.  For example, we want to document private data members for developers, but not for users.  Also, it is not always desirable to expose all public methods to a user.  Any method that should be documented for developers but not for users should have the “\internal: option specified in the comment block.

A full description of all Doxygen options is beyond the scope of this document.  At the very least you should document methods, return values, and parameters.  Other than that just use your judgment on what needs to be documented and what can be left out.

File Header and Footer

Start all source files with a comment block containing file and author information.  Note that the first and last lines contains 80 “/” characters.
////////////////////////////////////////////////////////////////////////////////
//
// File Name
// Author Name

//

// License (if applicable, maybe we have a GPL license 

// or something for Nektar)

//
// Description:

//
//
////////////////////////////////////////////////////////////////////////////////

Include the CVS log keyword in comments at the end of the file.  Over time, the expansion of this keyword by CVS creates a very long list of revision entries.  By putting this at the end of the file, the reader does not need to scroll past the log entries to locate the source code.  Note that while C++ style comments are generally preferred, to use the CVS keyword expansion feature we must use C style comments here.
/**

* $Log: $

**/

Class Definitions

Precede the class definition with a description block that describes the purpose of the class.  Place the description in the header file, immediately before the class definition.

/// \brief One line description.

///

/// Full description.

///

/// Other Doxygen items, such as \sa
///
class MyClass …

Note that \sa stands for “see also.”  Doxygen will generate hyperlinks to these classes.

Member Variables

Document member variables in the header file.  If the description of the variable is short and will fit on one line, place the special one-line Doxygen comment after the variable declaration.

int m_width;
//!< The width of this rectangle.

The ! indicates Doxygen should grab the comment, and the < indicates that the comment applies to the previous declaration, rather than the following line.

If the description will take more than one line, place it immediately before the variable declaration:

///  The width of the rectangle.  The width is guaranteed

///  never to be negative, and will always be less than 1024.

int m_width;
Member and Global Functions

Place descriptions of member and global functions in the .h or .hpp file, immediately before the declaration of the function.  Documentation for a function has five sections: a “brief” section, “description” section, a “parameter descriptions” section, a “return value description” section, and a “see also” section..  Write the sections in that order.  The parameter descriptions, return description, see also, and brief sections each begin with a special identifier.  Here is an example:

/// \brief Tests if a point is inside a rectangle.

/// 

/// Checks to see if <testPoint> is inside <testRect> or on

/// its border.

///    

/// \param testPoint The point to check.

/// \param testRect The rectangle to test against.

/// \return True if <testPoint> is inside <testRect>

/// 
and false otherwise.

///    \sa CPoint, CRect

bool IsInRect( const CPoint& testPoint, const CRect& testRect ) …

Miscellaneous

The text is treated as HTML, so it is possible to include any specific HTML formatting desired.  See the Doxygen help for details.

Doxygen Command Summary

These commands are commonly used and illustrated in various examples throughout this document.  Refer to the Doxygen users manual for a complete description of these and other commands.

Sharp braces <sharp> indicate an argument of one word.

Round braces (round) indicate an argument that extends to the end of the line.

Curly braces {curly} indicate an argument that extends until the next paragraph.

	Commands
	Descriptions

	\param <parameter name> {Description}
	This command describes the parameters for a function.  Multiple commands are necessary to describe multiple parameters.

	\brief {brief description}
	This command allows a brief description to be provided for classes, files, and other sections.

	\sa { references }
	This command inserts a hyperlink to reference another description.

	\return { description of the return value }
	This command provides a description for the return value.

	\throw {Description of what is thrown and why}
	Describes the different types of exceptions that this function can throw.


Good Things To Do
In this section we list various items that, while being standard conformant C++, can cause difficult to detects bugs in the software.  Following these items are not required, and there may be times when exceptions are warranted, but for the most part following these suggestions will result in better code.  The items here are taken from many sources, notably Effective C++, More Effective C++, and Effective STL by Scott Myers, Exceptional C++ and More Exceptional C++ by Herb Sutter, and the C++ User Journal.  These items are all items that I have seen in real production use that have caused real bugs.
· Make all virtual functions private and provide a public interface for it.  Make all base class destructors either virtual and public or non-virtual and protected.

A good discussion of this topic can be found at http://www.gotw.ca/publications/mill18.htm.  

· Always provide a default copy constructor and assignment operator.  While C++ will provide defaults if you don’t, it is better to explicitly create these functions even if the default generated functions do what you want.

· Avoid the “using” keyword.


· Never place code in the global namespace.

· Use boost, use boost, and use boost.

· Use a static checker.

Static checkers are programs like PC-Lint or CodeWizard that perform a more thorough check of the code.  I use PC-Lint and have found it very useful.

· Initialize all class members in a constructor’s initializer list.

· Don’t throw exceptions from destructors.

 
· Don’t use exception specifications.  While the intent is good (document and enforce what exceptions can be thrown from a function), in practice it fails.  The essential problem is that if you violate the exception specification your application will terminate immediately.  For example:

void foo()
{
     if( false )
     {
          do_something();
     }
     else
     {
          throw std::runtime_error(“error”);
     }
}

void bar() 
{
     foo();
}

void main()
{
     try
     {
          bar();
     }
     catch(…)
     {
     }
}

In this code sample, the call to bar() will always throw the exception std::runtime_error (since foo throws std::runtime_error and bar doesn’t handle it, the exception propagates out of bar).  The catch statement in main then handles this exception.

If we make a minor change to bar:

void bar()  throw()
{
     foo();
}

Here we are specifying that bar will not throw anything.  However, since foo does throw an exception, we are violating our contract.  When the C++ runtime environment detects this it will abort the program, even though we would have handled the exception in main.  This is the fundamental reason not to use exception specifications; it causes your program to abort without allowing you to handle the exceptional condition.


· After deleting a pointer, set it to NULL.  This helps detect and eliminate use of previously deleted objects.  Use of the now NULL pointer will cause a crash and the debugger will take you to the code using the already deleted object.


· Initialize all class members in the order declared.

This item often does not cause problems, but it can.  Consider the following code:

class A
{
     double* m_array;
     int m_size;

     A(int size) :
          m_size(size),
          m_array(new double[m_size])
     {
     }
};

C++ required that m_array is initialized before m_size, and so most compilers automatically reorder your initializer list to initialize m_array first.  However, m_size hasn’t been initialized yet so you get garbage.  The correct way would be:

class A
{
     double* m_array;
     int m_size;

     A(int size) :
          m_array(new double[size]),
          m_size(size),
     {
     }
};


· Don’t use automatic conversions (through constructors and implicit conversions).



� C++ according to Blake

� Exceptional C++, Item 16

� Exceptional C++, Item 39



