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1. INTRODUCTION

MINRES-QLP [Choi 2006; Choi et al. 2011] is a Krylov subspace method for comput-
ing the minimum-length and minimum-residual solution (also known as the pseu-
doinverse solution) x to the following linear systems or least-squares (LS) problems:

solve Ax = b, (1)

minimize ‖x‖2 s.t. Ax = b, (2)

minimize ‖x‖2 s.t. x ∈ arg min
x
‖Ax− b‖2, (3)

where A is an n × n symmetric or Hermitian matrix and b is a real or complex
n-vector. Problems (1) and (2) are treated as special cases of (3). The matrix A
is usually large and sparse, and it may be singular.1 It is defined by means of a
user-written subroutine Aprod, whose function is to compute the product y = Av
for any given vector v.

Let xk be the solution estimate associated with MINRES-QLP’s kth iteration,
with residual vector rk = b − Axk. Without loss of generality, we define x0 = 0.
MINRES-QLP provides recurrent estimates of ‖xk‖, ‖rk‖, ‖Ark‖, ‖A‖, cond(A),
and ‖Axk‖, which are used in the stopping conditions.

Other iterative methods specialized for symmetric systems Ax = b are the
conjugate-gradient method (CG) [Hestenes and Stiefel 1952], SYMMLQ and MIN-

RES [Paige and Saunders 1975], and SQMR [Freund and Nachtigal 1994]. Each
method requires one product Avk at each iteration for some vector vk. CG is
intended for positive-definite A, whereas the other solvers allow A to be indefinite.

If A is singular, SYMMLQ requires the system to be consistent, whereas MINRES

returns an LS solution for (3) but generally not the min-length solution; see [Choi
2006; Choi et al. 2011] for examples. SQMR without preconditioning is mathe-
matically equivalent to MINRES but could fail on a singular problem. To date,
MINRES-QLP is probably the most suitable CG-type method for solving (3).

In some cases the more established symmetric methods may still be preferable.

(1) If A is positive definite, CG minimizes the energy norm of the error ‖x− xk‖A
in each Krylov subspace and requires slightly less work per iteration. However,
CG, MINRES, and MINRES-QLP do reduce ‖x− xk‖A and ‖x− xk‖ monoton-
ically. Also, MINRES and MINRES-QLP often reduce ‖rk‖ to the desired level
significantly sooner than does CG, and the backward error for each xk decreases
monotonically. (See Section 2.4 and [Fong 2011; Fong and Saunders 2012].)

(2) If A is indefinite but Ax = b is consistent (e.g., if A is nonsingular), SYMMLQ

requires slightly less work per iteration, and it reduces the error norm ‖x−xk‖
monotonically. MINRES and MINRES-QLP usually reduce ‖x−xk‖ [Fong 2011;
Fong and Saunders 2012].

(3) If A is indefinite and well-conditioned and Ax = b is consistent, MINRES might
be preferable to MINRES-QLP because it requires the same number of iterations
but slightly less work per iteration.

1A further input parameter σ (a real shift parameter) causes MINRES-QLP to treat “A” as if

it were A− σI. For example, “singular A” really means that A− σI is singular.
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(4) MINRES and MINRES-QLP require a preconditioner to be positive definite.
SQMR might be preferred if A is indefinite and an effective indefinite precon-
ditioner is available.

MINRES-QLP has two phases. Iterations start in the MINRES phase and trans-
fer to the MINRES-QLP phase when a subproblem (see (8) below) becomes ill-
conditioned by a certain measure. If every subproblem is of full rank and well-
conditioned, the problem can be solved entirely in the MINRES phase, where the
cost per iteration is essentially the same as for MINRES. In the MINRES-QLP phase,
one more work vector and 5n more multiplications are used per iteration.

MINRES-QLP described here is implemented in FORTRAN 90 for real double-
precision problems. It contains no machine-dependent constants and does not need
to use features such as polymorphism from FORTRAN 2003 or 2008. It requires an
auxiliary subroutine Aprod and, if a preconditioner is supplied, a second subrou-
tine Msolve. We also provide a complex implementation for Hermitian problems.
Precision other than double can be obtained by changing one line of code. The
programs can be compiled with FORTRAN 90 and FORTRAN 95 compilers such as
g95 and gfortran.

We also maintain a MATLAB implementation capable of solving both real and
complex problems. All implementations are available at [SOL] or the first author’s
homepage, http://home.uchicago.edu/sctchoi/.

Table I lists the main notation used.

Table I. Key notation.

‖ · ‖ matrix or vector two-norm

Ā Ā = A− σI (see also σ below)

cond(A) condition number of A with respect to two-norm = max |λi|
minλi 6=0 |λi|

ei ith unit vector
` index of the last Lanczos iteration when β`+1 = 0
n order of A
null(A) null space of A defined as {x ∈ Rn | Ax = 0}
range(A) column space of A defined as {Ax | x ∈ Rn}
T (right superscript to a vector or a matrix) transpose
x† unique minimum-length least-squares solution of problem (3)
Kk(A, b) kth Krylov subspace defined as span{b, Ab, . . . , Ak−1b}
ε machine precision
σ real scalar shift to diagonal of A

1.1 Least-Squares Methods

Further existing methods that could be applied to (3) are CGLS and LSQR [Paige
and Saunders 1982a; Paige and Saunders 1982b], LSMR [Fong and Saunders 2011],
and GMRES [Saad and Schultz 1986], all of which reduce ‖rk‖ monotonically. The
first three methods would require two products Avk and Auk each iteration and
would be generating points in less favorable subspaces. GMRES requires only prod-
ucts Avk and could use any nonsingular (possibly indefinite) preconditioner. It
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Table II. Comparison of various least-squares solvers on n × n systems (3). Storage refers to

memory required by working vectors in the solvers. Work counts number of floating-point multi-
plications. On inconsistent systems, all solvers below except MINRES and GMRES with restart

parameter m return the minimum-length LS solution (assuming no preconditioner).

Solver Storage Work per Products per Systems to Solve per
Iteration Iteration Iteration with Preconditioner

MINRES 7n 9n 1 1
MINRES-QLP 7n–8n 9n–14n 1 1

GMRES(m) (m+ 2)n (m+ 3 + 1/m)n 1 1
CGLS 4n 5n 2 2
LSQR 5n 8n 2 2

LSMR 6n 9n 2 2

needs increasing storage and work each iteration, perhaps requiring restarts, but it
could be more effective than MINRES or MINRES-QLP (and the other solvers) if few
total iterations were required. Table II summarizes the computational requirements
of each method.

