
User’s Manual for GPOPS Version 2.3:

A MATLAB R© Software for Solving Multiple-Phase
Optimal Control Problems Using the Gauss Pseudospectral

Method

Anil V. Rao
University of Florida

Gainesville, FL 32607

David Benson
The Charles Stark Draper Laboratory, Inc.

Cambridge, MA 02139

Christopher L. Darby
Camila Francolin
Michael Patterson

Ilyssa Sanders
University of Florida

Gainesville, FL 32607

Geoffrey T. Huntington
Blue Origin, LLC

Seattle, WA

August 2009



THIS PAGE IS INTENTIONALLY LEFT BLANK



Acknowledgments

The software GPOPS was developed in response to a demand from the research and academic community
for a customizable implementation of the Gauss pseudospectral method for solving optimal control prob-
lems. Indeed, while the authors of GPOPS have published extensively in the open literature on the theory
and application of the Gauss pseudospectral method, no effort has been made to date to provide source
code of actual software that can be utilized and adapted by a broad community. The GPOPS software is an
attempt to fill that void and enable researchers, educators, and others involved in solving complex optimal
control problems to take advantage of a code that can be customized to one’s particular needs. The authors
of GPOPS hope sincerely that the code is useful.



Disclaimer

This software is provided “as is” and free-of-charge. Neither the authors nor their employers assume any
responsibility for any harm resulting from the use of this software. The authors do, however, hope that
users will find this software useful for research and other purposes.



Preface to The GPOPS Software

It is noted that GPOPS has been designed to work with the nonlinear programming solver SNOPT (Gill,
et. al., 2007). SNOPT can be obtained from one of the following three sources: (1) for government, commer-
cial, or institutional academic use from Stanford Business Software, Inc.; (2) for individual research use by
contacting Professor Philip Gill via e-mail at pgill@ucsd.edu; (3) For redistribution by contacting the Office
of Technology Licensing at Stanford University. Finally, GPOPS can be adapted to work with other NLP
solvers, but these implementations have not as of yet been developed.

Next, GPOPS has the option of using either forward-mode automatic differentiation or complex-step
differentiation for computing the objective function gradient and the constraint Jacobian. Both complex-
step differentiation and forward-mode automatic differentiation are now built-in options in GPOPS and can
be invoked using the options as specified later in this manual In addition, it is noted that earlier versions of
GPOPS had the ability to use the following third-party automatic differentiators:

• Interval Laboratory (INTLAB): http://www.ti3.tu-harburg.de/rump/intlab/

• Matlab Automatic Differentiation (MAD): http://matlabad.com

INTLAB is developed by Prof. Siegfried Rump of The University of Hamburg (Germany) while MAD is a
commercial product.

http://www.ti3.tu-harburg.de/rump/intlab/
http://matlabad.com


Changes in User Interface from
GPOPS Versions 1.x

The user should be aware of the fact that the interface to GPOPS has been revised significantly from
GPOPS Version 1.x. In particular, GPOPS 2.x uses a structure-based interface as opposed to an interface
based on cell arrays. The new input format has been chosen because it is more intuitive than the previous
input format. Any applications that the user has coded using the old input format will need to be changed
to the new format. These changes should only take a small effort.



Licensing Agreement

The software GPOPS is distributed under the following license agreement. Regardless of how you obtain
a copy of GPOPS , you must abide by the following terms:



Contents

1 Introduction to Gauss Pseudospectral Optimization Software (GPOPS ) 8
1.1 Gauss Pseudospectral Method Employed by GPOPS . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Gauss Pseudospectral Discretization of Continuous Bolza Problem . . . . . . . . . . . . . . . 10
1.3 KKT Conditions of the NLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 First-Order Optimality Conditions of Continuous Bolza Problem . . . . . . . . . . . . . . . . 12
1.5 Gauss Pseudospectral Discretized Necessary Conditions . . . . . . . . . . . . . . . . . . . . . 13
1.6 Costate Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Computation of Boundary Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 Organization of GPOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.9 Notation Used Throughout Remainder of This Manual . . . . . . . . . . . . . . . . . . . . . . 17

2 Constructing an Optimal Control Problem in GPOPS 18
2.1 Preliminary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Call to GPOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Syntax for Setup Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Specifying Function Names Used in Optimal Control Problem . . . . . . . . . . . . . . . . . . 19
2.5 Syntax for limits Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Syntax for linkages Array of Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Syntax of Each Function in Optimal Control Problem . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Specifying an Initial Guess of The Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 Scaling of Optimal Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.10 Different Options for Specification of Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11 Output of Execution of GPOPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12 Useful Information for Debugging a GPOPS Problem . . . . . . . . . . . . . . . . . . . . . . . 38

3 Examples of Using GPOPS 40
3.1 Hyper-Sensitive Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Bryson-Denham Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Multiple-Stage Launch Vehicle Ascent Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Minimum Time-to-Climb of a Supersonic Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Some Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Chapter 1

Introduction to Gauss Pseudospectral
Optimization Software (GPOPS )

Gauss Pseudospectral Optimization Software (GPOPS ) is a software program written in MATLAB1 R© for
solving multiple-phase optimal control problems of the following form. Given a set of P phases (where
p = 1, . . . , P ), minimize the cost functional

J =
P∑

p=1

J (p) =
P∑

p=1

[
Φ(p)(x(p)(t0), t0,x(p)(tf ), tf ; q(p)) + L(p)(x(p)(t),u(p)(t), t; q(p))dt

]
(1–1)

subject to the dynamic constraint

ẋ(p) = f (p)(x(p),u(p), t; q(p)), (p = 1, . . . , P ), (1–2)

the boundary conditions

φmin ≤ φ(p)(x(p)(t0), t(p)
0 ,x(p)(tf ), t(p)

f ; q(p)) ≤ φmax, (p = 1, . . . , P ), (1–3)

the inequality path constraints

C(p)(x(p)(t),u(p)(t), t; q(p)) ≤ 0, (p = 1, . . . , P ), (1–4)

and the phase continuity (linkage) constraints

P(s)(x(ps
l )(tf ), t(p

s
l )

f ; q(ps
l ),x(ps

u)(t0), t(p
s
u)

0 ; q(ps
u)) = 0, (pl, pu ∈ [1, . . . , P ], s = 1, . . . , L) (1–5)

where x(p)(t) ∈ Rnp , u(p)(t) ∈ Rmp , q(p) ∈ Rqp , and t ∈ R are, respectively, the state, control, static
parameters, and time in phase p ∈ [1, . . . , P ], L is the number of phases to be linked, ps

l ∈ [1, . . . , P ], (s =
1, . . . , L) are the “left” phase numbers, and ps

u ∈ [1, . . . , P ], (s = 1, . . . , L) are the “right” phase numbers.
While much of the time a user may want to solve a problem consisting of multiple phases, it is important

to note that the phases need not be sequential. To the contrary, any two phases may be linked provided that the
independent variable does not change direction (i.e., the independent variable moves in the same direction
during each phase that is linked). A schematic of how phases can potentially be linked is given in Fig. 1.1.

1.1 Gauss Pseudospectral Method Employed by GPOPS
The method employed by GPOPS is the Gauss Pseudospectral Method (GPM). The GPM is an orthogonal
collocation method where the collocation points are the Legendre-Gauss points. The theory of the GPM can

1MATLAB is a registered trademark of The Mathworks, Inc., One Apple Hill, Natick, MA



1.1 Gauss Pseudospectral Method Employed by GPOPS 9

Phase 1 Phase 2 Phase 3

Phase 5

Phase 4

Tr
aj

ec
to

ry

time

Phases 1 and 2 Connected Phases 2 and 3 Connected
Phases 2 and 5 Connected

Phases 3 and 4 Connected

Figure 1.1 Schematic of linkages for multiple-phase optimal control problem. The example shown in the
picture consists of five phases where the ends of phases 1, 2, and 3 are linked to the starts of phases 2, 3,
and 4, respectively, while the end of phase 3 is linked to the start of phase 5.

be found in (Benson, 2004; Benson, et al., 2006; Huntington, 2007) while applications of the GPM can be
found in (Huntington, et al., 2005a; Huntington, et al., 2005b; Huntington, et al., 2005c; Huntington and
Rao, 2007a). Strictly speaking, no knowledge of the GPM is required for using GPOPS . However, for
completeness, in this section we describe the mathematics of the GPM. It is noted that this section is taken
largely from Benson, et al. (2006).

1.1.1 Continuous Bolza Problem

Without loss of generality, consider the following optimal control problem. Determine the state, x(τ) ∈ Rn,
control, u(τ) ∈ Rm, initial time, t0, and final time, tf , that minimize the cost functional

J = Φ(x(−1), t0, x(1), tf ) +
tf − t0

2

∫ 1

−1

g(x(τ),u(τ), τ ; t0, tf )dτ (1–6)

subject to the constraints
dx
dτ

=
tf − t0

2
f(x(τ),u(τ), τ ; t0, tf ) (1–7)

φ(x(−1), t0, x(1), tf ) = 0 (1–8)

C(x(τ),u(τ), τ ; t0, tf ) ≤ 0 (1–9)

The optimal control problem of Eqs. (1–6)–(1–9) will be referred to as the continuous Bolza problem. It is noted
that the optimal control problem of Eqs. (1–6)–(1–9) can be transformed from the time interval τ ∈ [−1, 1]
to the time interval t ∈ [t0, tf ] via the affine transformation

t =
tf − t0

2
τ +

tf + t0
2

(1–10)



1.2 Gauss Pseudospectral Discretization of Continuous Bolza Problem 10

1.2 Gauss Pseudospectral Discretization of Continuous Bolza Problem

The direct approach to solving the continuous Bolza optimal control problem of Section 1.1.1 is to discretize
and transcribe Eqs. (1–6)–(1–9) to a nonlinear programming problem (NLP). The Gauss pseudospectral
method, like Legendre and Chebyshev methods, is based on approximating the state and control trajectories
using interpolating polynomials. The state is approximated using a basis of N + 1 Lagrange interpolating
polynomials, L,

x(τ) ≈ X(τ) =
N∑

i=0

X(τi)Li(τ) (1–11)

where Li(τ) (i = 0, . . . , N) are defined as

Li(τ) =
N∏

j=0,j 6=i

τ − τj
τi − τj

(1–12)

