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1 Introduction

bvptwp is a MATLAB program that calculates approximate solutions two point Boundary Value
Problems. These problems may or may not be singularly perturbed. The BVPs are of the general
form:

y′ = f(x, y), a ≤ x ≤ b (1)

g(y(a), y(b)) = 0, (2)

where g = (g1, g2, · · ·, gn)T is a vector functions. The functions f and gi are assumed to be dif-
ferentiable. The problem must be posed as a first-order system. This requirement is not unduly
restrictive, however, since standard techniques can be used to convert an nth-order equation to a
system of n first-order equations. For example, the second-order singularly perturbed problem

λy′′ = f(x, y, y′), 0 < x < 1, y(0) = α, y(1) = β, (3)

where 0 < λ� 1, x ∈ R, can be converted to the following first-order system:

u′ = z,

z′ =
1
λ
f(x, u, z),

u(0) = α, u(1) = β.

2 Format of the problem codes

The eight functions that define the problem are called prob, fun, bcfun, dfun, dbcfun, settolerances,
setoutput and esolu. The following subsections describe the format of these subroutines in full
detail.
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2.1 The function prob

This routine gives some general information about the test problem.

function [problm,type,m,Linear,numjac,numbcjac,Vectorized,JVectorized,solinit]=prob()

Meaning of the arguments:

problem
This character string contains the name of the problem, e.g. bvpT1, and corresponds to the
name of the MATLAB source file.

type
This character string takes the value ODEBVP.

m
The dimension of the problem, which is the number of equations to be solved.

Linear
Display if the problem is linear or nonlinear. Using ’on’ the problem is treated as linear and
’off’ for nonlinear.

numjac
Specify if the problem can be solved by using the analytic Jacobian (numjac =0) or by com-
puting it numerically (numjac =1).

numbcjac
Specify if the problem can be solved by using the analytic partial derivative of the boundary
condition (numbcjac = 0) or by computing it numerically (numbcjac = 1).

Vectorized
The solver can use the option Vectorized ’on’ or ’off’ to reduce the number of function evalua-
tions required. By default, Vectorized is ’on’.

JVectorized
The solver can use the option JVectorized ’on’ or ’off’ to reduce the number of function
evaluations required. By default, JVectorized is ’on’.

solinit
A guess for the initial mesh and the solution.

2.2 The function fun

This subroutine evaluates the function f.

function F = fun(X,Z,ExtraArgs)

Meaning of the arguments:

X
The time point where the function is evaluated.

Z
The value of y at which the function is evaluated.

ExtraArgs
Argument that declares the optional argument in the main program.
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F
The resulting function value.

2.3 The function bcfun

This function evaluates the boundary condition.

function bc = bcfun(ya,yb,ExtraArgs)

Meaning of the arguments:

ya
Contains the left boundary condition y(t0).

yb
Contains the right boundary condition y(tn).

ExtraArgs
The same argument defined in the previous function.

bc
Contains the boundary value.

2.4 The function dfun

This function evaluates the analytic Jacobian of The ODE function.

function Df = dfun(X,Z,ExtraArgs)

Meaning of the arguments:

X,Z
The same arguments used in the function fun.

Df
The Jacobian value.

2.5 The function dbcfun

This function evaluates the partial derivatives of the boundary condition.

function [C0,C1] = dbcfun(ya,yb,ExtraArgs)

Meaning of the arguments:

ya,yb
The same arguments used in the function bcfun.

ExtraArgs
The same argument defined in the previous function.

C0,C1
Contains the partial derivatives of the boundary condition.
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2.6 The function settolerances

This function defines the input tolerances rtol.

function tolvec = settolerances(tol)

Meaning of the arguments:

tol
Relative tolerance.

tolvec
A vector of tolerances that will be used in the code.

2.7 The function setoutput

This function contains information about the required output.

function [solref,printsolout,nindsol,indsol] = setoutput(plotsol)

Meaning of the arguments:

plotsol
Index of component to be plotted (optional).

solref
Contains information about the reference solution.
- solref = 1, means that the reference solution is available.
- solref = 0, means that the reference solution is not available.

printsolout
Contains information about the required output.

nindsol
If printsolout =1, nindsol contains the number of components to be printed.

indsol
If printsolout =1, indsol(1:nindsol) contains the index of the nindsol components to be
printed.