1.2 Regularization

We do not discourage using CGLS, LSQR, or LSMR if the goal is to regularize an
ill-posed problem using a small damping factor λ > 0 as follows:

min
x

∥∥∥∥[AλI
]
x−

[
b

0

]∥∥∥∥. (4)

However, this approach destroys the original problem’s symmetry. The normal
equation of (4) is (A2 +λ2I)x = Ab, which suggests that a diagonal shift to A may
well serve the same purpose in some cases. For symmetric positive-definite A, Ā =
A−σI with σ < 0 enjoys a smaller condition number. When A is indefinite, a good
choice of σ may not exist, for example, if the eigenvalues of A were symmetrically
positioned around zero. When this symmetric form is applicable, it is convenient in
MINRES and MINRES-QLP; see (3), (5), and (15). We also remark that MINRES and
MINRES-QLP produce good estimates of the largest and smallest singular values of
Ā (via diagonal values of Rk or Lk in (7) and (11); see [Choi et al. 2011, Section 4]).

Three other regularization tools in the literature (see [Golub and Van Loan 1996,
Sections 12.1.1-12.1.3] and [Hansen 1998]) are LSQI, cross-validation, and L-curve.
LSQI involves solving a nonlinear equation and is not immediately compatible with
the Lanczos framework. Cross-validation takes one row out at a time and thus does
not preserve symmetry. The L-curve approach for a CG-type method takes iteration
k as the regularization parameter [Hansen 1998, Chapter 8] if both ‖rk‖ and ‖xk‖
are monotonic. By design, ‖rk‖ is monotonic in MINRES and MINRES-QLP, and so
is ‖xk‖ when Ā is positive definite [Fong 2011]. Otherwise, we prefer the condition
L-curve approach in [Calvetti et al. 2000], which graphs cond(Tk) against ‖rk‖. Yet

another L-curve feasible in MINRES-QLP is ‖x(2)k−2‖ against ‖rk‖, since the former
is also monotonic (but available two iterations in lag); see Section 2.4.
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2. MATHEMATICAL BACKGROUND

Notation and details of algorithmic development from [Choi 2006; Choi et al. 2011]
are summarized here. As noted earlier, “A” in (1)–(3) is treated as A− σI.

2.1 Lanczos Process

MINRES and MINRES-QLP use the symmetric Lanczos process [Lanczos 1950] to
reduce A to a tridiagonal form Tk. The process is initialized with v0 ≡ 0, β1 = ‖b‖,
and β1v1 = b. After k steps of the tridiagonalization, we have produced

pk = Avk − σvk, αk = vTkpk, βk+1vk+1 = pk − αkvk − βkvk−1, (5)

where we choose βk > 0 to give ‖vk‖ = 1. Numerically,

pk = Avk − σvk − βkvk−1, αk = vTkpk, βk+1vk+1 = pk − αkvk
is slightly better than (5) [Paige 1976], but we can express (5) in matrix form:

Vk ≡
[
v1 · · · vk

]
, AVk = Vk+1Tk, Tk ≡

[
Tk

βk+1e
T
k

]
, (6)

where Tk = tridiag(βi, αi, βi+1), i = 1, . . . , k. In exact arithmetic, the Lanczos
vectors in the columns of Vk are orthonormal, and the process stops with k = `
when β`+1 = 0 for some ` ≤ n, and then AV` = V`T`. The rank of T` could be ` or
`− 1 (see Theorem 2.2).

2.2 MINRES Phase

MINRES-QLP typically starts with a MINRES phase, which applies a series of re-
flectors Qk to transform Tk to an upper triangular matrix Rk:

Qk
[
Tk β1e1

]
=

[
Rk tk
0 φk

]
≡
[
Rk t̄k+1

]
, (7)

where

Qk = Qk,k+1

[
Qk−1

1

]
, Qk,k+1 ≡

[
Ik−1

ck sk
sk −ck

]
.

In the kth step, Qk,k+1 is effectively a Householder reflector of dimension 2 [Tre-
fethen and Bau 1997, Exercise 10.4], and its action including its effect on later
columns of Tj , k < j ≤ `, is compactly described by[

ck sk
sk −ck

][
γk δk+1 0

βk+1 αk+1 βk+2

∣∣∣∣ φk−10

]
=

[
γ
(2)
k δ

(2)
k+1 εk+2

0 γk+1 δk+2

∣∣∣∣ τkφk
]
,

where the superscripts with numbers in parentheses indicate the number of times
the values have been modified. The kth solution approximation to (3) is then
defined to be xk = Vkyk, where yk solves the subproblem

yk = arg min
y∈Rk

‖Tky − β1e1‖ = arg min
y∈Rk

‖Rky − t̄k+1‖. (8)

When k < `, Rk is nonsingular and the unique solution of the above subproblem
satisfies Rkyk = tk. Instead of solving for yk, MINRES solves RTkD

T
k = V Tk by
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forward substitution, obtaining the last column dk of Dk at iteration k. At the
same time, it updates xk ∈ Kk(A, b) (see Table I for definition) via x0 ≡ 0 and

xk = Vkyk = DkRkyk = Dktk = xk−1 + τkdk, τk ≡ eTk tk, (9)

where one can show using Vk = DkRk that dk = (vk − δ(2)k dk−1 − εkdk−2)/γ
(2)
k .

2.3 MINRES-QLP Phase

The MINRES phase transfers to the MINRES-QLP phase when an estimate of the
condition number of A exceeds an input parameter trancond . Thus, trancond > 1/ε
leads to MINRES iterates throughout (where ε ≈ 10−16 denotes the floating-point
precision), whereas trancond = 1 generates MINRES-QLP iterates from the start.

Suppose for now that there is no MINRES phase. Then MINRES-QLP applies left
reflections as in (7) and a further series of right reflections to transform Rk to a
lower triangular matrix Lk = RkPk, where

Pk = P1,2 P1,3P2,3 · · · Pk−2,kPk−1,k,

Pk−2,k =

[
Ik−3

ck2 sk2
1

sk2 −ck2

]
, Pk−1,k =

[
Ik−2

ck3 sk3
sk3 −ck3

]
.

In the kth step, the actions of Pk−2,k and Pk−1,k are compactly described byγ
(5)
k−2 εk

ϑk−1 γ
(4)
k−1 δ

(2)
k

γ
(2)
k


ck2 sk2

1

sk2 −ck2

1

ck3 sk3
sk3−ck3



=

γ
(6)
k−2

ϑ
(2)
k−1 γ

(4)
k−1 δ

(3)
k

ηk γ
(3)
k


1

ck3 sk3

sk3−ck3

 =

γ
(6)
k−2

ϑ
(2)
k−1 γ

(5)
k−1

ηk ϑk γ
(4)
k

. (10)

The kth approximate solution to (3) is then defined to be xk = Vkyk = VkPkuk =
Wkuk, where uk solves the subproblem

uk ≡ arg min
u
‖u‖ s.t. u ∈ arg min

u∈Rk

∥∥∥∥[Lk0
]
u−

[
tk
φk

]∥∥∥∥ . (11)

For k < `, Rk and Lk are nonsingular because Tk has full column rank by Lemma 2.1
below. It is only when k = ` and b /∈ range(A) that Rk and Lk are singular with rank

`− 1 by Theorem 2.2, in which case one can show that ηk = γ
(3)
k = ϑk = γ

(4)
k = 0

in (10) and L` =
[
L`−1 0
0 0

]
with L`−1 nonsingular. In any case, we need to solve only

the nonsingular lower triangular systems Lkuk = tk or L`−1u`−1 = t`−1. Then, uk
and yk = Pkuk are the min-length solutions of (11) and (8), respectively.