Additionally, the control is approximated using a basis ofN Lagrange interpolating polynomialsL∗i (τ), (i =
1, . . . , N) as

u(τ) ≈ U(τ) =
N∑

i=1

U(τi)L∗i (τ) (1–13)

where

L∗i (τ) =
N∏

j=1,j 6=i

τ − τj
τi − τj

(1–14)

It can be seen from Eqs. (1–12) and (1–14) that Li(τ) (i = 0, . . . , N) and L∗i (τ) (i = 1, . . . , N) satisfy the
properties

Li(τj) =
{

1 , i = j
0 , i 6= j

(1–15)

L∗i (τj) =
{

1 , i = j
0 , i 6= j

(1–16)

Differentiating the expression in Eq. (1–11), we obtain

ẋ(τ) ≈ Ẋ(τ) =
N∑

i=0

x(τi)L̇i(τ) (1–17)

The derivative of each Lagrange polynomial at the LG points can be represented in a differential approxi-
mation matrix, D ∈ RN×N+1. The elements of the differential approximation matrix are determined offline
as follows:

Dki = L̇i(τk) =
N∑

l=0

N∏
j=0,j 6=i,l

(τk − τj)

N∏
j=0,j 6=i

(τi − τj)

(1–18)

where k = 1, . . . , N and i = 0, . . . , N . The dynamic constraint is transcribed into algebraic constraints via
the differential approximation matrix as follows:

N∑
i=0

DkiXi −
tf − t0

2
f(Xk,Uk, τk; t0, tf ) = 0 (k = 1, . . . , N) (1–19)



1.3 KKT Conditions of the NLP 11

where Xk ≡ X(τk) ∈ Rn and Uk ≡ U(τk) ∈ Rm (k = 1, . . . , N ). Note that the dynamic constraint is
collocated only at the LG points and not at the boundary points (this form of collocation differs from other
well known pseudospectral methods such as those found in (Elnagar, et al., 1995) and (Elnagar and Kazemi,
1998)). Additional variables in the discretization are defined as follows: X0 ≡ X(−1), and Xf , where Xf is
defined in terms of Xk, (k = 0, . . . , N) and U(τk) (k = 1, . . . , N) via the Gauss quadrature (Davis, 1975)

Xf ≡ X0 +
tf − t0

2

N∑
k=1

wkf(Xk,Uk, τk; t0, tf ) (1–20)

The continuous cost function of Eq. (1–6) is approximated using a Gauss quadrature(Davis, 1975) as

J = Φ(X0, t0,Xf , tf ) +
tf − t0

2

N∑
k=1

wkg(Xk,Uk, τk; t0, tf ) (1–21)

where wk are the Gauss weights. Next, the boundary constraint of Eq. (1–8) is expressed as

φ(X0, t0,Xf , tf ) = 0 (1–22)

Furthermore, the path constraint of Eq. (1–9) is evaluated at the LG points as

C(Xk,Uk, τk; t0, tf ) ≤ 0 (k = 1, . . . , N) (1–23)

The cost function of Eq. (1–21) and the algebraic constraints of Eqs. (1–19), (1–20), (1–22), and (1–23) define
an NLP whose solution is an approximate solution to the continuous Bolza problem. Finally, it is noted that
the above discretization can be employed in multiple-phase problems by transcribing the problem in each
phase using the above discretization and connecting the phases by linkage constraints (as described above).

1.3 KKT Conditions of the NLP

The first-order optimality conditions (i.e., the Karush-Kuhn-Tucker (KKT) conditions) of the NLP can be
obtained using the augmented cost function or Lagrangian. The augmented cost function is formed using
the Lagrange multipliers Λ̃k ∈ Rn, µ̃k ∈ Rc, k = 1, . . . , N , Λ̃F ∈ Rn, and ν̃ ∈ Rq as

Ja = Φ(X0, t0,Xf , tf ) +
tf − t0

2

N∑
k=1

wkg(Xk,Uk, τk; t0, tf )− ν̃Tφ(X0, t0,Xf , tf )

−
N∑

k=1

µ̃T
k C(Xk,Uk, τk; t0, tf )−

N∑
k=1

Λ̃
T

k

(
N∑

i=0

DkiXi −
tf − t0

2
f(Xk,Uk, τk; t0, tf )

)

− Λ̃F
T

(
Xf − X0 −

tf − t0
2

N∑
k=1

wkf(Xk,Uk, τk; t0, tf )

) (1–24)

The KKT conditions are found by setting equal to zero the derivatives of the Lagrangian with respect to X0,
Xk, Xf , Uk, Λ̃k, µ̃k, Λ̃F , ν̃, t0, and tf . The solution to the NLP of Section (1.2) must satisfy the following
KKT conditions:

N∑
i=0

XiDki =
tf − t0

2
fk (1–25)

N∑
i=1

(
Λ̃

T

i

wi
+ Λ̃

T

F

)
D†ki + Λ̃

T

FD
†
kN+1 =

tf − t0
2

(
− ∂gk

∂Xk
−

(
Λ̃

T

k

wk
+ Λ̃

T

F

)
∂fk

∂Xk
+

2
tf − t0

µ̃T
k

wk

∂Ck

∂Xk

) (1–26)



1.4 First-Order Optimality Conditions of Continuous Bolza Problem 12

0 =
∂gk

∂Uk
+

(
Λ̃

T

k

wk
+ Λ̃

T

F

)
∂fk

∂Uk
− 2
tf − t0

µ̃T
k

wk

∂Ck

∂Uk
(1–27)

φ(X0, t0,Xf , tf ) = 0 (1–28)

Λ̃
T

0 = − ∂Φ
∂X0

+ ν̃T ∂φ

∂X0
(1–29)

Λ̃
T

F =
∂Φ
∂Xf

− ν̃T ∂φ

∂Xf
(1–30)

− tf − t0
2

N∑
k=1

wk
∂H̃k

∂t0
+

1
2

N∑
k=1

wkH̃k =
∂Φ
∂t0
− ν̃T ∂φ

∂t0
(1–31)

tf − t0
2

N∑
k=1

wk
∂H̃k

∂tf
+

1
2

N∑
k=1

wkH̃k = − ∂Φ
∂tf

+ ν̃T ∂φ

∂tf
(1–32)

Ck ≤ 0 (1–33)
µ̃jk = 0, when Cjk < 0 (1–34)
µ̃jk ≤ 0, when Cjk = 0 (1–35)

Xf = X0 +
(tf − t0)

2

N∑
k=1

wkfk (1–36)

Λ̃F = Λ̃0 +
tf − t0

2

N∑
k=1

wk

(
− ∂gk

∂Xk
−

(
Λ̃

T

k

wk
+ Λ̃

T

F

)
∂fk

∂Xk
+

2
tf − t0

µ̃T
k

wk

∂Ck

∂Xk

)
(1–37)

where the shorthand notation gk ≡ g(Xk,Uk, τk; t0, tf ), fk ≡ f(Xk,Uk, τk; t0, tf ),
Hk ≡ H(Xk,Λk,µk,Uk, τk; t0, tf ), and Cjk ≡ Cj(Xk,Uk, τk; t0, tf ) is used. Note that the augmented Hamil-
tonian, H̃k, is defined as

H̃k ≡ gk +

(
Λ̃

T

k

wk
+ Λ̃

T

F

)
fk −

2
tf − t0

µ̃T
k

wk
Ck (1–38)

and Λ̃0 is defined as

Λ̃
T

0 ≡ −
∂Φ
∂X0

+ ν̃T ∂φ

∂X0
(1–39)

1.4 First-Order Optimality Conditions of Continuous Bolza Problem

The indirect approach to solving the continuous Bolza problem of Eqs. (1–6)–(1–9) in Section 1.1.1 is to apply
the calculus of variations and Pontryagin’s Maximum Principle (Pontryagin, et al., 1962) to obtain first-
order necessary conditions for optimality (Kirk, 1970). These variational conditions are typically derived
using the augmented Hamiltonian,H, defined as

H(x,λ,µ,u, τ ; t0, tf ) = g(x,u, τ ; t0, tf ) + λT (τ)f(x,u, τ ; t0, tf )− µT (τ)C(x,u, τ ; t0, tf ) (1–40)



1.5 Gauss Pseudospectral Discretized Necessary Conditions 13

where λ(τ) ∈ Rn is the costate andµ(τ) ∈ Rc is the Lagrange multiplier associated with the path constraint.
The continuous-time first-order optimality conditions can be shown to be

dx
dτ

=
tf − t0

2
f(x,u, τ ; t0, tf ) =

tf − t0
2

∂H
∂λ

dλ

dτ
=
tf − t0

2

(
−∂g
∂x
− λT ∂f

∂x
+ µT ∂C

∂x

)
= − tf − t0

2
∂H
∂x

0 =
∂g

∂u
+ λT ∂f

∂u
− µT ∂C

∂u
=
∂H
∂u

φ(x(τ0), t0, x(τf ), tf ) = 0

λ(τ0) = − ∂Φ
∂x(τ0)

+ νT ∂φ

∂x(τ0)
, λ(τf ) =

∂Φ
∂x(τf )

− νT ∂φ

∂x(τf )

H(t0) =
∂Φ
∂t0
− νT ∂φ

∂t0
, H(tf ) = − ∂Φ

∂tf
+ νT ∂φ

∂tf

µj(τ) = 0, when Cj(x,u, τ ; t0, tf ) < 0, j = 1, . . . , c

µj(τ) ≤ 0, when Cj(x,u, τ ; t0, tf ) = 0, j = 1, . . . , c

(1–41)

where ν ∈ Rq is Lagrange multiplier associated with the boundary condition φ. It can be shown that the
augmented Hamiltonian at the initial and final times can be written, respectively, as

H(t0) = − tf − t0
2

∫ 1

−1

∂H
∂t0

dτ +
1
2

∫ 1

−1

Hdτ (1–42)

H(tf ) =
tf − t0

2

∫ 1

−1

∂H
∂tf

dτ +
1
2

∫ 1

−1

Hdτ (1–43)

1.5 Gauss Pseudospectral Discretized Necessary Conditions

In order to discretize the variational conditions of Section (1.4) using the Gauss pseudospectral discretiza-
tion, it is necessary to form an appropriate approximation for the costate. In this method, the costate, λ(τ),
is approximated as follows:

λ(τ) ≈ Λ(τ) =
N+1∑
i=1

λ(τi)L
†
i (τ) (1–44)

where L†i (τ) (i = 1, . . . , N + 1) are defined as

L†i (τ) =
N+1∏

j=1,j 6=i

τ − τj
τi − τj

(1–45)

It is emphasized that the costate approximation is different from the state approximation. In particular, the
basis of N + 1 Lagrange interpolating polynomials L†i (τ) (i = 1, . . . , N + 1) includes the costate at the final
time (as opposed to the initial time which is used in the state approximation). This (non-intuitive) costate
approximation is necessary in order to provide a complete mapping between the KKT conditions and the
variational conditions.

