
User’s Manual for the code for Helmholtz

transmission eigenvalues

Xia Ji, Jiguang Sun, Tiara Turner

November 21, 2011

1 Introduction

This is a program written in MATLAB for solving the transmission eigen-
values for Helmholtz equation. For the case of scattering of time-harmonic
acoustic waves by a bounded simply connected inhomogeneous medium D ∈
R

2, the transmission eigenvalue problem is to find k ∈ C, u, v ∈ L2(D), u−v ∈
H2(D) such that

∆u+ k2(1 + q(x))u = 0,

∆v + k2v = 0,

u− v = 0,
∂u
∂ν

− ∂v
∂ν

= 0,

where n(x) = 1+q(x) is the index of refraction. Using the mixed method, we
can obtain the following weak problem, find (k2, u, v) ∈ C×H1

0 (D)×H1(D)
such that

(∆v,∆φ) = k2(v, φ), ∀φ ∈ H1

0 (D),

(∆u,∆φ) + (qv, φ) = k2((1 + q)u, φ), ∀φ ∈ H1(D).

Given finite dimensional spaces Sh ⊂ H1(D) and S0
h ⊂ H1

0 (D) such that
S0
h ⊂ Sh, the discrete problem is to find (k2h, uh, vh) ∈ C× S0

h × Sh such that

(∆vh,∆φh) = k2h(vh, φh), ∀φh ∈ S0

h,

(∆uh,∆φh) + (qvh, φh) = k2h((1 + q)uh, φh), ∀φ ∈ Sh.

1



Standard piecewise linear finite elements are used to discretize the problem

Sh = the space of continuous piecewise linear finite elements on D,

S0

h = Sh ∩H
1

0 (D)

= the subspace of functions in Sh that have vanishing DoF on ∂D,

where DoF stands for degree of freedom. Let ψ1, . . . , ψK be a basis for S0
h

and ψ1, . . . , ψK , ψK+1, . . . , ψT be a basis for Sh. Let uh =
∑K

i=1
uiψi and

vh =
∑T

i=1
viψi. Furthermore, let u = (u1, . . . , uK)

T and v = (v1, . . . , vT )
T .

Then the corresponding matrix problem is

SK×Tv = k2hMK×Tv,

ST×Ku+M q
T×Tv = k2hM

1+q
T×Ku,

where the matrices are defined as follows

Matrix Dimension Definition

SK×T K × T Si,j
K×T = (∇ψi,∇ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ T

ST×K T ×K Si,j
T×K = (∇ψi,∇ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ K

MK×T K × T M i,j
K×T = (ψi, ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ T

M1+q
T×K T ×K (M1+q

T×K)
i,j = ((1 + q)ψi, ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ K

M q
T×T T × T (M q

T×T )
i,j = (qψi, ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ T

The generalized eigenvalue problem we need to solve is

(

SK×T 0K×K

M q
T×T ST×K

)(

v

u

)

= k2
(

MK×T 0K×K

0T×T M1+q
T×K

)(

v

u

)

.

For simplicity, we shall write this problem as

Ax = λBx (1.1)

where

A =

(

SK×T 0K×K

M q
T×T ST×K

)

, B =

(

MK×T 0K×K

0T×T M1+q
T×K

)

, x =

(

v

u

)

.

The idea of the code is to construct the matrices first, then solve the gener-
alized eigenvalue problems.

2



2 How to run this code

The main m-file is ‘mixFemTE’. To compute transmission eigenvalues, first
type ‘mixFemTE’ in Matlab Command Window. The program first asks
the user to input the mesh file by displaying

Input name of the mesh file -->

The user types the mesh file name, for example,

‘halfcircle’

Then the program asks the user to input the supremum of index of refraction
by displaying

Input the supremum of index of refraction -->

The user could type, for example,

16

Note that the actual definition for the index of refraction n(x) is defined in
‘Rindex’. 16 is the supremum of index in the current ‘Rindex’. You must
change this file to change the index of refraction.

Finally the program asks how many transmission eigenvalues to be com-
puted by displaying

Input the number of transmission eigenvalues -->

The user could type, for example,

4

Taking all above input, the program does the following

1. Construct the stiffness matrix S, mass matrix M and weighted mass
matrix Mn (by calling subroutine ‘assemble’).

2. Identify the interior and boundary nodes and store them in ‘Inode’ and
‘Bnode’ (by calling subroutine ‘intnode’).

3. Compute the first Dirichlet eigenvalue (by calling subroutine ‘Dirich-

letEig’).

4. Construct the matrices A and B for the generalized eigenvalue problem
(by calling subroutine ‘MixMethod’).

5. Compute transmission eigenvalues (by calling subroutine ‘sptarnite’).

3



3 Modula of this code

This program consists of the following parts:

• Mesh generation.

• Construct the mass matrix, stiffness matrix and weighted mass matrix.

• Identify the interior and boundary nodes.

• Compute the first Dirichlet eigenvalue for −∆ in D.

• Construct the matrices for the transmission eigenvalues problem.

• Solve the eigenvalue problem by an iterative algorithm using restarted
Arnoldi method.

3.1 Mesh generation

We use the PDE toolbox in MATLAB to generate the mesh, for example,

pdecirc(0,0,1/2,‘C1’)

This command can generate the mesh on a circle centered at (0, 0) with
radius 1/2. the command ‘Export Mesh’ can be used to save the informa-
tion of the mesh.