MINRES-QLP updates xk−2 to obtain xk by short-recurrence orthogonal steps:

x
(2)
k−2 = x

(2)
k−3 + µ

(3)
k−2w

(4)
k−2, where x

(2)
k−3 ≡W

(4)
k−3u

(3)
k−3, (12)

xk = x
(2)
k−2 + µ

(2)
k−1w

(3)
k−1 + µkw

(2)
k , (13)

where wj refers to the jth column of Wk = VkPk and µi is the ith element of uk.

Argonne National Laboratory Preprint ANL/MCS-P3027-0812.
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If this phase is preceded by a MINRES phase of k iterations (0 < k < `), it
starts by transferring the last three vectors dk−2, dk−1, dk to wk−2, wk−1, wk,

and the solution estimate xk from (9) to x
(2)
k−2 in (12). This needs the last two

rows of Lkuk = tk (to give µk−1, µk) and the relations Wk = DkLk and x
(2)
k−2 =

xk − µk−1wk−1 − µkwk. The cheaply available right reflections Pk and the bottom
right 3× 3 submatrix of Lk (i.e., the last term in (10)) need to have been saved in
the MINRES phase in order to facilitate the transfer.

2.4 Norm Estimates and Stopping Conditions

Short-term recurrences are used to estimate the following quantities (where we
assume σ = 0 for simplicity):

‖rk‖ ≈ φk = φk−1sk, φ0 = ‖b‖ (φk ↘)

‖Ark‖ ≈ ψk = φk‖[γk+1 δk+2]‖, (ψ` = 0)

‖x(2)k ‖ ≈ χ
(2)
k−2 = ‖[χ(2)

k−3 µ
(3)
k−2]‖, χ−2 = χ−1 = 0 (χ

(2)
k−2 ↗)

‖xk‖ ≈ χk = ‖[χ(2)
k−2 µ

(2)
k−1 µk]‖, χ0 = 0 (χ` = ‖x†‖)

‖Axk‖ ≈ ωk = ‖[ωk−1 τk]‖, ω0 = 0 (ωk ↗)

‖A‖ ≈ Ak = max
{
Ak−1, ‖Tkek‖, γk

}
, A0 = 0 (Ak ↗ ‖A‖)

cond(A) ≈ κk = Ak/γk, κ0 = 1 (κk ↗ cond(A))

where γk and γ
k

are the largest and smallest diagonals of Lk in absolute value. The
up (down) arrows in parentheses indicate that the associated quantities increase
(decrease) monotonically. The last two estimates tend to their targets from below;
see [Choi 2006; Choi et al. 2011] for derivation.

MINRES-QLP has 14 possible stopping conditions in five classes that use the above
estimates and optional input parameters itnlim, rtol , Acondlim, and maxxnorm:

(C1) From Lanczos and the QLP factorization:

k = itnlim; βk+1 < ε;
∣∣γ(4)k

∣∣ < ε;

(C2) Normwise relative backward errors (NRBE) [Paige and Strakoš 2002]:

‖rk‖/ (‖A‖‖xk‖+ ‖b‖) ≤ max(rtol , ε); ‖Ark‖/ (‖A‖‖rk‖) ≤ max(rtol , ε);

(C3) Regularization attempts:

cond(A) ≥ min(Acondlim, 0 .1/ε); ‖xk‖ ≥ maxxnorm;

(C4) Degenerate cases:

β1 = 0 ⇒ b = 0 ⇒ x = 0 is the solution;

β2 = 0 ⇒ v2 = 0 ⇒ Ab = α1b,

i.e., b and α1 are an eigenpair of A, and x = b/α1 solves Ax = b;

(C5) Erroneous inputs:

A not symmetric; M not symmetric; M not positive definite;

Argonne National Laboratory Preprint ANL/MCS-P3027-0812.
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whereM is a preconditioner to be described in the next section. For symmetry
of A, it is not practical to check eTiAej = eTjAei for all i, j = 1, . . . , n. Instead,

we statistically test whether z = |xT(Ay) − yT(Ax)| is sufficiently small for
two nonzero n-vectors x and y (e.g., each element in the vectors is drawn from
the standard normal distribution). For positive definiteness of M , since M is
positive definite if and only if M−1 is positive definite, we simply test that
zTkM

−1zk = zTkqk > 0 each iteration (see Section 3).

We find that the recurrence relations for φk and ψk hold to high accuracy. Thus
xk is an acceptable solution of (3) if the computed value of φk or ψk is suitably
small according to the NRBE tests in class (C2) above. When a condition in (C3)
is met, the final xk may or may not be an acceptable solution.

The class (C1) tests for small βk+1 and γ
(4)
k are included in the unlikely case in

practice that the theoretical Lanczos termination occurs. Ideally one of the NRBE
tests should cause MINRES-QLP to terminate. If not, it is an indication that the
problem is very ill-conditioned, in which case the regularization and preconditioning
techniques of Sections 1.2 and 3 may be helpful.

2.5 Two Theorems

We complete this section by presenting two theorems from [Choi et al. 2011] with
slightly simpler proofs.

Lemma 2.1. rank(Tk) = k for all 1 ≤ k < `.

Proof. For 1 ≤ k < ` we have β2, . . . , βk+1 > 0 by definition. Hence Tk has full
column rank.

Theorem 2.2. T` is nonsingular if and only if b ∈ range(A). Furthermore,
rank(T`) = `− 1 if b /∈ range(A).

Proof. We use AV` = V`T` twice. First, if T` is nonsingular, we can solve
T`y` = β1e1 and then AV`y` = V`T`y` = V`β1e1 = b. Conversely, if b ∈ range(A),
then range(V`) ⊆ range(A). Suppose T` is singular. Then there exists z 6= 0 such
that V`T`z = AV`z = 0. That is, 0 6= V`z ∈ null(A). But this is impossible because
V`z ∈ range(A) and null(A) ∩ range(V`) = 0. Thus, T` must be nonsingular.

We have shown that if b /∈ range(A), T` =
[
T`−1

β`e`−1

α`

]
is singular, and therefore

` > rank(T`) ≥ rank(T`−1) = `− 1 by Lemma 2.1. Therefore, rank(T`) = `− 1.

By Lemma 2.1 and Theorem 2.2 we are assured that the QLP decomposition
without column pivoting [Stewart 1999; Choi et al. 2011] for Tk is rank-revealing,
which is a necessary precondition for solving a least-squares problem.

Theorem 2.3. In MINRES-QLP, x` is the minimum-length solution of (3).