Using the costate approximation of Eq. (1–44), The first-order necessary conditions of the continuous
Bolza problem in Eq. (1–41) are discretized as follows. First, the state and control are approximated using
Eqs. (1–11) and (1–13), respectively. Next, the costate is approximated using the basis of N + 1 Lagrange
interpolating polynomials as defined in Eq. (1–44). The continuous-time first-order optimality conditions
of Eq. (1–41) are discretized using the variables X0 ≡ X(−1), Xk ≡ X(τk) ∈ Rn, and Xf ≡ X(1) for the
state, Uk ≡ U(τk) ∈ Rm for the control, Λ0 ≡ Λ(−1), Λk ≡ Λ(τk) ∈ Rn, and Λf ≡ Λ(1) for the costate,
and µk ≡ µ(τk) ∈ Rc, for the Lagrange multiplier associated with the path constraints at the LG points



1.6 Costate Estimate 14

k = 1, . . . , N . The other unknown variables in the problem are the initial and final times, t0 ∈ R, tf ∈ R,
and the Lagrange multiplier, ν ∈ Rq . The total number of variables is then given as (2n + m + c)N +
4n + q + 2. These variables are used to discretize the continuous necessary conditions of Eq. (1–41) via the
Gauss pseudospectral discretization. Note that the derivative of the state is approximated using Lagrange
polynomials based onN+1 points consisting of theN LG points and the initial time, τ0, while the derivative
of the costate is approximated using Lagrange polynomials based on N + 1 points consisting of the N LG
points and the final time, τf . The resulting algebraic equations that approximate the continuous necessary
conditions at the LG points are given as

N∑
i=0

XiDki =
tf − t0

2
fk (1–46)

N∑
i=1

ΛiD
†
ki + ΛfD

†
kN+1 =

tf − t0
2

(
− ∂gk

∂Xk
−ΛT

k

∂fk

∂Xk
+ µT

k

∂Ck

∂Xk

)
(1–47)

0 =
∂gk

∂Uk
+ ΛT

k

∂fk

∂Uk
− µT

k

∂Ck

∂Uk
(1–48)

φ(X0, t0,Xf , tf ) = 0 (1–49)

Λ0 = − ∂Φ
∂X0

+ νT ∂φ

∂X0
(1–50)

Λf =
∂Φ
∂Xf

− νT ∂φ

∂Xf
(1–51)

− tf − t0
2

N∑
k=1

wk
∂Hk

∂t0
+

1
2

N∑
k=1

wkHk =
∂Φ
∂t0
− νT ∂φ

∂t0
(1–52)

tf − t0
2

N∑
k=1

wk
∂Hk

∂tf
+

1
2

N∑
k=1

wkHk = − ∂Φ
∂tf

+ νT ∂φ

∂tf
(1–53)

µjk = 0, when Cjk < 0 (1–54)
µjk ≤ 0, when Cjk = 0 (1–55)

for k = 1, . . . , N and j = 1, . . . , c. The final two equations that are required (in order to link the initial and
final state and costate, respectively) are

Xf = X0 +
tf − t0

2

N∑
k=1

wkfk (1–56)

Λf = Λ0 +
tf − t0

2

N∑
k=1

wk

(
− ∂gk

∂Xk
−ΛT

k

∂fk

∂Xk
+ µT

k

∂Ck

∂Xk

)
(1–57)

The total number of equations in set of discrete necessary conditions of Eqs. (1–46)–(1–57) is (2n+m+c)N+
4n+ q+ 2 (the same number of unknown variables). Solving these nonlinear algebraic equations would be
an indirect solution to the optimal control problem.

1.6 Costate Estimate

One of the key features of the Gauss pseudospectral method is the ability to map the KKT multipliers of the
NLP to the costates of the continuous-time optimal control problem. In particular, using the results of Sec-
tions 1.3 and 1.5, a costate estimate for the continuous Bolza problem can be obtained at the Legendre-Gauss
points and the boundary points. This costate estimate is taken from (Benson, 2004) and is summarized be-
low via the Gauss Pseudospectral Costate Mapping Theorem:



1.7 Computation of Boundary Controls 15

Theorem 1 (Gauss Pseudospectral Costate Mapping Theorem) The Karush-Kuhn-Tucker (KKT)
conditions of the NLP are exactly equivalent to the discretized form of the continuous first-order necessary conditions
of the continuous Bolza problem when using the Gauss pseudospectral discretization. Furthermore, a costate estimate
at the initial time, final time, and the Legendre-Gauss points can be found from the KKT multipliers, Λ̃k, µ̃k, Λ̃F ,
and ν̃,

Λk =
Λ̃k

wk
+ Λ̃F , µk =

2
tf − t0

µ̃k

wk
, ν = ν̃

Λ(t0) = Λ̃0 , Λ(tf ) = Λ̃F

(1–58)

Proof of Theorem 1 Using the substitution of Eq. (1–58), it is seen that Eqs. (1–25)–(1–37) are exactly the same
as Eqs. (1–46)–(1–57).

Theorem 1 indicates that solving the NLP derived from the Gauss pseudospectral transcription of the op-
timal control problem is equivalent to applying the Gauss pseudospectral discretization to the continuous-
time variational conditions. Fig. 1.2 shows the solution path for both the direct and indirect methods.

Continuous-Time Optimal
Control Problem

Continous Hamiltonian
Boundary-Value Problem

Discretized Hamiltonian
Boundary-Value Problem

KKT ConditionsDiscrete Nonlinear
Programming Problem

Direct            

Indirect    

Transcription at
G

auss Points

Transcription at
G

auss Points

Optimality
Conditions

Optimality
Conditions

Costate
Mapping

Figure 1.2 Equivalence of indirect and direct forms using the Gauss pseudospectral discretization.

1.7 Computation of Boundary Controls

It is seen in the GPM that the control is discretized only at the LG points and is not disctretized at either the
initial or the terminal point. Consequently, the solution of the NLP defined by Eqs. (1–19), (1–20), (1–21),
(1–22), and (1–23) does not produce values of the controls at the boundaries. The ability to obtain accurate
initial and terminal controls can be important in many applications, particularly in guidance where real-
time computation of the initial control is of vital interest.



1.7 Computation of Boundary Controls 16

At first glance, it may seem that the lack of control information at the boundaries can be overcome sim-
ply via extrapolation of the control at the LG points. However, multiple reasons exist as to why this is not
the best approach. First, no particular functional form for the control is assumed in the GPM discretization.
As a result, the best function to use for extrapolation is ambiguous. Seccond, any reasonable extrapola-
tion of the control (e.g., linear, quadratic, cubic, or spline) may violate a path constraint which, in general,
will render the extrapolated control infeasible. Third, even if the extrapolated control is feasible, it will
not satisfy the required optimality conditions at the boundaries (i.e., the control will be suboptimal with
respect to the NLP). Consequently, it is both practical and most rigorous to develop a systematic procedure
to compute the boundary controls. We now show how to compute the boundary controls from the primal
and dual solutions of the NLP arising from the Gauss pseudospectral method. It is noted that the algorithm
described in this section is taken from Huntington, et. al. (2007b)

Because the approach for computing the initial and terminal control is identical, we focus on the com-
putation of the initial control. First, recalling the augmented Hamiltonian, H̃a, for the continuous-time
optimal control problem, we have

H̃a(x,u,λ,µ) ≡ g + λT f− µT C (1–59)

where shorthand notation is used. Now recall that, from the minimum principle of Pontryagin, at every
instant of time the optimal control is the control u∗(τ) ∈ U that satisfies the condition

H̃a(x∗,u∗,λ∗,µ∗) ≤ H̃a(x∗,u,λ∗,µ∗) (1–60)

where U is the feasible control set. Consequently, for a given instant of time τ where x∗(τ), λ∗(τ), and
µ∗(τ) are known, Eq. (1–60) is a constrained optimization problem in the u(τ) ∈ Rm. In order to solve this
constrained optimization problem at the initial time, it is necessary to know x∗(τ0), λ∗(τ0), and µ∗(τ0).