We may load the information of the mesh

p= mesh.p’; t = mesh.t(1:3,:)’; e= mesh.e(1:2,:)’;

• In the Point matrix p, the first and second rows contain x- and y-
coordinates of the points in the mesh.

• In the Edge matrix e, the first and second rows contain indices of
the starting and ending point, the third and fourth rows contain the
starting and ending parameter values, the fifth row contains the edge
segment number, and the sixth and seventh row contain the left- and
right-hand side subdomain numbers.

4



• In the Triangle matrix t, the first three rows contain indices to the
corner points, given in counter clockwise order, and the fourth row
contains the subdomain number.

Any other tools which can generate such information can also be used in the
mesh generation part.

3.2 Construct the related matrices

We construct the stiffness matrix, mass matrix and weighted mass matrix
with the following four subroutines:

• ‘assemble’ (function [S, M, Mn]=assemble(mesh))

Description: construct the stiffness matrix, mass matrix and weighted
mass matrix

Input: the matrix ‘mesh’

Output: mass matrices ‘M’, stiffness matrices ‘S’ and the weighted
mass matrix ‘Mn’

• ‘quad setup2’ (function [weight,place]=quad setup2())

Description: get the quadrature weights and points on the reference
element

Input: no

Output: quadrature weights ‘weight’ and quadrature points ‘place’

• ‘phihat’ (function [y,grady]=phihat(xhat))

Description: gets all the basis function values and gradients at the
quadrature points on the reference element

Input: the position on the reference element ‘xhat’

Output: function values ‘y’ and gradients ‘grrady’ at ‘xhat’

• ‘Rindex’ (n=Rindex(x,index))

Description: give the refractive index at ‘x’

Input: position ‘x’, index of the medium ‘index’

Output: refractive index ‘n’

5



The physical element is mapped by an affine transformation onto the ref-
erence triangle {(x, y)|, 0 ≤ x, y ≤ 1, 0 ≤ x + y ≤ 1}, then the information
on the physical element can be derived from the reference one. The informa-
tion of the reference element is obtained in ‘quad setup2’ and ‘phihat’. In
‘assemble’, we construct the desired information on each physical element,
then assemble it into big matrices.

3.3 Identify interior and boundary nodes

The subroutine ‘intnode’ (function [Inode,Bnode]=intnode(mesh)) fulfills
the task of finding the interior and boundary nodes.

Description: identify the interior and boundary nodes and store them
Input: the matrix ‘mesh’
Output: interior nodes index ‘Inode’ and boundary nodes index ‘Bnode’
The following are the codes ‘intnode’, the lines starting with % are

comments.

function [Inode,Bnode]=intnode(mesh)
% find boundary points using boundary edge
Bnode = sort(unique([mesh.e(1,:) mesh.e(2,:)]))’;
% find interior points using boundary points
Inode = setdiff((1:length(mesh.p)),Bnode)’;

3.4 Compute the first Dirichlet eigenvalue for −△

This subroutine ‘Dirichlet’ (function lambda=DirichletEig(SS, MM)) gives
the first Dirichlet eigenvalue for −△.

Description: compute the first Dirichlet eigenvalue for −△ on D
Input: the mass matrix ‘MM’ and stiffness matrix ‘SS’ after applying

the boundary condition
Output: the first Dirichlet eigenvalue ‘lambda’

function lambda=DirichletEig(SS, MM)
lambda=eigs(SS, MM, 1, ‘SM’);

6



‘eigs’ is used to compute the eigenvalues, we compute the Dirichlet
eigenvalues by calling

lambda=DirichletEig(S(Inode,Inode), M(Inode,Inode));

S, M are the stiffness and mass matrices generated in ‘assemble’.

3.5 The matrices for the transmission eigenvalues prob-

lem

With the subroutine ‘assemble’ and ‘intnode’, we are ready to construct
the matrices for the transmission eigenvalues problem, this is the subroutine
‘MixMethod’ ([A,B]=MixMethod(S, M, Mn, Inode, Bnode)), this code is
clear with the definition of the matrices A and B (1.1).

Description: construct the matrices for the transmission eigenvalues
problem

Input: the mass matrix M, stiffness matrix S, weighted mass matrix Mn,
interior nodes index ‘Inode’ and boundary nodes index ‘Bnode’

Output: matrices A and B in (1.1)

3.6 Solve the eigenvalue problem

Now we can solve the eigenvalue problem by the restarted Arnoldi method.
This is the subroutine ‘sptarnite’ (function k=sptarnite(A,B,lb,noe)),

Description: solve the eigenvalue problem by the restarted Arnoldi
method

Input: matrices ‘A’ and ‘B’, left lower bound ‘lb’, number of eigenvalues
‘noe’

Output: ‘noe’ eigenvalues
At beginning, the left bound is given by lb = λ0/supD(n) and the right

bound is given by rb = lb+1. It calls ‘sptarn’ to compute generalized eigen-
values. Complex eigenvalues are excluded and real eigenvalues are stored.
Then the interval is shifted to right by one unit and ‘sptarn’ is called again
until ‘noe’ eigenvalues are found.

Here the subroutine ‘test’ (function mark=test(D)) is used to determine
weather to do the loop or not,

Description: determine weather to do the loop or not

7



Input: eigenvalues ‘D’
Output: if no real eigenvalue in this interval, return 1, else return 0

8