Proof. y` comes from the min-length LS solution of T`y` ≈ β1e1 and thus
satisfies the normal equation T 2

` y` = T`β1e1 and y` ∈ range(T`). Now x` = V`y`
and Ax` = AV`y` = V`T`y`. Hence A2x` = AV`T`y` = V`T

2
` y` = V`T`β1e1 = Ab.

Thus x` is an LS solution of (3). Since y` ∈ range(T`), y` = T`z for some z, and so
x` = V`y` = V`T`z = AV`z ∈ range(A) is the min-length LS solution of (3).

Argonne National Laboratory Preprint ANL/MCS-P3027-0812.
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3. PRECONDITIONING

Iterative methods can be accelerated if preconditioners are available and well-
chosen. For MINRES-QLP, we want to choose a symmetric positive-definite ma-
trix M to solve a nonsingular system (1) by implicitly solving an equivalent sym-

metric consistent system M−
1
2AM−

1
2 x̄ = b̄, where M

1
2x = x̄, b̄ = M−

1
2 b, and

cond(M−
1
2AM−

1
2 ) � cond(A). This two-sided preconditioning preserves symme-

try. Thus we can derive preconditioned MINRES-QLP by applying MINRES-QLP to
the equivalent problem and setting x = M−

1
2 x̄.

With preconditioned MINRES-QLP, we can solve a singular consistent system (2),
but we will obtain a least-squares solution that is not necessarily the minimum-
length solution (unless M = I). For inconsistent systems (3), preconditioning
alters the least-squares norm to ‖ · ‖M−1 , and the solution is of minimum length in
the new norm space. We refer readers to [Choi et al. 2011, Section 7] for a detailed
discussion of various approaches to preserving the two-norm “minimum length.”

To derive MINRES-QLP, we define

zk = βkM
1
2 vk, qk = βkM

− 1
2 vk, so that Mqk = zk. (14)

Then βk = ‖βkvk‖ = ‖M− 1
2zk‖ = ‖zk‖M−1 = ‖qk‖M =

√
qTkzk, where the square

root is well defined because M is positive definite, and the following expressions
replace the quantities in (5) in the Lanczos iterations:

pk = Aqk − σqk, αk =
1

β2
k

qTkpk, zk+1 =
1

βk
pk −

αk
βk
zk −

βk
βk−1

zk−1. (15)

We also need to solve the system Mqk = zk in (14) at each iteration.

In the MINRES phase, we define d̄k = M−
1
2 dk and update the solution of the

original problem (1) by

d̄k =
( 1

βk
qk − δ(2)k d̄k−1 − εkd̄k−2

)/
γ
(2)
k , xk = M−

1
2 x̄k = xk−1 + τkd̄k.

In the MINRES-QLP phase, we define W k ≡M−
1
2Wk = (M−

1
2Vk)Pk and update

the solution estimate of problem (1) by orthogonal steps:

w̄k = −(ck2/βk)qk + sk2w̄
(3)
k−2, w̄

(4)
k−2 = (sk2/βk)qk + ck2w̄

(3)
k−2,

w̄
(2)
k = sk3w̄

(2)
k−1 − ck3w̄k, w̄

(3)
k−1 = ck3w̄

(2)
k−1 + sk3w̄k,

x
(2)
k−2 = x

(2)
k−3 + µ

(3)
k−2w̄

(4)
k−2, xk = x

(2)
k−2 + µ

(2)
k−1w̄

(3)
k−1 + µkw̄

(2)
k .

Let r̄k = b̄−M− 1
2 (A−σI)M−

1
2 x̄k = M−

1
2 rk. Then xk = M−

1
2 x̄k is an acceptable

solution of (1) if the computed value of φk ≈ ‖r̄k‖ = ‖rk‖M−1 is sufficiently small.
We can now present our pseudocode in Algorithm 1. The reflectors are imple-

mented in Algorithm 2 SymOrtho(a, b) for real a and b, which is a stable form for
computing r =

√
a2 + b2 ≥ 0 , c = a

r , and s = b
r . The complexity is at most 6 flops

and a square root. Algorithm 1 lists all steps of MINRES-QLP with precondition-
ing. For simplicity, w̄k is written as wk for all relevant k. Also, the output x solves
(A− σI)x ≈ b, but other outputs are associated with the preconditioned system.
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Algorithm 1: Pseudocode of preconditioned MINRES-QLP for solving
(A− σI)x ≈ b. In the right-justified comments, Ã ≡M− 1

2 (A− σI)M−
1
2 .

input: A, b, σ,M

1 z0 = 0, z1 = b, Solve Mq1 = z1, β1 =
√
bTq1, φ0 =β1 [Initialize]

2 w0 = w−1 = 0, x−2 = x−1 = x0 = 0
3 c0,1 =c0,2 =c0,3 =−1, s0,1 =s0,2 =s0,3 =0, τ0 =ω0 =χ−2 =χ−1 =χ0 =0
4 κ0 = 1, A0 = δ1 = γ−1 = γ0 = η−1 = η0 = η1 = ϑ−1 = ϑ0 = ϑ1 = µ−1 = µ0 = 0
5 k = 0

6 while no stopping condition is satisfied do
7 k ← k + 1

8 pk = Aqk − σqk, αk = 1
β2
k
qTkpk [Preconditioned Lanczos]

9 zk+1 = 1
βk
pk − αk

βk
zk − βk

βk−1
zk−1

10 Solve Mqk+1 = zk+1, βk+1 =
√
qTk+1zk+1

11 if k = 1 then ρk = ‖[αk βk+1]‖ else ρk = ‖[βk αk βk+1]‖
12 δ

(2)
k = ck−1,1δk + sk−1,1αk [Previous left reflection...]

13 γk = sk−1,1δk − ck−1,1αk [on middle two entries of Tkek...]
14 εk+1 = sk−1,1βk+1 [produces first two entries in Tk+1ek+1]

15 δk+1 = −ck−1,1βk+1

16 ck1, sk1, γ
(2)
k ← SymOrtho(γk, βk+1) [Current left reflection]

17 ck2, sk2, γ
(6)
k−2 ← SymOrtho(γ

(5)
k−2, εk) [First right reflection]

18 δ
(3)
k = sk2ϑk−1 − ck2δ(2)k , γ

(3)
k = −ck2γ(2)

k , ηk = sk2γ
(2)
k

19 ϑ
(2)
k−1 = ck2ϑk−1 + sk2δ

(2)
k

20 ck3, sk3, γ
(5)
k−1 ← SymOrtho(γ

(4)
k−1, δ

(3)
k ) [Second right reflection...]