Consider now the information that can be obtained by solving the NLP associated with the GPM. In
particular, the primal solution to the NLP produces X(τ0) while the dual solution to the NLP can be ma-
nipulated algebraically to obtain the initial costate, Λ∗(τ0). However, because the NLP does not evaluate
that path constraint at the boundaries, there is no associated Lagrange multiplier µ̃(τ0). This apparent im-
pediment can be overcome by applying the minimum principle in a manner somewhat different from that
given in Eq. (1–60). In particular, suppose we let H be the Hamiltonian (not the augmented Hamiltonian),
whereH is defined as

H(x,u,λ) ≡ g + λT f (1–61)

It is seen in Eq. (1–61) that the term involving the path constraint is not included. The path constraint is
instead incorporated into the feasible control set. In particular, suppose we let V0

V0 = U
⋂
C0 (1–62)

where V0 is the intersection of the original set of feasible controls at time τ0, denoted U , with the set of all
controls at time τ0 that satisfy the inequality constraint of Eq. (1–23), denoted C0. Then, using the values of
X(τ0) and Λ(τ0), the following modified optimization problem in m variables U(τ0) ∈ Rm can be solved to
obtain the initial control, U(τ0):

minimize H(X(t0),U(τ0),Λ(τ0), τ0; t0, tf )
U(τ0) ∈ V0

(1–63)

It is noted that, because V0 is restricted by the inequality path constraint at τ0, the solution of U(τ0) is
equivalent to the solution of the following problem:

minimize H(X(τ0),U(τ0),Λ(τ0), τ0; t0, tf )
U(τ0) ∈ U
subject to

C(X(τ0),U(τ0), τ0; t0, tf ) ≤ 0

(1–64)

Interestingly, if the constraint is active, then the initial path constraint multiplier, µ̃(τ0), will also be deter-
mined by the minimization problem of Eq. (1–64). Finally, as alluded to above, the control at the terminal



1.8 Organization of GPOPS 17

time, U(τf ), can be obtained by solving the minimization problem of Eq. (1–64) at τ = τf , i.e.,

minimize H(X(τf ),U(τf ),Λ(τf ), τf ; t0, tf )
U(tf ) ∈ U
subject to

C(X(τf ),U(τf ), τf ; t0, tf ) ≤ 0

(1–65)

1.8 Organization of GPOPS
GPOPS is organized as follows. In order to specify the optimal control problem that is to be solved, the
user must write MATLAB functions that define the following functions in each phase of the problem:

(1) the cost functional

(2) the right-hand side of the differential equations and the path constraints(i.e., the differential-algebraic
equations)

(3) the boundary conditions (i.e., event conditions)

(4) the linkage constraints (i.e., how the phases are connected)

In addition, the user must also specify the lower and upper limits on every component of the following
quantities:

(1) initial and terminal time of the phase

(2) the state at the following points in time:

• at the beginning of the phase

• during the phase

• at the end of the phase

(3) the control

(4) the static parameters

(5) the path constraints

(6) the boundary conditions

(7) the phase duration (i.e., total length of phase in time)

(8) the linkage constraints (i.e., phase-connect conditions)

It is noted that each of the functions must be defined for each phase of the problem. The remainder of
this document is devoted to describing in detail the MATLAB R© syntax for describing the optimal control
problem and each of the constituent functions.

1.9 Notation Used Throughout Remainder of This Manual

The following notation is adopted for use throughout the remainder of this manual. First, all user-specified
names will be denoted by slanted characters (not italic, but slanted). Second, any item denoted by boldface
characters are pre-defined and cannot be changed by the user. Finally, users with color capability will see
the slanted characters in red and will see the boldface characters in blue.



Chapter 2

Constructing an Optimal Control
Problem in GPOPS

We now proceed to describe the constructs required to specify an optimal control problem in GPOPS .
We note that the key MATLAB programming elements used in constructing an optimal control problem in
GPOPS are structure and arrays of structures.

2.1 Preliminary Information

Before proceeding to the details of setting up a problem in GPOPS , the following few preliminary details
are useful. First, it is important to understand that the GPOPS interface is laid out in phases. Using a
phase-based approach, it is possible to describe each segment of the problem independently of the other
segments. The segments are then linked together using linkage conditions (or phase-connect conditions).
Second, it is important to note that GPOPS uses the vectorization capabilities of MATLAB. In this vein all
matrices and vectors in GPOPS are oriented column-wise for maximum efficiency. As you read through
this chapter, please keep in mind the column-wise orientation of all matrices used in GPOPS .

2.2 Call to GPOPS
The call to GPOPS is deceptively simple and is given as follows:

output=gpops(setup)

The input setup is a user-defined structure that contains all of the information about the optimal control
problem to be solved 1. Finally, the variable output is a structure that contains all of the information from
the original problem plus the information from the run itself (i.e., the solution)2. The remainder of this
chapter is devoted to describing the fields in the structure setup.

2.3 Syntax for Setup Structure

The user-defined structure setup contains required fields and optional fields. The required fields in the
structure setup are as follows:

• name: a string containing the name of the problem.

• funcs: a structure whose elements contain the names of the user-defined function in the problem (see
Section 2.4 below).

1see the detailed description of setup in Section 2.3
2See the detailed description of the output in Section 2.11.



2.4 Specifying Function Names Used in Optimal Control Problem 19

• limits: an array of structures that contains the information about the lower and upper limits on the
variables and constraints in each phase of the problem (see Section 2.5 below).

• guess: an array of structures that contains contains a guess of the solution in each phase of the problem
(see Section 2.8 below).

The optional fields (and their default values) are as follows:

• linkages: an array of structures that contains the information about the lower and upper limits of the
linkage constraints (see Section 2.6 below).

• direction: a string that indicates the direction of the independent variable. The two possible values
for this string are “increasing” and “decreasing”. (default=“increasing”)

• autoscale: a string that indicates whether or not the user would like the optimal control problem to
be scaled automatically before it is solved. (default=“off”) (see Section 2.9 below).

• derivatives: a string indicating differentiation method to be used. Possible values for this string
are “numerical”, “complex”, “automatic”, “automatic-INTLAB”, “automatic-MAD”, “analytic” (de-
fault=“numerical”) (see Section 2.10 below).

• checkDerivatives: a flag to check user defined analytic derivatives (default=“0”) (see Section 2.10
below).

• maxIterations: a positive integer indicating the maximum number of iterations that can be taken by
the NLP solver.

2.4 Specifying Function Names Used in Optimal Control Problem

The syntax for specifying the names of the MATLAB functions is done by setting the fields in the structure
FUNCS and is given as follows:

setup.funcs.cost = ‘costfun.m′

setup.funcs.dae = ‘daefun.m′

setup.funcs.event = ‘eventfun.m′

setup.funcs.link = ‘linkfun.m′

Example of Specifying Function Names for Use in GPOPS

Suppose we have a problem whose cost functional, differential-algebraic equations, event constraints, and
linkage constraints are defined, respectively, via the user-defined functions mycostfun.m, mydaefun.m,
myeventfun.m, and mylinkfun.m. Then the syntax for specifying these functions for use in GPOPS is
given as follows:

setup.funcs.cost = ’mycostfun’;
setup.funcs.dae = ’mydaefun’;
setup.funcs.event = ’myeventfun’;
setup.funcs.link = ’mylinkfun’;

2.5 Syntax for limits Structure

Once the user-defined structure setup has been defined, the next step in setting up a problem for use with
GPOPS is to create an array of structures of length P (where P is the number of phases) called limits,
where limits is a field of the structure setup. The array of structures limits is specified as follows:



2.5 Syntax for limits Structure 20

• limits(p).nodes: scalar value specifying the number of nodes in phase p ∈ [1, . . . , P ].

• limits(p).time.min and limits(p).time.max: row vectors, each of length two, that contain the infor-
mation about the lower and upper limits, respectively, on the initial and terminal time in phase
p ∈ [1, . . . , P ]. The row vectors limits(p).time.min and limits(p).time.max have the following form:

limits(p).time.min =
[
tmin
0 tmin

f

]
limits(p).time.max =

[
tmax
0 tmax

f

]
• limits(p).state.min and limits(p).state.max: matrices, each of size np × 3, that contain the lower and

upper limits, respectively, on the state in phase p ∈ [1, . . . , P ]. Each of the columns of the matrices
limits(p).state.min and limits(p).state.max are given as follows:

– limits(p).state.min(:,1): a column vector containing the lower (upper) limits on the state at the
start of phase p ∈ [1, . . . , P ].

– limits(p).state.min(:,2): a column vector containing the lower (upper) limits on the state at the
during phase p ∈ [1, . . . , P ].

– limits(p).state.min(:,3): a column vector containing the lower (upper) limits on the state at the
terminus of phase p ∈ [1, . . . , P ].

The matrices limits(p).state.min and limits(p).state.max then have the following form:

limits(p).state.min =

 xmin
10 xmin

1 xmin
1f

...
...

...
xmin

n0 xmin
n xmin

nf



limits(p).state.max =

 xmax
10 xmax

1 xmax
1f

...
...

...
xmax

n0 xmax
n xmax

nf


• limits(p).control.min and limits(p).control.max: column vectors, each of length mp, that contain the

lower and upper limits, respectively, on the controls in phase p ∈ [1, . . . , P ]. The column vectors
limits(p).control.min and limits(p).control.max have the following form:

limits(p).control.min =

 umin
1
...

umin
m



limits(p).control.max =

 umax
1
...

umax
m


• limits(p).parameter.min and limits(p).parameter.max: column vectors, each of length qp, that contain

the lower and upper limits, respectively, on the static parameters in phase p ∈ [1, . . . , P ]. The column
vectors limits(p).parameter.min and limits(p).parameters.max have the following form:

limits(p).parameter.min =

 qmin
1
...

qmin
qp



limits(p).parameter.max =

 qmax
1
...

qmax
qp





2.5 Syntax for limits Structure 21

• limits(p).path.min and limits(p).path.max: column vectors, each of length rp, that contain the lower
and upper limits, respectively, on the path constraints in phase p ∈ [1, . . . , P ]. The column vectors
limits(p).path.min and limits(p).path.max have the following form:

limits(p).path.min =

 cmin
1
...

cmin
rp



limits(p).path.max =

 cmax
1
...

cmax
rp


• limits(p).event.min and limits(p).event.max: column vectors, each of length ep, that contain the lower

and upper limits on the event constraints in phase p ∈ [1, . . . , P ]. The column vectors limits(p).event.min
and limits(p).event.max have the following form:

limits(p).event.min =

 φmin
1
...

φmin
ep



limits(p).event.max =

 φmin
1
...

φmin
ep


• limits(p).duration.min and limits(p).duration.max: scalars that contain the lower and upper limits on

the duration of phase p ∈ [1, . . . , P ]. The scalars limits(p).duration.min and limits(p).duration.max
have the following form:

limits(p).duration.min = Tmin

limits(p).duration.max = Tmax

Note: any fields that do not apply to a problem (i.e. a problem without event constraints, path constraints,
etc.) may be omitted or left as empty matrices (“[]”).