2.8 The function esolu

This function evaluates the exact solution of the problem if it exists.

function Exact = esolu(X,ExtraArgs)

Meaning of the arguments:

Exact
Contains the exact solution.

X, ExtraArgs
The same argument as in function fun.
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3 How to solve test problems with driver function

From the Matlab command line the driver function can be run by calling

>> [sol,time] = bvpMtest(problem,solver,tol,plotsol,opts,varargin);

The directory “problems” should be added to the MATLAB path before calling bvpMtest.

The input arguments are:

problem
The function handle of the problem.

solver
String with the calling name of the solver and there are six types in which the user can use.
solver=’twpbvp−m’: Deferred correction scheme based on MIRK methods,
solver=’twpbvpc−m’: Deferred correction scheme based on MIRK methods and conditioning,
solver=’twpbvp−l’: Deferred correction scheme based on LOBATTO methods,
solver=’twpbvpc−l’: Deferred correction scheme based on LOBATTO methods and condi-
tioning,
solver=’acdc’: Continuation strategy based on LOBATTO methods.
solver=’acdcc’: Continuation strategy based on LOBATTO methods and conditioning.
solver=’bvp4c’: Matlab solver bvp4c.
solver=’bvp5c’: Matlab solver bvp5c.

tol
Relative tolerance.

plotsol
Index of component to be plotted (optional).

opts
Solver parameters set with bvptwpset (optional).

varargin
Argument that declares the optional argument in the main program.

The output values are:

sol
The structure sol given by the solver with
sol.x : mesh point of the approximate solution
sol.y : solution computed at sol.x
sol.solver : solver used
sol.error : evaluate the error
sol.mescd : mixed significant digit of the approximate solution
sol.iflbvp : error flag (0 for successful run and 1 for an error)
sol.condpar : information about the conditioning parameters
sol.stats : Computational cost statistics and information about the maximum scaled error

time
Evaluate the execution time in solving the problem.
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4 Linear Problems

4.1 Problem bvpT1

The problem is
λz′′ = z, z(0) = 1, z(1) = 0,

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z, and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y1)

)
,

where
f(z) = z,

and
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1
0

)
.

Exact solution
z(t) = (exp(−t/

√
λ)− exp((t− 2)/

√
λ))/(1− exp(−2/

√
λ)).

This problem is bvpT1 in the bvptwp package and we can solve it by calling the driver function in
command line as follows:

>> opts= bvptwpset(’nmax’,10000);
>> [sol,time]= bvpMtest(@bvpT1,’twpbvp_l’,1e-2,1,opts,1e-3);

solves the problem 1 (bvpT1) in the bvptwp package using the solver ’twpbvpc−l’, maximum
number of mesh points = 10000, relative tolerance equal to 1e-2, and the the parameter λ = 1e-3.
The output variable sol contains information about the solution and time is the execution time for
solving the problem.
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Figure 1: Behavior of the solution of problem 4.1.

4.2 Problem bvpT2

The problem is
λz′′ = z′, z(0) = 1, z(1) = 0,

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z, and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y2)

)
,

where
f(z′) = z′,

and
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1
0

)
.

Exact solution
z(t) = (1− exp((t− 1)/λ))/(1− exp(−1/λ)).

This problem is called bvpT2 and we can solve it by calling the driver function in command line as
follows:

>> opts= bvptwpset(’nmax’,10000);
>> [sol,time]= bvpMtest(@bvpT2,’twpbvp_l’,1e-4,1,opts,1e-3);
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Figure 2: Behavior of the solution of problem 4.2.

4.3 Problem bvpT3

The problem is

λz′′ = −(2 + cos(πt))z′ + z − (1 + λπ2) cos(πt)− (2 + cos(πt))π sin(πt), z(−1) = −1 z(1) = −1,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1, y2)

)
,

where
f(t, z, z′) = −(2 + cos(πt))z′ + z − (1 + λπ2) cos(πt)− (2 + cos(πt))π sin(πt),

and
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(
−1
−1

)
.