21 ϑk = sk3γ
(3)
k , γ

(4)
k = −ck3γ(3)

k [to zero out δ
(3)
k ]

22 τk = ck1φk−1 [Last element of tk]

23 φk = sk1φk−1, ψk−1 = φk−1‖[γk δk+1]‖ [Update ‖r̄k‖, ‖Ãr̄k−1‖]
24 if k = 1 then γmin = γ1 else γmin ← min {γmin, γ

(6)
k−2, γ

(5)
k−1, |γ

(4)
k |}

25 Ak = max {Ak−1, ρk, γ
(6)
k−2, γ

(5)
k−1, |γ

(4)
k |} [Update ‖Ã‖]

26 ωk = ‖[ωk−1 τk]‖, κk ← Ak/γmin [Update ‖Ãxk‖, cond(Ã)]

27 wk = −(ck2/βk)qk + sk2w
(3)
k−2 [Update wk−2, wk−1, wk]

28 w
(4)
k−2 = (sk2/βk)qk + ck2w

(3)
k−2

29 if k > 2 then w
(2)
k = sk3w

(2)
k−1 − ck3wk, w

(3)
k−1 = ck3w

(2)
k−1 + sk3wk

30 if k > 2 then µ
(3)
k−2 = (τk−2 − ηk−2µ

(4)
k−4 − ϑk−2µ

(3)
k−3)/γ

(6)
k−2 [Update µk−2]

31 if k > 1 then µ
(2)
k−1 = (τk−1 − ηk−1µ

(3)
k−3 − ϑ

(2)
k−1µ

(3)
k−2)/γ

(5)
k−1 [Update µk−1]

32 if γ
(4)
k 6= 0 then µk = (τk − ηkµ(3)

k−2 − ϑkµ
(2)
k−1)/γ

(4)
k else µk = 0 [Compute µk]

33 x
(2)
k−2 = x

(2)
k−3 + µ

(3)
k−2w

(3)
k−2 [Update xk−2]

34 xk = x
(2)
k−2 + µ

(2)
k−1w

(3)
k−1 + µkw

(2)
k [Compute xk]

35 χ
(2)
k−2 = ‖[χ(2)

k−3 µ
(3)
k−2]‖ [Update ‖xk−2‖]

36 χk = ‖[χ(2)
k−2 µ

(2)
k−1 µk]‖ [Compute ‖xk‖]

37 x = xk, φ = φk, ψ = φk‖[γk+1 δk+2]‖, χ = χk, A = Ak, ω = ωk
output: x, φ, ψ, χ,A, κ, ω
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Algorithm 2: Algorithm SymOrtho.

input: a, b

1 if b = 0 then s = 0, r = |a|
2 if a = 0 then c = 1 else c = sign(a)
3 else if a = 0 then
4 c = 0, s = sign(b), r = |b|
5 else if |b| ≥ |a| then
6 τ = a/b, s = sign(b)/

√
1 + τ2, c = sτ , r = b/s

7 else if |a| > |b| then
8 τ = b/a, c = sign(a)/

√
1 + τ2, s = cτ , r = a/c

output: c, s, r

4. KEY FORTRAN 90 DESIGN FEATURES

In this section we describe the key features of our FORTRAN implementations. For
an accessible reference on the language syntax in various FORTRAN releases, we
refer readers to [Chivers and Sleightholme 2006].

minresqlpDataModule.f90 zminresqlpDataModule.f90

mm_ioModule.f90

minresqlpModule.f90

minresqlpTestModule.f90minresqlpTestProgram.f90

zminresqlpModule.f90

zminresqlpTestModule.f90 zminresqlpTestProgram.f90

minresqlpBlasModule.f90 minresqlpReadMtxModule.f90 zminresqlpBlasModule.f90

Fig. 1. FORTRAN 90 source files and their dependencies. Filenames boxed in broken lines are
optional, and the corresponding files are used mainly for testing and demonstration.

Our FORTRAN 90 package contains the following files for symmetric problems
with the first three files forming the core. Their dependencies are depicted in
Figure 1.

1. minresqlpDataModule.f90: defines integer and real precision and constants
used in other modules

2. minresqlpBlasModule.f90: packages FORTRAN 90 versions of some BLAS
functions [BLAS]

3. minresqlpModule.f90: implements MINRES-QLP with preconditioning

4. mm ioModule.f90 and minresqlpReadMtxModule.f90: packages subroutines for
reading Matrix Market files [Matrix Market] adapted from [Burkardt]

5. minresqlpTestModule.f90: illustrates how MINRES-QLP can call Aprod or
Msolve with a short fixed parameter list, even if it needs arbitrary other data

6. minresqlpTestProgram.f90: contains the main driver program for unit tests

7. Makefile: compiles the FORTRAN source files via the Unix command make
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Listing 1. Partial FORTRAN 90 code listing of minresqlpDataModule.
1 module minresqlpDataModule
2 implicit none

4 intr ins ic : : s e l e c t e d r e a l k i n d

6 integer , parameter , public : : dp = s e l e c t e d r e a l k i n d (15)

7 real (kind=dp) , parameter , public : : z e ro = 0 .0 dp , one = 1 .0 dp

8 end module minresqlpDataModule

8. readme.txt: contains information about software license, other files in the pack-
age, and program compilation and execution.

The counterparts of these programs for Hermitian problems have the same filenames
prefixed with the letter “z”.

We review and step through the code in the following subsections. The line num-
bers in Listings 1–3 are used for reference only and do not correspond to actual line
numbers in the source code. The vertical dots in Listing 2 lines 35 and 43 indicate
omitted code of one or more lines. We also note that FORTRAN 90 keywords are
displayed in bold in the listings, and that comments are marked with exclamation
marks in italics.

4.1 Overloaded Intrinsic Operators and BLAS Procedures

For standard vector operations, we simply apply the intrinsic arithmetic and assign-
ment operators±,×,=. In addition we adopt a FORTRAN 90 translation [Burkardt]
of two external level-1 BLAS functions ddot and dnrm2 [BLAS] for computing inner
products and two norms of vectors, which take care to avoid undesirable overflow
or underflow.

In minresqlpModule, the line “use minresqlpBlasModule” can be omitted if
the code is already linked to a BLAS library.

4.2 Using Modules and Interface and Passing User-Defined Subroutines to MINRESQLP

In our FORTRAN 90 implementation, we use modules instead of the obsolete FOR-

TRAN 77 COMMON blocks for grouping programs units and data together and
controlling their availability to other program units. A module can use public

data and subroutines from other modules (by declaring an interface block), share
its own public data and subroutines with other program units, and hide its own
private data and subroutines from being used by other program units. We can
also use modules to package procedures.

In Listing 2, line 2, module minresqlpModule uses the external public constant
dp from minresqlpDataModule. From line 9 onwards, minresqlpModule defines a
public subroutine MINRESQLP, where we implement MINRES-QLP in Algorithm 1.