Example of Setting Up a Limits Cell Array

As an example of setting up a limits cell array in GPOPS , consider the following two-phase optimal
control problem. In particular, suppose that phase 1 of the problem has 3 states, 2 controls, 2 path constraints,
and 5 event constraints. Suppose further that the lower and upper limits on the initial and terminal time in
the first phase are given as

0 ≤ t
(1)
0 ≤ 0

50 ≤ t
(1)
f ≤ 100

Next, suppose that the lower and upper limits on the states at the start of the first phase are given, respec-
tively, as

1 ≤ x1(t(1)0 ) ≤ 1
−3 ≤ x2(t(1)0 ) ≤ 0

0 ≤ x2(t(1)0 ) ≤ 5

Similarly, suppose that the lower and upper limits on the states during the first phase are given, respectively,
as

1 ≤ x1(t(1)) ≤ 10
−50 ≤ x2(t(1)) ≤ 50
−20 ≤ x2(t(1)) ≤ 20



2.5 Syntax for limits Structure 22

Finally, suppose that the lower and upper limits on the states at the terminus of the first phase are given,
respectively, as

5 ≤ x1(t(1)f ) ≤ 7
2 ≤ x2(t(1)f ) ≤ 2.5
−π ≤ x2(t(1)f ) ≤ π

Next, suppose that the lower and upper limits on the controls during the first phase are given, respectively,
as

−50 ≤ u1(t(1)) ≤ 50
−100 ≤ u2(t(1)) ≤ 100

Next, suppose that the lower and upper limits on the path constraints during the first phase are given,
respectively, as

−10 ≤ p1(t(1)) ≤ 10
1 ≤ p2(t(1)) ≤ 1

Next, suppose that the lower and upper limits on the event constraints of the first phase are given, respec-
tively, as

0 ≤ φ
(1)
1 ≤ 1

−2 ≤ φ
(1)
2 ≤ 4

8 ≤ φ
(1)
3 ≤ 20

3 ≤ φ
(1)
4 ≤ 3

10 ≤ φ
(1)
5 ≤ 10

In a similar manner, suppose that phase 2 of the problem contains the following information: 4 states, 3
controls, 1 path constraint, and 4 event constraints. Also, suppose now that the lower and upper limits on
the initial and terminal time in the first phase are given, respectively, as

50 ≤ t
(2)
0 ≤ 100

100 ≤ t
(2)
f ≤ 200

Next, suppose that the lower and upper limits on the states at the start of the second phase are given,
respectively, as

3 ≤ x1(t(2)0 ) ≤ 3
−10 ≤ x2(t(2)0 ) ≤ 4

7 ≤ x3(t(2)0 ) ≤ 18
25 ≤ x4(t(2)0 ) ≤ 75

Similarly, suppose that the lower and upper limits on the states during the second phase are given, respec-
tively, as

−200 ≤ x1(t(2)) ≤ 200
−50 ≤ x2(t(2)) ≤ 50
−20 ≤ x3(t(2)) ≤ 20
−80 ≤ x4(t(2)) ≤ 80

Finally, suppose that the lower and upper limits on the states at the terminus of the second phase are given,
respectively, as

12 ≤ x1(t(2)f ) ≤ 12
−60 ≤ x2(t(2)f ) ≤ 30
−90 ≤ x3(t(2)f ) ≤ 10
100 ≤ x4(t(2)f ) ≤ 500

Next, suppose that the lower and upper limits on the controls during the second phase are given, respec-
tively, as

−90 ≤ u1(t(2)) ≤ 90
−120 ≤ u2(t(2)) ≤ 120



2.5 Syntax for limits Structure 23

Next, suppose that the lower and upper limits on the path constraints during the second phase are given,
respectively, as

−10 ≤ p1(t(2)) ≤ 10
1 ≤ p2(t(2)) ≤ 1

Finally, suppose that the lower and upper limits on the events constraints of the second phase phase are
given, respectively, as

0 ≤ φ
(2)
1 ≤ 1

−2 ≤ φ
(2)
2 ≤ 4

8 ≤ φ
(2)
3 ≤ 20

3 ≤ φ
(2)
4 ≤ 3

Then a MATLAB code that would generate the above specification is given as follows:

iphase = 1; % Set the phase number to 1
limits(iphase).nodes = 10;
limits(iphase).time.min = [0 50];
limits(iphase).time.max = [0 100];
limits(iphase).state.min = [1 1 5; -3 -50 2; 0 -20 -pi];
limits(iphase).state.max = [1 10 7; 0 50 2.5; 5 20 pi];
limits(iphase).control.min = [-50; -100];
limits(iphase).control.max = [ 50; 100];
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = [-10; 1];
limits(iphase).path.max = [10; 1];
limits(iphase).event.min = [0; -2; 8; 3; 10];
limits(iphase).event.max = [1; 4; 20; 3; 10];

iphase = 2; % Set the phase number to 2
limits(iphase).nodes = 10;
limits(iphase).time.min = [50 100];
limits(iphase).time.max = [100 200];
limits(iphase).state.min = [3 -200 12; -10 -50 -60; 7 -20 -90; 25 -80 100];
limits(iphase).state.max = [3 200 12; 4 50 30; 18 20 10; 75 80 500];
limits(iphase).control.min = [-90; -120];
limits(iphase).control.max = [ 90; 120];
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = [-10; 10];
limits(iphase).path.max = [1; 1];
limits(iphase).event.min = [0; -2; 8; 3];
limits(iphase).event.max = [1; 4; 20; 3];

setup.limits = limits;

Note: in order to make the coding easier, we have introduced the auxiliary integer variableiphase so that
the user can more easily reuse code from phase to phase.



2.6 Syntax for linkages Array of Structures 24

2.6 Syntax for linkages Array of Structures

Another required field in the structure setup is an array of structures called linkages that defines the way
that the phases are to be linked. If there is only one phase in the problem, then setup.linkages may be set
to “[]”. If the problem contains more than a single phase, then linkages is an array of structures of length
L (where L is the number of pairs of phases to be linked). The array of structures linkages is specified as
follows:

• linkages(s).min: a column vector of length ls containing the lower limits on the sth pair of linkages.

• linkages(s).max: a column vector of length ls containing the upper limits on the sth pair of linkages.

• linkages(s).left.phase: an integer containing the “left” phase in the pair of phases to be connected

• linkages(s).right.phase: an integer containing the “right” phase in the pair of phases to be connected

Note that we use the terminology “left” and “right” in the sense of viewing a graph of the trajectory on a
page where time is increasing to the right. Thus, the “left” phase corresponds to the terminus of a phase
while the “right” phase corresponds to the start of a phase.

2.7 Syntax of Each Function in Optimal Control Problem

Now that we know which functions GPOPS will use, the next step is to discuss the syntax of each of these
functions. In general, the syntax for each function will differ because the quantities being evaluated are
different in nature. In this section we will explain the syntax of each function.

2.7.1 Syntax of Function Used to Evaluate Cost

The syntax used to evaluate a user-defined cost functional is given as follows:

function [Mayer,Lagrange]=mycostfun(solcost);

where mycostfun.m is the name of the MATLAB function, solcost is the input to the function, and Mayer
and Lagrange are the outputs. The input solcost is a structure while the outputs Mayer and Lagrange are
the endpoint cost and the integrand of the integrated cost, respectively. The input structure solcost has the
following fields (note that N=number of LG points which are on the interior of the time interval):

• solcost.phase: the phase number

• solcost.initial.time: the initial time in phase solcost.phase

• solcost.initial.state: the initial state in phase solcost.phase

• solcost.terminal.time: the terminal time in phase solcost.phase

• solcost.terminal.state: the terminal state in phase solcost.phase

• solcost.time: a column vector of length N that contains the time (excluding the initial and terminal
points) in phase solcost.phase

• solcost.state: a matrix of size N × n (where n is the number of states) that contains the values of the
state (excluding the initial and terminal points) in phase solcost.phase

• solcost.control: a matrix of size N ×m (where m is the number of controls) that contains the values of
the control (excluding the initial and terminal points) in phase solcost.phase

• solcost.parameter: a column vector of length q that contains the values of the static parameters in
phase solcost.phase

Finally, the outputs of mycostfun are as follows:

• Mayer: a scalar, i.e., size 1× 1

• Lagrange: a column vector of size N × 1



2.7 Syntax of Each Function in Optimal Control Problem 25

2.7.2 Warning About Outputs to Cost Function

For many optimal control problems the output Lagrange in the user-defined cost function mycostfun is
zero. As such, it is appealing to set Lagrange to zero by the MATLAB command

Lagrange=0; (2–1)

However, the integrand cannot be set to a scalar value!. Instead, the integrand must be set to a column
vector of zeros!. The way to set the integrand to zero and that will work in all cases (i.e., numerical or
automatic differentiation) is as follows:

Lagrange=zeros(size(solcost.time); (2–2)

The user is urged to use the syntax of Eq. (2–2) whenever the integrand is identically zero.

Example of a Cost Functional

Suppose we have a two-phase optimal control problem that uses a cost functional named “mycost-
fun.m”. Suppose further that the dimension of the state in each phase is 2 while the dimension of the
control in each phase is 2. Also, suppose that the endpoint and integrand cost in phase 1 are given, respec-
tively, as

Φ(1)(x(1)(t0), t(1)0 ,x(1)(tf ), t(1)f ) = xT (tf )Sx(tf )
L(1)(x(1)(t),u(1)(t), t) = xT Qx + uT Ru

while the endpoint and integrand in phase 2 are given, respectively, as

Φ(2)(x(2)(t(2)0 ), t(2)0 ,x(2)(t(2)f ), t(2)f ) = xT (tf )x(tf )
L(2)(x(2)(t),u(2)(t), t) = uT Ru

Then the syntax of the above cost functional is given as follows:

function [endpoint,integrand]=mycostfun(solcost);

Q = [5 0; 0 2];
R = [1 0; 0 3];
S = [1 5; 5 1];
iphase = solcost.phase;
t0 = solcost.initial.time;
x0 = solcost.initial.state;
tf = solcost.terminal.time;
xf = solcost.terminal.state;
t = solcost.time;
x = solcost.state;
u = solcost.control;
p = solcost.parameter;

if iphase==1,
Mayer = dot(xf’,S*xf’);
Lagrange = dot(x,x*Q’,2)+dot(u,u*R’,2); % Note transposes

elseif iphase==2,
Mayer = dot(xf,xf);
Lagrange = dot(u,u*R’,2); % Note transposes

end;

It is noted in the above function call that the third argument in the command dot takes the dot product
across the rows, thereby producing a column vector.