Exact solution
z(t) = cos(πt).

The problem has no turning points and the solution is smooth.
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Figure 3: Behavior of the solution of problem 4.3.

4.4 Problem bvpT4

The problem is

λz′′ = −z′ + (1 + λ)z, z(−1) = 1 + exp(−2), z(1) = 1 + exp(−2(1 + λ)/λ),

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y1, y2)

)
,

where
f(z, z′) = −z′ + (1 + λ)z,

and
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1 + exp(−2)
1 + exp(−2(1 + λ)/λ)

)
.

Exact solution
z(t) = exp(t− 1) + exp(−(1 + λ)(1 + t)/λ).

The solution has a boundary layer of width O(ε) at t = −1.
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Figure 4: Behavior of the solution of problem 4.4.

4.5 Problem bvpT5

The problem is

λz′′ = tz′ + z − (1 + λπ2) cos(πt) + πt sin(πt), z(−1) = −1, z(1) = −1,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1, y2)

)
,

where
f(t, z, z′) = tz′ + z − (1 + λπ2) cos(πt) + πt sin(πt),

and
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(
−1
−1

)
.

Exact solution
z(t) = cos(πt).

The problem has a turning point at t = 0 but the solution is smooth.
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Figure 5: Behavior of the solution of problem 4.5.

4.6 Problem bvpT6

The problem is

λz′′ = −tz′ − λπ2 cos(πt)− πt sin(πt), z(−1) = −2, z(1) = 0,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y2)

)
,

where
f(t, z′) = −tz′ − λπ2 cos(πt)− πt sin(πt),

with
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(
−2
0

)
.

Exact solution
z(t) = cos(πt) + erf(t/

√
2λ)/erf(1/

√
2λ).

The solution has a shock layer in the turning point region near t = 0.

12



Figure 6: Behavior of the solution of problem 4.6.

4.7 Problem bvpT7

The problem is

λz′′ = −tz′ + z − (1 + λπ2) cos(πt)− πt sin(πt), z(−1) = −1, z(1) = 1,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1, y2)

)
,

where
f(t, z, z′) = −tz′ + z − (1 + λπ2) cos(πt)− πt sin(πt),

with
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(
−1
1

)
.

Exact solution

z(t) = cos(πt) + t+
t erf(t/

√
2λ) +

√
2λ/π exp(−t2/2λ)

erf(1/
√

2λ) +
√

2λ/π exp(−1/2λ)
.

The solution has a corner layer in the turning point region near t = 0.
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Figure 7: Behavior of the solution of problem 4.7.

4.8 Problem bvpT8

The problem is

λz′′ = −z′, z(0) = 1, z(1) = 2,

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y2)

)
,

where
f(z′) = −z′,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1
2

)
.

Exact solution
z(t) = (2− exp(−1/λ)− exp(−t/λ))/(1− exp(−1/λ)).

The solution has a boundary layer of width O(λ) at t = 0.
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Figure 8: Behavior of the solution of problem 4.8.

4.9 Problem bvpT9

The problem is

(λ+ t2)z′′ = −4tz′ − 2z, z(−1) = 1/(1 + λ), z(1) = 1/(1 + λ),

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form(

y1
y2

)′
=
(

y2
1

λ+t2 f(t, y1, y2)

)
,

where
f(t, z, z′) = −4tz′ − 2z,

with
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1/(1 + λ)
1/(1 + λ)

)
.

Exact solution
z(t) = 1/(λ+ x2).

The solution has a spike of height 1
λ at t = 0.
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Figure 9: Behavior of the solution of problem 4.9.

4.10 Problem bvpT10

The problem is

λz′′ = −tz′, z(−1) = 0, z(1) = 2,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y2)

)
,

where
f(t, z′) = −tz′,

with
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

0
2

)
.

Exact solution
z(t) = 1 + erf(t/

√
2λ)/erf(1/

√
2λ).

The solution has a turning point of width O(
√
λ) at t = 0.

16



Figure 10: Behavior of the solution of problem 4.10.