A FORTRAN subroutine may have multiple and optional input and output argu-
ments, which transfer information to and from a calling program. MINRESQLP has
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Listing 2. Partial code listing of subroutine MINRESQLP in minresqlpModule.
1 module minresqlpModule
2 use minresqlpDataModule , only : dp , one , ze ro
3 use minresqlpBlasModule , only : dnrm2 , ddot

5 implicit none

7 public : : MINRESQLP, SYMORTHO
8 contains
9 subroutine MINRESQLP( &

10 n , Aprod , b , s h i f t , Msolve , d i s ab l e , nout , &
11 i tn l im , r t o l , maxxnorm , trancond , Acondlim , &
12 x , i s top , i tn , rnorm , Arnorm , xnorm , Anorm , Acond )

14 ! Inputs
15 integer ( ip ) , intent ( in ) : : n
16 real (dp) , intent ( in ) : : b (n)
17 integer ( ip ) , intent ( in ) , optional : : i tn l im , nout
18 logical , intent ( in ) , optional : : d i s a b l e
19 real (dp) , intent ( in ) , optional : : s h i f t
20 real (dp) , intent ( in ) , optional : : r t o l , maxxnorm ,

trancond , Acondlim

22 ! Outputs
23 real (dp) , intent (out ) : : x (n)
24 integer ( ip ) , intent (out ) , optional : : i s top , i t n
25 real (dp) , intent (out ) , optional : : rnorm , Arnorm , xnorm ,

Anorm , Acond

28 interface
29 subroutine Aprod (n , x , y ) ! y := Ax
30 use minresqlpDataModule
31 integer , intent ( in ) : : n
32 real (dp) , intent ( in ) : : x (n)
33 real (dp) , intent (out ) : : y (n)
34 end subroutine Aprod

35

...
36 end interface

38 intr ins ic : : abs , ep s i l on , s q r t

40 ! Local arrays and variables
41 real (dp) : : r1 (n) , r2 (n) , v (n) , w(n) , wl (n) , &

43

...
44 end subroutine MINRESQLP

45

...
46 end module minresqlpModule
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Listing 3. Partial code listing of minresqlpTestModule.
1 module minresqlpTestModule
2 use minresqlpDataModule , only : dp
3 use minresqlpModule , only : MINRESQLP

5 implicit none

7 public : : m in r e sq lp t e s t
8 private : : Aprod , Msolve

10 ! DYNAMIC WORKSPACE DEFINED HERE.
11 ! It is allocated in minresqlptest and used by Aprod or Msolve.

13 real (dp) , allocatable : : d ( : ) !Defines diagonal matrix D.
14 real (dp) : : Ash i f t !Shift diagonal elements of D in Msolve.
15 real (dp) : : Mpert !Perturbation to D in Msolve
16 ! to avoid having an exact preconditioner.
17 contains
18 subroutine Aprod (n , x , y )

20 integer , intent ( in ) : : n
21 real (dp) , intent ( in ) : : x (n)
22 real (dp) , intent (out ) : : y (n)

24 integer : : i

26 do i = 1 , n
27 y ( i ) = d( i ) ∗x ( i )
28 end do

30 end subroutine Aprod

32

...

34 subroutine minre sq lp t e s t ( n , precon , s h i f t , pertM , nout )

35

...
36 ca l l MINRESQLP(n , Aprod , b , s h i f t , Msolve , d i s ab l e , &
37 nout , i tn l im , r t o l , maxxnorm , trancond , Acondlim , &
38 x , i s top , i tn , rnorm , Arnorm , xnorm , Anorm , Acond )

40

...
41 end subroutine minre sq lp t e s t
42 end module minresqlpTestModule
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a total of 20 arguments (see lines 9-12). The data types and intent of these argu-
ments are declared in lines 15-25. For example, the first argument n in line 15 is
an input integer, whereas x(n) in line 23 is an output n-vector of double precision.

Two input arguments Aprod and Msolve are external user-defined subroutines
(Listing 3, lines 8 and 18-32) being passed into MINRESQLP as inputs—we recom-
mend they be private for data integrity. The subroutine Aprod defines the matrix
A as an operator (in Algorithm 1, line 8). For a given vector x, the FORTRAN

statement call Aprod(n, x, y) must return the product y = Ax without alter-
ing the vector x. The subroutine Msolve is optional, and it defines a symmetric
positive-definite matrix as an operator M that serves as a preconditioner (line 10
in Algorithm 1). For a given vector y, the FORTRAN statement call MSolve(n,

y, x) must solve the linear system Mx = y without altering the vector y. To
provide the compiler the necessary information about these private subroutines
defined in minresqlpTestModule, an interface block in subroutine MINRESQLP is
declared (lines 28-36 in Listing 2), which essentially replicates the headers of Aprod
and Msolve in minresqlpTestModule (lines 18-32 in Listing 3).

MINRESQLP is called by the public routine minresqlptest defined in module
minresqlpTestModule (see lines 7, 34-41 in Listing 3). Since MINRESQLP is public
(Listing 2, line 7), minresqlpTestModule can simply use it (Listing 3, line 3). We
have not listed details of minresqlptest, but it calls MINRESQLP with Aprod and
Msolve passed as parameters (Listing 3, line 36).

We note that subroutine arrays and variables such as r1(n) in Listing 2, line 41,
and i in Listing 3, line 24, are by default private and not accessible to other program
units. In contrast, module arrays and variables are by default public and accessible
to other program units. We have marked d(:), Ashift, Mpert as private in
Listing 3, lines 13–15, in order to make them accessible to only the subroutines
minresqlptest, Aprod, and Msolve in the containing module but not outside.

To summarize, we have described and provided a pattern that allows MINRES-

QLP users to solve different problems by simply editing minresTestModule (and
possibly the main program minresTestProgram, which calls minresqlptest). Users
do not need to change MINRESQLP as long as the header of subroutines Aprod and
Msolve stay the same in minresTestModule. If necessary, local arrays or variables
such as d(:) can be used instead of additional input arguments to define these
operators. In this way, users can make the data A and M known to MINRESQLP but
hidden and thus secure from other programs.

Our design spares users from implementing reverse communication, in which the
solver would return control to the calling program whenever Aprod or Msolve were
to be invoked. (While reverse communication is widely used in scientific comput-
ing with FORTRAN 77, the resulting code usually appears formidable and unrec-
ognizable from the original pseudocode; see [Dongarra et al. 1995] and [Oliveira
and Stewart 2006] for two examples of CG and numerical integration coded in
FORTRAN 77 and 90, respectively.) Our MINRES-QLP implementation achieves
the purpose of reverse communication while preserving code readability and thus
maintainability. The FORTRAN 90 module structure allows a user’s Ax products
and Mx = y solves to be implemented outside MINRES-QLP in the same way that
MATLAB’s function handles operate.
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4.3 Unit Testing

Unit testing is an important software development strategy that cannot be overem-
phasized, especially in the scientific computing communities. Unit testing usually
consists of multiple small and fast but specific and illuminating test cases that check
whether the code behaves as designed. Software development is incremental, and
errors (also known as bugs) are often found over time. Adding new functionali-
ties or fixing errors often breaks the code for some earlier successful test cases. It
is therefore critical to expand the test cases and to ensure that all unit tests are
executed with expected results every time a key program unit is updated.