2.7 Syntax of Each Function in Optimal Control Problem 26

2.7.3 Syntax of Function Used to Evaluate Differential-Algebraic Equations

The calling syntax used evaluate the right-hand side of a user-defined vector of differential equations is
given as follows:

function dae=mydaefun(soldae);

where mydaefun.m is the name of the MATLAB function, soldae is the input to the function, and dae is the
output (i.e., the right-hand side of the differential equations and the values of the path constraints). The
input soldae is a structure while the output dae is a matrix of size N × (n + c) where n is the number of
differential equations, c is the number of path constraints, and N is the number of LG points. The input
structure soldae has the following fields:

• soldae.phase: the phase number

• soldae.time: a column vector of length N that contains the time (excluding the initial and terminal
points) in phase soldae.phase

• soldae.state: a matrix of size N × n (where n is the number of states) that contains the values of the
state (excluding the initial and terminal points) in phase soldae.phase

• soldae.control: a matrix of size N ×m (where m is the number of controls) that contains the values of
the control (excluding the initial and terminal points) in phase soldae.phase

• soldae.parameter: a column vector of length q that contains the values of the static parameters in
phase soldae.phase

Finally, the output of myodefun are as follows:

• dae: a matrix of size N × (n + c) containing the values of the right-hand side of the n differential
equations and the c path constraints evaluated at the N LG points

Example of a Differential-Algebraic Equation

Suppose we have a two-phase optimal control problem that uses a differential equation function called
“mydaefun.m”. Suppose further that the dimension of the state in each phase is 2, the dimension of the
control in each phase is 2. Furthermore, suppose that there are no path constraints in phase 1 and one path
constraint in phase 2. Next, suppose that the differential equations in phase 1 are given as

ẋ1 = −x2
1 − x2

2 + u1u2

ẋ2 = −x1x2 + 2(u1 + u2)

Also, suppose that the differential equations in phase 2 are given as

ẋ1 = sin(x2
1 + x2

2) + u1u
2
2

ẋ2 = − sinx1 cosx2 + 2u1u2

Finally, suppose that the path constraint in phase 2 is given as

u2
1 + u2

2 = 1

Then a MATLAB code that will evaluate the above system of differential-algebraic equations is given as
follows:

function dae = mydaefun(soldae);

iphase = soldae.phase;
t = soldae.time;
x = soldae.state;



2.7 Syntax of Each Function in Optimal Control Problem 27

u = soldae.control;
p = soldae.parameter;

if iphase==1,
x1dot = -x(:,1).ˆ2-x(:,2).ˆ2 + u(:,1).*u(:,2);
x2dot = -x(:,1).*x(:,2) + 2*(u(:,1)+u(:,2));
path = [];

elseif iphase==2,
x1dot = sin(x(:,1).ˆ2 + x(:,2).ˆ2) + u(:,1).*u(:,2).ˆ2;
x2dot = -sin(x(:,1)).*cos(x(:,2))+2*u(:,1).*u(:,2);
path = u(:,1).ˆ2+u(:,2).ˆ2;

end;
dae = [x1dot x2dot path];

2.7.4 Syntax of Function Used to Evaluate Event Constraints

The syntax used to evaluate a user-defined vector of event constraints is given as follows:

function events=myeventfun(solevents,iphase);

where myeventfun.m is the name of the MATLAB function, solevents and iphase are the inputs to the
function, and event is the output (i.e., the value of the event constraints). The inputs solevents and iphase
are a cell array and an integer, respectively, while the output event is a column vector of length e where e is
the number of event constraints. The input cell array solevents has the following elements:

• solevents.phase: the phase number

• solevents.initial.time: the time at the start of the phase

• solevents.initial.state: the state at the start of the phase

• solevents.terminal.time: the time at the terminus of the phase

• solevents.terminal.state: the state at the terminus of the phase

• solevents.parameter: the static parameters in the phase

Example of Event Constraints

Suppose we have a one-phase optimal control problem that has two initial event constraints and three
terminal event constraints. Suppose further that the number of states in the phase is six and that the function
that computes the values of these constraints is called “myeventfun.m”. Finally, let the two initial event
constraints be given as

φ01 = x1(t0)2 + x2(t0)2 + x3(t0)2

φ02 = x4(t0)2 + x5(t0)2 + x6(t0)2

while the three terminal event constraints are given as

φf1 = sin(x1(tf )) cos(x2(tf ) + x3(tf ))
φf2 = tan(x2

4(tf ) + x2
5(tf ) + x2

6(tf ))
φf3 = x4(tf ) + x5(tf ) + x6(tf )

Then the syntax of the above event function is given as



2.7 Syntax of Each Function in Optimal Control Problem 28

function events = myeventfun(solevents);

iphase = solevents.phase;
t0 = solevents.initial.time;
x0 = solevents.initial.state;
tf = solevents.terminal.time;
xf = solevents.terminal.state;

ei1 = dot(x0(1:3),x0(1:3));
ei2 = dot(x0(4:6),x0(4:6));
ef1 = sin(xf(1))*cos(xf(2)+xf(3));
ef2 = tan(dot(xf(4:6),xf(4:6)));
ef3 = xf(4)+xf(5)+xf(6);

events = [ei1;ei2;ef1;ef2;ef3];

Finally, it is noted that each event constraint need not be a function of either the initial or the terminal
state, but can also be functions that contain both the initial and terminal state and/or the initial and terminal
time. As an example of an event constraint that contains both the initial and terminal state, consider the
following example.

Example of Event Constraint Containing Both Initial and Terminal State

Suppose we have a one-phase optimal control problem that contains only a single state. Furthermore,
suppose that the problem contains a single event constraint on the difference between the terminal value of
the state and the initial value of the state. Finally, suppose that the function that computes the values of
these constraints is called “myeventfun.m”. Then the event constraint is evaluated as

φ = x(tf )− x(t0)

Then the syntax of the above event function is given as

function events = myeventfun(solevents);

t0 = solevents.initial.time;
x0 = solevents.initial.state;
tf = solevents.terminal.time;
xf = solevents.terminal.state;

events = xf-x0;

2.7.5 Syntax of Function Used to Evaluate Linkage Constraints

The syntax used to define the user defined vector of linkage constraints between two phases is given as
follows:

function links=mylinkfun(sollink);

where mylinkfun.m is the name of the MATLAB function, sollink is the input to the function, and links is
the output (i.e., the value of the linkage constraints). The input sollink is a structure while the output links
is a column vector of length l, where l is the number of event constraints. The input structure sollink has the
following fields:



2.8 Specifying an Initial Guess of The Solution 29

• sollink.left.phase: the left phase of the pair of phases to be linked

• sollink.right.phase: the right phase of the pair of phases to be linked

• sollink.left.state: the state at the terminus of phase sollink.left.phase

• sollink.right.state: the state at the start of phase sollink.right.phase

• sollink.left.parameter: the static parameters in phase sollink.left.phase

• sollink.right.state: the static parameters in phase sollink.right.phase

The terms left and right are conventions adopted to help the user orient the phases on a page from left to
right.

Example of Linkage Constraint

Suppose we have a multiple phase optimal control problem with a simple link between the phases, i.e. the
state of the end of the phase is equal to the state at the beginning of the next phase.

P = xl(tf )− xr(t0)

Then the syntax of the above linkage is given as

function links = mylinkagefun(sollink);

left_phase = sollink.left.phase;
right_phase = sollink.right.phase;
xf_left = sollink.left.state;
p_left = sollink.left.parameter;
x0_left = sollink.right.phase;
p_left = sollink.right.parameter;

links = xf_left - x0_right;

2.8 Specifying an Initial Guess of The Solution

The field guess of the user-defined structure setup contains the initial guess for the problem. The field guess
is an array of structures of length P (where P is the number of phases in the problem). The pth element of
the array of structures guess contains the initial guess of the problem in phase p ∈ [1, . . . , P ]. The fields of
each element of array of structures guess are given as follows:

• guess(p).time: a column vector of length s where s is the number of time points used in the guess

• guess(p).state: a matrix of size s × n where s is the number of time points and n is the number of
states in the phase

• guess(p).control: a matrix of size s×m where s is the number of time points and m is the number of
controls in the phase

• guess(p).parameter: a column vector of length q where q is the number of static parameters in the
phase

It is noted that the element guess(p).time must be monotonic and in the same direction as that specified by
the field direction of the structure setup. Schematically, in each phase of the problem the guess for the time,



2.8 Specifying an Initial Guess of The Solution 30

states, controls, and parameters is structured as follows:

guess(p).time =


t0
t1
t2
· · ·
ts



guess(p).state =


x10 x20 · · · xn0

x11 x21 · · · xn1

...
...

...
...

x1s x2s · · · xns



guess(p).control =


u10 x20 · · · xm0

u11 u21 · · · xm1

...
...

...
...

u1s u2s · · · ums



guess(p).parameter =


q1
q2
...
qq


Example of Specifying an Initial Guess

Suppose we have a two-phase problem that has three states and two controls in phase 1 while it has two
states and one control in phase 2. Furthermore, suppose that we choose five time points for the guess in
phase 1 while we choose 3 time points for the guess in phase 2. A MATLAB code that would create such an
initial guess is given below.

iphase = 1;
guess(iphase).time = [0; 1; 3; 5; 7];
guess(iphase).state(:,1) = [1.27; 3.1; 5.8; 9.6; -13.7272];
guess(iphase).state(:,2) = [-4.2; -9.6; 8.5; 25.73; 100.00];
guess(iphase).state(:,3) = [18.727; 1.827; 25.272; -14.272; 26.84];
guess(iphase).control(:,1) = [8.4; -13.7; -26.5; 19; 87];
guess(iphase).control(:,2) = [-1.2; 5.8; -3.77; 14; 19.787];
guess(iphase).parameter = [];

iphase = 2;
guess(iphase).time = [7; 7.5; 8];
guess(iphase).state(:,1) = [0.5; 1.5; 8];
guess(iphase).state(:,2) = [-0.5; -2.5; 19];
guess(iphase).control(:,1) = [8.4; -13.7; -26.5; 19; 87];
guess(iphase).parameter = [];

setup.guess = guess;

It is noted again that, for the above example, auxiliary integer variables were used to minimize the
cumbersomeness of coding and to minimize the chance of error.