4.11 Problem bvpT11

The problem is

λz′′ = z − (1 + λπ2) cos(πt), z(−1) = −1, z(1) = −1,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1)

)
,

where
f(t, z) = z − (1 + λπ2) cos(πt),

with
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(
−1
−1

)
.

Exact solution
z(t) = cos(πt).

The solution is smooth.
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Figure 11: Behavior of the solution of problem 4.11.

4.12 Problem bvpT12

The problem is

λz′′ = z − (1 + λπ2) cos(πt), z(−1) = −1, z(1) = 0,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1)

)
,

where
f(t, z) = z − (1 + λπ2) cos(πt),

with
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(
−1
0

)
.

Exact solution

z(t) = cos(πt) +
exp((t+ 1)/

√
λ)− exp((−t− 1)/

√
λ)

exp(2/
√
λ)− exp(−2/

√
λ)

.

The solution has a turning point of width O(
√
λ) at t = 1.
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Figure 12: Behavior of the solution of problem 4.12.

4.13 Problem bvpT13

The problem is

λz′′ = z − (1 + λπ2) cos(πt), z(−1) = 0, z(1) = 1,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1)

)
,

where
f(t, z) = z − (1 + λπ2) cos(πt).

with
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

0
−1

)
.

Exact solution
z(t) = cos(πt) + exp(−(t+ 1)/

√
λ).

The solution has a boundary layer of width O(
√
λ) near t = −1.
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Figure 13: Behavior of the solution of problem 4.13.

4.14 Problem bvpT14

The problem is

λz′′ = z − (1 + λπ2) cos(πt), z(−1) = 0, z(1) = 0,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1)

)
,

where
f(t, z) = z − (1 + λπ2) cos(πt),

with
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

0
0

)
.

Exact solution
z(t) = cos(πt) + exp((t− 1)/

√
λ) + exp(−(t+ 1)/

√
λ).

The solution has a boundary layer of width O(
√
λ) near t = −1 and t = 1.
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Figure 14: Behavior of the solution of problem 4.14.

4.15 Problem bvpT15

The problem is

λz′′ = tz, z(−1) = 1, z(1) = 1,

with
z ∈ R, t ∈ [−1, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1)

)
,

where
f(t, z) = tz,

with
(y1, y2)T ∈ R2, t ∈ [−1, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1
1

)
.

21



Figure 15: Behavior of the solution of problem 4.15.

4.16 Problem bvpT16

The problem is

λ2z′′ = −π2z/4, z(0) = sin(π/2λ), z(1) = sin(π/2λ),

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λ2 f(y1)

)
,

where
f(z) = −π2z/4,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

sin(π/2λ)
sin(π/2λ)

)
.

Exact solution
z(t) = sin(πt/2λ) when 1/λ isodd .

The solution oscillates rapidly for small λ.
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Figure 16: Behavior of the solution of problem 4.16.

4.17 Problem bvpT17

The problem is

z′′ = −3λz/(ε+ t2)2, z(−0.1) = −0.1/
√
λ+ 0.01, z(0.1) = 0.1/

√
λ+ 0.01

with
z ∈ R, t ∈ [−0.1, 0.1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
f(t, y1)

)
,

where
f(t, z) = −3λz/(λ+ t2)2,

with
(y1, y2)T ∈ R2, t ∈ [−0.1, 0.1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(
−0.1/

√
λ+ 0.01

0.1/
√
λ+ 0.01

)
.

Exact solution
z(t) = t/

√
λ+ t2.

The solution has a boundary layer of width O(
√
λ) at t = 0.
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Figure 17: Behavior of the solution of problem 4.17.

4.18 Problem bvpT18

The problem is

λz′′ = −z′, z(0) = 1, z(1) = exp(−1/λ)

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y2)

)
,

where
f(z′) = −z,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1
exp(−1/λ)

)
.

Exact solution
z(t) = exp(−t/λ).

The solution has a boundary layer of width O(λ) at t = 0.
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Figure 18: Behavior of the solution of problem 4.18.

5 Nonlinear Problems

5.1 Problem bvpT19

The problem is

λz′′ = − exp(z)z′ +
π

2
sin(πt/2) exp(2z), z(0) = 0, z(1) = 0

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1, y2)

)
,

where
f(t, z, z′) = − exp(z)z′ +

π

2
sin(πt/2) exp(2z),

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

0
0

)
.
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Figure 19: Behavior of the solution of problem 5.1.