In our development of FORTRAN 90 MINRES-QLP, we have created a suite of 117
test cases including singular matrices representative of real-world applications [Fos-
ter 2009; Davis and Hu 2011]. The test program outputs results to MINRESQLP.txt.
If users need to modify subroutine MINRESQLP, they can run these test cases and
search for the word “appear” in the output file to check whether all tests are re-
ported to be successful. For more sophisticated unit testing frameworks employed
in large-scale scientific software development, see [O’Boyle et al. 2008].

4.4 Miscellaneous Issues

The complex program units for Hermitian linear systems and LS problems are
similar to the real ones, and thus we will not go into detail. Many variables of type
real(dp) are changed to complex(dp).

To use a different precision throughout the program units, MINRES-QLP users
can simply edit the input argument value of dp in minresqlpDataModule, line 6.

In the main subroutine MINRESQLP, we provide a logical parameter debug as a
diagnostic tool; when it is true, variable values are printed to the standard output.

5. INPUTS, OUTPUTS, AND NUMERICAL EXAMPLES

Subroutine MINRESQLP contains the core implementation of MINRES-QLP and has
12 input parameters documented in the code as well as in Table III. It uses seven
local n-vectors and returns a computed solution x as one of the eight outputs.
Mandatory inputs are n, Aprod, and b. All outputs other than x are optional. If
an input is optional, MINRES-QLP prescribes a default value. It is well known
that careful choice of parameter values is critical in the convergence behavior of
iterative solvers. While the default parameter values in MINRES-QLP work well
in most tests, they may need to be fine-tuned by trial and error, and for some
applications it may be worthwhile to implement full or partial reorthogonalization
of the Lanczos vectors [Simon 1984].

Table III: Input parameters in subroutine MINRES-QLP.

Input Definition

n The dimension of the symmetric matrix or operator A.
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Table III: Input parameters in MINRES-QLP (continued).

Input Definition

b(n) The right-hand-side vector b.

Aprod An external subroutine defining the matrix A. For a given vector x,
the statement call Aprod ( n, x, y ) must return the product
y = Ax without altering the vector x. An extra call of Aprod is
used to check if A is symmetric. The program calling MINRES-QLP

must declare Aprod to be external.

Msolve An optional external subroutine defining a preconditioner M , which
should approximate A− shiftI in some sense. If present, M must
be symmetric positive definite. For a given vector x, the statement
call Msolve( n, x, y ) must solve the linear system My = x
without altering the vector x. In general, M should be chosen

so that Ã ≡M− 1
2 ĀM−

1
2 has more clustered eigenvalues. If Ā

is positive definite, Ã would ideally be close to a multiple of I.

If Ā is indefinite, Ã might be close to a multiple of diag(I −I).
If M is absent, no preconditioner is applied.

shift Should be zero if the system Ax = b is to be solved. Otherwise, it
could be an approximation to an eigenvalue of A, such as the
Rayleigh quotient (bTAb)/(bTb) corresponding to the vector b.
If b is sufficiently like an eigenvector corresponding to an
eigenvalue near shift , then the computed x may have very large
components. When normalized, x may be closer to an eigenvector
than b. Default value is 0.

nout A file number. The calling program must open a file for
output using for example:
open(nout, file=‘MINRESQLP.txt’, status=‘unknown’).
If nout > 0, a summary of the iterations will be printed on unit
nout . If nout is absent or the file associated with nout is not
opened properly, results will be written to MINRESQLP tmp.txt.
Default value is 10.

itnlim An upper limit on the number of iterations. Default to 4n.

rtol A user-specified tolerance. MINRES-QLP terminates if it appears
that ‖r̄‖ is smaller than rtol(‖Ā‖‖x̄‖+ ‖b‖), where r̄ = b̄− Āx̄,
or that ‖Ār̄‖ is smaller than rtol‖Ā‖‖r̄‖.
If shift = 0 and Msolve is absent, MINRES-QLP terminates if
‖r‖ is smaller than rtol(‖A‖‖x‖+ ‖b‖), where r = b−Ax,
or if ‖Ar‖ is smaller than rtol‖A‖‖r‖. Default to ε.
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Table III: Input parameters in MINRES-QLP (continued).

Input Definition

maxxnorm An upper bound on ‖x‖. Default value is 107.

Acondlim An upper bound on Acond , an estimate of cond(A).
Default value is 1015.

trancond If trancond > 1, a switch is made from MINRES iterations
to MINRES-QLP iterations when Acond ≥ trancond .
If trancond = 1, all iterations will be MINRES-QLP iterations.
If trancond = acondlim, all iterations will be conventional
MINRES iterations (which are slightly cheaper).
Default value is 107.

We use two small examples to illustrate the output of MINRESQLP. [Choi 2006,
Chapter 4] or [Choi et al. 2011, Section 8] give more significant numerical examples.

Table IV compares the MINRES solution to the MINRES-QLP solution for the
small problem Ax ≈ b, where A = diag

([
1, . . . , 10, 0

])
and b is a vector of all ones.

Clearly, all but the last components are the same (in general, all components are
different), and MINRES-QLP gives the minimum-length solution, whereas MINRES

returns a minimum residual solution.

Table IV: MINRES and MINRES-QLP solutions of Ax ≈ e, where
A = diag[1, . . . , 10, 0].

MINRES MINRES-QLP

1.000000000000001 1.000000000000000
0.500000000000001 0.500000000000001
0.333333333333333 0.333333333333333
0.250000000000001 0.250000000000001
0.199999999999999 0.199999999999999
0.166666666666667 0.166666666666667
0.142857142857143 0.142857142857143
0.125000000000000 0.125000000000000
0.111111111111111 0.111111111111111
0.100000000000000 0.100000000000000
2.928968253967685 0.000000000000000
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The program produces printed output on file nout, if that parameter is posi-
tive. This is illustrated below, in which another least-squares problem (Ex. 21 in
minresqlpTestProgram) is solved: min ‖x‖ such that x ∈ arg min ‖ diag

[
d, 0, 0

]
x−

b‖, where d ≡
[

1
50 ,

2
50 , . . . ,

48
50

]T
and b ≡

[
d, 1, 1

]T
. ∗
[
50 : −1 : 3, 1, 1

]T
, where .∗ in-

dicates elementwise multiplication. No preconditioner is applied, and shift σ = 0.
Notice that the rightmost column of the 39th iteration is marked with “P”, which

indicates that the program switches from MINRES phase to MINRES-QLP phase
since A39 ≈ 1.81× 107 > trancond = 107. Even though the last line in the output
reports that MINRES-QLP has to stop at iteration 46 because ‖x47‖ > maxxnorm,
the algorithm appears to be successful because the relative error in x46 is merely
2.8× 10−13.