2.9 Scaling of Optimal Control Problem 31

2.9 Scaling of Optimal Control Problem

As with any numerical optimization procedure, the approach employed by GPOPS requires a well-scaled
optimal control problem. In general, it is recommended that the user scale the problem in accordance with
any known large discrepancies either in the sizes of various quantities (i.e., state, control) or the sizes of
the derivatives of such quantities. While it is beyond the scope of this user’s manual to provide a general
procedure for scaling, in an attempt to reduce the burden on the user an automatic scaling procedure has
been developed for use in GPOPS . This procedure is based on the scaling algorithm developed in (Betts,
2001). In order to invoke the automatic scaling routine, the user must set the field autoscale in the user-
defined structure setup to the string “on”.

The automatic scaling procedure operates as follows. The bounds on the variables are used to scale all
components of the state, control, parameters, and time to lie between -1 and 1. As a result, it is essential
that the user provide sensible bounds on all quantities (e.g., do not provide unreasonably large bounds as
this will result in a poorly scaled problem). Next, the constraints are scaled to make the row norms of the
Jacobians of the respective functions approximately unity. The automatic scaling procedure is by no means
foolproof, but it has been found in practice to work well on many problems that otherwise would require
scaling by hand. The advice given here is to try the automatic scaling procedure, but not to use it for too
long if it is proving to be unsuccessful.

2.10 Different Options for Specification of Derivatives

The user has six choices for the computation of the derivatives of the objective function gradient and the
constraint Jacobian for use within the NLP solver. As stated above, the choices for derivatives are “numeri-
cal”, “complex”, “automatic”, “automatic-INTLAB”, “automatic-MAD”, and “analytic” and correspond to
the following differentiation methods:

• setup.derivatives=“numerical”: default finite-differencing algorithm within SNOPT is used.

• setup.derivatives=“complex”: the built-in complex-step differentiation method is used.

• setup.derivatives=“automatic”, the built-in automatic differentiator is used.

• setup.derivatives=“automatic-INTLAB”: automatic differentiation using the third-party program INT-
LAB is used (if the program INTLAB is installed on your computer).

• setup.derivatives=“automatic-MAD”: Matlab Automatic Differentiation (MAD) is used (if the pro-
gram MAD is installed on your computer)

• setup.derivatives=“analytic”: analytic derivatives (supplied by the user) are used.

It is noted that INTLAB can be obtained from Prof. Siegfried Rump by visiting the URL http://www.ti3.
tu-harburg.de/rump/intlab/ while MAD can be obtained for a nominal charge by visiting www.
tomopt.com/. Note that the functionality for MAD has been coded in GPOPS however, it is not officially
supported and therefore may not continue to function in future versions of GPOPS and/or MAD. The
authors recommend using either the built-in automatic differentiator or INTLAB if automatic differentiation
is desired.

2.10.1 Complex-Step Differentiation

Of the differention methods given above, either the built-in automatic differentiator or the complex-step
differentiator most preferred because these two methods provide highly accurate derivatives and are both
included as part of the GPOPS software (i.e., the user does not have to obtain any third-party software).
One drawback with complex-step differentiation, however, is that certain functions need to be handled
with great care. In particular, the functions min, max, abs, and dot need to be redefined for use in complex-
step differentiation (see Ref. Martins, et al. (2003) and the URL http://mdolab.utias.utoronto.ca/

http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/
www.tomopt.com/
www.tomopt.com/
http://mdolab.utias.utoronto.ca/resources/complex-step/complexify.f90
http://mdolab.utias.utoronto.ca/resources/complex-step/complexify.f90


2.10 Different Options for Specification of Derivatives 32

resources/complex-step/complexify.f90 for details). Finally, the transpose operator must be re-
placed with a dot-transpose (i.e., a real transpose) because the standard transpose in MATLAB produces a
complex conjugate transpose and it is necessary to maintain a real transpose when computing derivatives
via complex-step differentiation.

2.10.2 Analytic Differentiation

Analytic differentiation has the advantage that it is the fasted and most accurate of the four methods, how-
ever, it is by far the most complex for the user to compute, code, and verify. The derivatives for the objec-
tive function gradient and the constraint Jacobian are computed from the user defined analytic derivatives.
These derivatives are supplied as an additional output of the user functions for the cost, dae functions,
event constraints, and linkage constraints (if applicable). The user defined derivatives can be checked rel-
ative to a finite-difference approximation by setting the flag setup.checkDerivatives equal to one. Upon
execution of GPOPS , the derivatives will be computed at the user supplied initial guess using a finite-
difference approximation and compared to the analytic derivatives with the results printed to the screen.
It is recommended that the user run the derivative checking algorithm a least one time to verify that the
derivatives are correct, however, it should be noted that the algorithm is not guaranteed to find any incor-
rect derivatives. The user must take special care to ensure that the analytic derivatives are coded correctly
in order to take advantage of the speed and accuracy of analytic differentiation.

Syntax of Function Used to Evaluate Cost with Derivatives

The syntax used to evaluate the user-defined cost derivatives is given as follows:

function [Mayer,Lagrange,DerivMayer,DerivLagrange]=mycostfun(solcost);

See Section 2.7.1 for the definition of the regular inputs/outputs. The additional outputs of mycostfun are
as follows:

• DerivMayer: a row vector of size 1× (2n+ 2 + q)

• DerivLagrange: a matrix of size N × (n+m+ q + 1)

where n is the number of states, m is the number of controls, q is the number of parameters, and N is the
number of LG points in the phase. The row vector DerivMayer defines the partial derivatives of the Mayer
cost with respect to the initial state, initial time, final state, final time, and finally the parameters:

DerivMayer =
[

∂Φ
∂x(t0)

,
∂Φ
∂t0

,
∂Φ

∂x(tf )
,

∂Φ
∂tf

,
∂Φ
∂p

]
The matrix DerivLagrange defines the partial derivatives of the Lagrange cost with respect to the state,
control, parameters, and time at each of the N LG points:

DerivLagrange =
[
∂L
∂x

,
∂L
∂u

,
∂L
∂p

,
∂L
∂t

]
It is important to provide all the derivatives in the correct order even if they are zero.

Example of a Cost Functional with Derivatives

Suppose we have a two-phase optimal control problem that uses a cost functional named “mycost-
fun.m”. Suppose further that the dimension of the state in each phase is 2 while the dimension of the
control in each phase is 2. Also, suppose that the endpoint and integrand cost in phase 1 are given, respec-
tively, as

Φ(1)(x(1)(t0), t(1)0 ,x(1)(tf ), t(1)f ) = xT (tf )Sx(tf )
L(1)(x(1)(t),u(1)(t), t) = xT Qx + uT Ru

http://mdolab.utias.utoronto.ca/resources/complex-step/complexify.f90
http://mdolab.utias.utoronto.ca/resources/complex-step/complexify.f90


2.10 Different Options for Specification of Derivatives 33

while the endpoint and integrand in phase 2 are given, respectively, as

Φ(2)(x(2)(t(2)0 ), t(2)0 ,x(2)(t(2)f ), t(2)f ) = xT (tf )x(tf )
L(2)(x(2)(t),u(2)(t), t) = uT Ru

Then the syntax of the above cost functional is given as follows:

function [Mayer,Lagrange,DerivMayer,DerivLagrange]=mycostfun(solcost,iphase);

Q = [5 0; 0 2];
R = [1 0; 0 3];
S = [1 5; 5 1];
t0 = solcost.initial.time;
x0 = solcost.initial.state;
tf = solcost.terminal.time;
xf = solcost.terminal.state;
t = solcost.time;
x = solcost.state;
u = solcost.control;
p = solcost.parameter;

if iphase==1,
Mayer = dot(xf’,S*xf’);
Lagrange = dot(x,x*Q’,2)+dot(u,u*R’,2); % Note transposes
DerivMayer = [zeros(1,length(x0)), zeros(1,length(t0)), ...

xf’*S, zeros(1,length(tf), zeros(1,length(p))];
DerivLagrange = [x*Q’, u*R’, ...

zeros(length(t),length(p)), zeros(size(t))];
elseif iphase==2,

Mayer = dot(xf,xf);
Lagrange = dot(u,u*R’,2); % Note transposes
DerivMayer = [zeros(1,length(x0)), zeros(1,length(t0)), ...

xf’, zeros(1,length(tf), zeros(1,length(p))];
DerivLagrange = [zeros(size(x)), u*R’, ...

zeros(length(t),length(p)), zeros(size(t))];
end;

It is noted in the above function call that the third argument in the command dot takes the dot product
across the rows, thereby producing a column vector.

Syntax of Function Used to Evaluate Differential-Algebraic Equations with Derivatives

The calling syntax used evaluate the derivatives of the right-hand side of a user-defined vector of differen-
tial equations is given as follows:

function [dae,Derivdae]=mydaefun(soldae);

See Section 2.7.3 for the definition of the regular inputs/outputs. The additional output of myodefun is as
follows:

• Derivdae: a matrix of size N(n+ c)× (n+m+ q + 1)

where n is the number of states, m is the number of controls, q is the number of parameters, c is the number
of path constraints, and N is the number of LG points in the phase. The matrix Derivdae defines the partial
derivatives of the differential equations and path constraints with respect to the state, control, parameters,
and time at each of the N LG points:



2.10 Different Options for Specification of Derivatives 34

Derivdae =



∂f1
∂x

,
∂f1
∂u

,
∂f1
∂p

,
∂f1
∂t

...,
...,

...,
...