5.2 Problem bvpT20

The problem is

λz′′ = −(z′)2 + 1, z(0) = 1 + λ ln cosh(−0.745/λ), z(1) = 1 + λ ln cosh(0.255/λ)

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y2)

)
,

where
f(z′) = −(z′)2 + 1,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1 + λ ln cosh(−0.745/λ)
1 + λ ln cosh(0.255/λ)

)
.

Exact solution
z(t) = 1 + λ ln cosh(t− 0.745)/λ).

The solution has a corner layer at t = 0.745.
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Figure 20: Behavior of the solution of problem 5.2.

5.3 Problem bvpT21

The problem is

λz′′ = z + z2 − exp(−2t/
√
λ), z(0) = 1, z(1) = exp(−1/

√
λ)

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(t, y1)

)
,

where
f(t, z) = z + z2 − exp(−2t/

√
λ),

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1
exp(−1/

√
λ)

)
.

Exact solution
z(t) = exp(−t/

√
λ).

The solution has a boundary layer of width O(
√
λ) at t = 0.
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Figure 21: Behavior of the solution of problem 5.3.

5.4 Problem bvpT22

The problem is

λz′′ = −z′ − z2, z(0) = 0, z(1) =
1
2

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y1, y2)

)
,

where
f(z, z′) = −z′ − z2,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

0
1
2

)
.

The solution has a boundary layer near t = 0.
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Figure 22: Behavior of the solution of problem 5.4.

5.5 Problem bvpT23

The problem is

z′′ = λ sinh(λz), z(0) = 0, z(1) = 1

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
f(y1)

)
,

where
f(z) = λ sinh(λz),

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

0
1

)
.

The solution has a boundary layer near t = 1.
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Figure 23: Behavior of the solution of problem 5.5.

5.6 Problem bvpT24

The problem is

λA(t)zz′′ =
(1 + γ

2 − λA′(t)
)
zz

′ − z′
z −

A′(t)
A(t)

(
1−

(γ − 1
2
)
z2
)
,

A(t) = 1 + t2, γ = 1.4, z(0) = 0.9129, z(1) = 0.375

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form(

y1
y2

)′
=
(

y2
1

λA(t)y1
f(t, y1, y2)

)
,

where

f(t, z, z′) =
(1 + γ

2
− λA′(t)

)
zz

′
− z′

z
− A′(t)
A(t)

(
1−

(γ − 1
2
)
z2
)
,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

0.9129
0.375

)
.

This equation represents a shock wave in a one dimensional nozzle flow.
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Figure 24: Behavior of the solution of problem 5.6.

5.7 Problem bvpT25

The problem is

λz′′ = −zz′ + z, z(0) = −1
3
, z(1) =

1
3

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y1, y2)

)
,

where
f(z, z′) = −zz′ + z,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(
− 1

3
1
3

)
.

The solution has corner layers at t = 1
3 and t = 2

3 .
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Figure 25: Behavior of the solution of problem 5.7.

5.8 Problem bvpT26

The problem is

λz′′ = −zz′ + z, z(0) = 1, z(1) = −1
3

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y1, y2)

)
,

where
f(z, z′) = −zz′ + z,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1
− 1

3

)
.

The solution has corner layers at t = 0 and t = 1.
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Figure 26: Behavior of the solution of problem 5.8.

5.9 Problem bvpT27

The problem is

λz′′ = −zz′ + z, z(0) = 1, z(1) =
1
3

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y1, y2)

)
,

where
f(z, z′) = −zz′ + z,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1
1
3

)
.

The solution has corner layers at t = 0 and a corner layer at t = 2
3 .
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Figure 27: Behavior of the solution of problem 5.9.

5.10 Problem bvpT28

The problem is

λz′′ = −zz′ + z, z(0) = 1, z(1) =
3
2

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y1, y2)

)
,

where
f(z, z′) = −zz′ + z,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

1
3
2

)
.