Enter MINRES-QLP. Solution of symmetric Ax = b

n = 50 ||b|| = 6.78E+01 precon = F

itnlim = 200 rtol = 2.22E-16 shift = 0.00E+00

maxxnorm = 1.00E+07 Acondlim = 1.00E+15 trancond = 1.00E+07

iter x(1) xnorm rnorm Arnorm Compatible LS norm(A) cond(A)

0 0.0000000000E+00 0.00E+00 6.78E+01 3.69E+01 1.00E+00 1.00E+00 0.00E+00 1.00E+00

1 1.7180943901E+00 1.16E+02 2.40E+01 1.09E+01 1.83E-01 6.94E-01 5.44E-01 1.00E+00

2 3.8644538109E+00 1.53E+02 1.15E+01 4.58E+00 6.82E-02 6.06E-01 6.57E-01 1.70E+00

3 6.3954779963E+00 1.72E+02 6.51E+00 2.30E+00 3.60E-02 5.37E-01 6.57E-01 2.27E+00

4 9.2579303917E+00 1.83E+02 4.16E+00 1.29E+00 2.21E-02 4.74E-01 6.57E-01 2.94E+00

5 1.2389816033E+01 1.90E+02 2.94E+00 7.91E-01 1.52E-02 4.10E-01 6.57E-01 3.74E+00

6 1.5722893791E+01 1.95E+02 2.28E+00 5.14E-01 1.16E-02 3.43E-01 6.57E-01 4.78E+00

7 1.9185796048E+01 2.00E+02 1.91E+00 3.50E-01 9.61E-03 2.79E-01 6.57E-01 6.20E+00

8 2.2706980590E+01 2.03E+02 1.71E+00 2.48E-01 8.47E-03 2.21E-01 6.57E-01 8.20E+00

9 2.6217158315E+01 2.07E+02 1.59E+00 1.81E-01 7.81E-03 1.73E-01 6.57E-01 1.10E+01

10 2.9651001936E+01 2.10E+02 1.52E+00 1.36E-01 7.39E-03 1.36E-01 6.57E-01 1.50E+01

20 4.9405101158E+01 2.71E+02 1.41E+00 1.08E-02 5.76E-03 1.16E-02 6.57E-01 1.92E+02

30 4.9999971981E+01 3.22E+02 1.41E+00 6.37E-05 5.06E-03 6.86E-05 6.57E-01 1.18E+04

39 5.0000000000E+01 3.53E+02 1.41E+00 2.09E-08 4.72E-03 2.25E-08 6.57E-01 1.81E+07 P

40 5.0000000000E+01 3.56E+02 1.41E+00 6.60E-09 4.69E-03 7.10E-09 6.57E-01 5.29E+07

45 5.0000000000E+01 3.76E+05 1.41E+00 5.53E-07 5.73E-06 5.95E-07 6.57E-01 2.01E+11

46 5.0000000000E+01 2.07E+02 1.41E+00 5.86E-07 5.73E-06 6.30E-07 6.57E-01 2.01E+11

Exit MINRES-QLP. istop = 12 itn = 46

Exit MINRES-QLP. Anorm = 6.5701E-01 Acond = 2.0123E+11

Exit MINRES-QLP. rnorm = 1.4142E+00 Arnorm = 1.2149E-05

Exit MINRES-QLP. xnorm = 2.0717E+02

Exit MINRES-QLP. xnorm has exceeded maxxnorm or will exceed it next iteration.

The items printed at the kth iteration are listed and explained in the source
code. For simplicity we assumed no preconditioner below; when there is one, we
simply replace Ā and rk, respectively, with Ã and r̄k as defined in Section 3 and
Algorithm 1.
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Table V: Items printed at the kth iteration.

Label Definition

iter The iteration number k. Results are always printed for the first
10 iterations and the last. Intermediate results are printed
every 10th iteration.

x(1) The value of the first element of the approximate solution xk.

xnorm ‖xk‖.

rnorm ‖rk‖.

Arnorm ‖Ārk‖.

Compatible A dimensionless quantity that should converge to zero if and
only if Āx = b is compatible. It is an estimate of
‖rk‖/(‖Ā‖‖xk‖+ ‖b‖), which decreases monotonically.

LS A dimensionless quantity that should converge to zero if and
only if the optimum rk is nonzero. It is an estimate of
‖Ārk‖/(‖Ā‖‖rk‖), which is usually not monotonic.

norm(A) A monotonically increasing underestimate of ‖Ā‖.

cond(A) A monotonically increasing underestimate of cond(Ā).

The integer output istop takes an initial value of 0; when the program stops,
it takes a positive integer value between 1 to 14 inclusive to signify one of the
termination conditions in Table VI. We note that if istop > 7, the final x may or
may not be an acceptable solution. On the contrary, when istop ≤ 7, we can be
sure xk is a good or even an excellent approximate solution of a given problem.

Table VI: Termination conditions in MINRES-QLP.

istop Termination Conditions

1 βk+1 < ε. Iteration k is the final Lanczos step. Rarely occurs.

2 β2 = 0 in the Lanczos iteration; i.e. the second Lanczos vector is zero.
This means the right-hand-side is very special. If there is no
preconditioner, b is an eigenvector of A.
Otherwise (if precon is true), let My = b. If shift is zero, y is a solution
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Table VI: Termination conditions in MINRES-QLP (continued).

istop Termination Conditions

of the generalized eigenvalue problem Ay = λMy, with λ = α1 from
the Lanczos vectors. In general, (A− σI)x = b has the solution
x = (1/α1)y, where My = b.

3 b = 0, so the exact solution is x = 0. No iterations were performed.

4 ‖r̄‖ appears to be less than the value rtol(‖Ā‖‖x̄‖+ ‖b‖); x should
be an acceptable solution of Āx = b.

5 ‖r̄‖ appears to be less than the value ε(‖Ā‖‖x̄‖+ ‖b‖). This means
that the solution is as accurate as seems reasonable on this machine.

6 ‖Ār̄‖ appears to be less than the value rtol‖Ā‖‖r̄‖; x should be an
acceptable least-squares solution.

7 ‖Ār̄‖ appears to be less than the value ε‖Ā‖‖r̄‖. This means that the
least-squares solution is as accurate as seems reasonable on this
machine.

8 The iteration limit was reached before convergence.

9 The matrix defined by Aprod does not appear to be symmetric. For
certain vectors y = Av and r = Ay, the products yTy and rTv differ
significantly.

10 The matrix defined by Msolve does not appear to be symmetric. For
vectors satisfying My = v and Mr = y, the products yTy and rTv
differ significantly.

11 An inner product of the form xTM−1x was not positive, so the
preconditioner M does not appear to be positive definite.

12 ‖x‖ has exceeded maxxnorm or will exceed it next iteration.

13 cond(Ā) has exceeded Acondlim or 0.1/ε, so Ā must be very
ill-conditioned.

14 |γ(4)k | < ε. This is probably a least-squares problem but residual norms
have not satisfied NRBE conditions.

6. AVAILABILITY

Implementations of MINRES-QLP are available in FORTRAN 90 and MATLAB 7.8
from the Systems Optimization Laboratory, Stanford University [SOL], or the first
author’s homepage http://home.uchicago.edu/sctchoi/ under the terms of the
OSI Common Public License (CPL) [OSI-CPL] or the BSD License [BSD].
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