The solution has corner layers at t = 0.
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Figure 28: Behavior of the solution of problem 5.10.

5.11 Problem bvpT29

The problem is

λz′′ = −zz′ + z, z(0) = 0, z(1) =
3
2

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y1, y2)

)
,

where
f(z, z′) = −zz′ + z,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(

0
3
2

)
.

The solution has corner layers at t = 0.
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Figure 29: Behavior of the solution of problem 5.11.

5.12 Problem bvpT30

The problem is

λz′′ = −zz′ + z, z(0) = −7
6
, z(1) =

3
2

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z and y2 = z′, yielding a system of
differential equations of the form (

y1
y2

)′
=
(

y2
1
λf(y1, y2)

)
,

where
f(z, z′) = −zz′ + z,

with
(y1, y2)T ∈ R2, t ∈ [0, 1].

The boundary conditions are obtained from(
1 0
0 0

)(
y1(0)
y2(0)

)
+
(

0 0
1 0

)(
y1(1)
y2(1)

)
=
(
− 7

6
3
2

)
.

The solution has a shock layer at t = 1
3 .
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Figure 30: Behavior of the solution of problem 5.12.

5.13 Problem bvpT31

The problem is

z′ = sin θ, θ′ = M, λM ′ = −Q, λQ′ = (z − 1) cos θ −MT, T = sec θ + λQ tan θ,
z(0) = z(1) = 0, M(0) = M(1) = 0.

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z, y2 = θ, y3 = M and y4 = Q, yielding
a system of differential equations of the form

y1
y2
y3
y4


′

=


sin y2
y3
−y4/λ

f(y1, y2, y3, y4)

 ,

where
f(z, θ,M,Q) =

1
λ

((z − 1) cos θ −M sec θ) + λQ tan θ)

with
(y1, y2, y3, y4)T ∈ R4, t ∈ [0, 1].

The boundary conditions are obtained from
1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0




y1(0)
y2(0)
y3(0)
y4(0)

+


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0




y1(1)
y2(1)
y3(1)
y4(1)

 =


0
0
0
0

 .

This equation models nonlinear elastic beams.
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Figure 31: Behavior of the solution of problem 5.13.

5.14 Problem bvpT32

The problem is

z′′′′ = λ(z′z′′ − zz′′′), z(0) = z′(0) = 0, z(1) = 1, z′(1) = 0

with
z ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = z, y2 = z′, y3 = z′′ and y4 = z′′′, yielding
a system of differential equations of the form

y1
y2
y3
y4


′

=


y2
y3
y4

f(y1, y2, y3, y4)

 ,

where
f(z, z′, z′′, z′′′) = λ(z′z′′ − zz′′′),

with
(y1, y2, y3, y4)T ∈ R4, t ∈ [0, 1].

The boundary conditions are obtained from
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




y1(0)
y2(0)
y3(0)
y4(0)

+


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0




y1(1)
y2(1)
y3(1)
y4(1)

 =


0
0
1
0

 .

This problem arises from fluid injection through one side of a long vertical channel
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Figure 32: Behavior of the solution of problem 5.14.

5.15 Problem bvpT33

The problem is

λz′′′′ = −zz′′′ − yy′, λy′′ = yz′ − zy′, y(0) = −1, y(1) = 1, z(0) = z′(0) = z(1) = z′(1) = 0,

with
z, y ∈ R, t ∈ [0, 1].

We write this problem in first order form by defining y1 = y, y2 = y′, y3 = z, y4 = z′, y5 = z′′ and
y6 = z′′′, yielding a system of differential equations of the form

y1
y2
y3
y4
y5
y6



′

=


y2

1
λy1y4 − y3y2

y4
y5
y6

1
λ (−y3y6 − y1y2)

 ,

with
(y1, y2, y3, y4, y5, y6)T ∈ R6, t ∈ [0, 1].

The boundary conditions are obtained from
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




y1(0)
y2(0)
y3(0)
y4(0)
y5(0)
y6(0)

+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0




y1(1)
y2(1)
y3(1)
y4(1)
y5(1)
y6(1)

 =


−1
0
0
1
0
0

 .
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Figure 33: Behavior of the solution of problem 5.15.
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