∂fn
∂x

,
∂fn
∂u

,
∂fn
∂p

,
∂fn
∂t

∂C1

∂x
,

∂C1

∂u
,

∂C1

∂p
,

∂C1

∂t

...,
...,

...,
...

∂Cr

∂x
,

∂Cr

∂u
,

∂Cr

∂p
,

∂Cr

∂t


where fi, (i = 1, . . . , n) is the right-hand side of the ith differential equation, and Cj , (j = 1, . . . , r) is the jth

path constraint. It is important to provide all the derivatives in the correct order even if they are zero.

Example of a Differential-Algebraic Equation with Derivatives

Suppose we have a two-phase optimal control problem that uses a differential equation function called
“mydaefun.m”. Suppose further that the dimension of the state in each phase is 2, the dimension of the
control in each phase is 2. Furthermore, suppose that there are no path constraints in phase 1 and one path
constraint in phase 2. Next, suppose that the differential equations in phase 1 are given as

ẋ1 = −x2
1 − x2

2 + u1u2

ẋ2 = −x1x2 + 2(u1 + u2)

Also, suppose that the differential equations in phase 2 are given as

ẋ1 = sin(x2
1 + x2

2) + u1u
2
2

ẋ2 = − sinx1 cosx2 + 2u1u2

Finally, suppose that the path constraint in phase 2 is given as

u2
1 + u2

2 = 1

Then a MATLAB code that will evaluate the above system of differential-algebraic equations is given as
follows:

function [dae, Derivdae] = mydaefun(soldae);

iphase = soldae.phase;
t = soldae.time;
x = soldae.state;
u = soldae.control;
p = soldae.parameter;

if iphase==1,
x1dot = -x(:,1).ˆ2-x(:,2).ˆ2 + u(:,1).*u(:,2);
x2dot = -x(:,1).*x(:,2) + 2*(u(:,1)+u(:,2));
path = [];
df1_dx1 = -2*x(:,1);
df1_dx2 = -2*x(:,2);
df1_du1 = u(:,2);
df1_du2 = u(:,1);



2.10 Different Options for Specification of Derivatives 35

df2_dx1 = -x(:,2);
df2_dx2 = -x(:,1);
df2_du1 = 2*ones(size(t));
df2_du2 = 2*ones(size(t));
dpath_dx1 = [];
dpath_dx2 = [];
dpath_du1 = [];
dpath_du2 = [];
dpath_dp = [];
dpath_dt = [];

elseif iphase==2,
x1dot = sin(x(:,1).ˆ2 + x(:,2).ˆ2) + u(:,1).*u(:,2).ˆ2;
x2dot = -sin(x(:,1)).*cos(x(:,2)) + 2*u(:,1).*u(:,2);
path = u(:,1).ˆ2+u(:,2).ˆ2;
df1_dx1 = 2*x(:,1)*cos(x(:,1).ˆ2 + x(:,2).ˆ2);
df1_dx2 = 2*x(:,2)*cos(x(:,1).ˆ2 + x(:,2).ˆ2);
df1_du1 = u(:,2).ˆ2;
df1_du2 = 2*u(:,1).*u(:,2);
df2_dx1 = -cos(x(:,1)).*cos(x(:,2));
df2_dx2 = sin(x(:,1)).*sin(x(:,2));
df2_du1 = 2*u(:,2);
df2_du2 = 2*u(:,1);
dpath_dx1 = zeros(size(x(:,1)));
dpath_dx2 = zeros(size(x(:,2)));
dpath_du1 = 2*u(:,1);
dpath_du2 = 2*u(:,2);
dpath_dp = zeros(length(t),length(p));
dpath_dt = zeros(size(t));

end;
df1_dp = zeros(length(t),length(p));
df1_dt = zeros(size(t));
df2_dp = zeros(length(t),length(p));
df2_dt = zeros(size(t));

dae = [x1dot x2dot path];

Derivdae = [df1_dx1, df1_dx2, df1_du1, df1_du2, df1_dp, df1_dt; ...
df2_dx1, df2_dx2, df2_du1, df2_du2, df2_dp, df2_dt; ...

dpath_dx1, dpath_dx2, dpath_du1, dpath_du2, dpath_dp, dpath_dt];

Syntax of Function Used to Evaluate Event Constraints with Derivatives

The syntax used to evaluate the derivative of a user-defined vector of event constraints is given as follows:

function [events, Derivevents]=myeventfun(solevents);

See Section 2.7.4 for the definition of the regular inputs/outputs. The additional output of myeventfun is
as follows:

• Derivevents: a matrix of size e× (2n+ 2 + q)

where n is the number of states, q is the number of parameters, and e is the number of event constraints in
the phase. The matrix Derivevents defines the partial derivatives of each event constraint with respect to
the initial state, initial time, final state, final time, and parameters:



2.10 Different Options for Specification of Derivatives 36

Derivevents =



∂φ1

∂x(t0)
,

∂φ1

∂t0
,

∂φ1

∂x(tf )
,

∂φ1

∂tf
,

∂φ1

∂p

...,
...,

...,
...,

...

∂φe

∂x(t0)
,

∂φe

∂t0
,

∂φe

∂x(tf )
,

∂φe

∂tf
,

∂φe

∂p


where φi, (i = 1, . . . , e) is the ith event constraint. It is important to provide all the derivatives in the correct
order even if they are zero.

Example of Event Constraints with Derivatives

Suppose we have a one-phase optimal control problem that has two initial event constraints and three
terminal event constraints. Suppose further that the number of states in the phase is six and that the function
that computes the values of these constraints is called “myeventfun.m”. Finally, let the two initial event
constraints be given as

φ01 = x1(t0)2 + x2(t0)2 + x3(t0)2

φ02 = x4(t0)2 + x5(t0)2 + x6(t0)2

while the three terminal event constraints are given as

φf1 = sin(x1(tf )) cos(x2(tf ) + x3(tf ))
φf2 = tan(x2

4(tf ) + x2
5(tf ) + x2

6(tf ))
φf3 = x4(tf ) + x5(tf ) + x6(tf )

Then the syntax of the above event function is given as

function [events, Derivevents] = myeventfun(solevents);

iphase = solevents.phase;
t0 = solevents.initial.time;
x0 = solevents.initial.state;
tf = solevents.terminal.time;
xf = solevents.terminal.state;

ei1 = dot(x0(1:3),x0(1:3));
ei2 = dot(x0(4:6),x0(4:6));
ef1 = sin(xf(1))*cos(xf(2)+xf(3));
ef2 = tan(dot(xf(4:6),xf(4:6)));
ef3 = xf(4)+xf(5)+xf(6);

events = [ei1;ei2;ef1;ef2;ef3];

dei1_dx0 = [2*x0(1:3).’ zeros(1,3)];
dei1_dt0 = 0;
dei1_dxf = zeros(1,6);
dei1_dtf = 0;
dei1_dp = [];
dei1_dt = 0;
dei2_dx0 = [zeros(1,3), 2*x0(4:6).’];
dei2_dt0 = 0;
dei2_dxf = zeros(1,6);
dei2_dtf = 0;
dei2_dp = [];
def1_dx0 = zeros(1,6);



2.10 Different Options for Specification of Derivatives 37

def1_dt0 = 0;
def1_dxf = [cos(xf(1))*cos(xf(2)+xf(3)), -sin(xf(1))*sin(xf(2)+xf(3)), ...

-sin(xf(1))*sin(xf(2)+xf(3)), zeros(1,3)];
def1_dtf = 0;
def1_dp = [];
def2_dx0 = zeros(1,6);
def2_dt0 = 0;
def2_dxf = [zeros(1,3), 2*xf(4:6).’]/(cos(dot(xf(4:6),xf(4:6))))ˆ2;
def2_dtf = 0;
def2_dp = [];
def3_dx0 = zeros(1,6);
def3_dt0 = 0;
def3_dxf = [zeros(1,3), ones(1,3)];
def3_dtf = 0;
def3_dp = [];

Derivevents = [dei1_dx0, dei1_dt0, dei1_dxf, dei1_dtf, dei1_dp, dei1_dt; ...
dei2_dx0, dei2_dt0, dei1_dxf, dei2_dtf, dei2_dp, dei2_dt; ...
def1_dx0, def1_dt0, def1_dxf, def1_dtf, def1_dp, def1_dt; ...
def2_dx0, def2_dt0, def2_dxf, def2_dtf, def2_dp, def2_dt; ...
def3_dx0, def3_dt0, def3_dxf, def3_dtf, def3_dp, def3_dt];

Syntax of Function Used to Evaluate Linkage Constraints with Derivatives

The syntax used to define the user defined vector of linkage constraints between two phases is given as
follows:

function [links,Derivlinks]=mylinkfun(sollink);

See Section 2.7.5 for the definition of the regular inputs/outputs. The additional output of mylinkfun is as
follows:

• Derivlinks: a matrix of size l × (nl + ql + nr + qr)

where l is the number of linkages in the constraint, nl is the number of states in the left phase, ql is the
number of parameters in the left phase, nr is the number of states in the right phase, and qr is the number
of parameters in the right phase. The matrix Derivlinks defines the partial derivatives of each linkage with
respect to the left state, left parameters, right state, and right parameters:

Derivlinks =



∂P1

∂xl(tf )
,

∂P1

∂pl
,

∂P1

∂xr(t0)
,

∂P1

∂pr

...,
...,

...,
...

∂Pl

∂xl(tf )
,

∂Pl

∂pl
,

∂Pl

∂xr(t0)
,

∂Pl

∂pr


where Pi, (i = 1, . . . , l) is the ith linkage constraint. It is important to provide all the derivatives in the
correct order even if they are zero.

Example of Linkage Constraint with Derivatives

Suppose we have a multiple phase optimal control problem with a simple link between the phases, i.e. the
state of the end of the phase is equal to the state at the beginning of the next phase.

P = xl(tf )− xr(t0)



2.11 Output of Execution of GPOPS 38

Then the syntax of the above linkage is given as

function [links, Derivlinks] = mylinkagefun(sollink,left_phase,right_phase);

xf_left = sollink.left.state;
p_left = sollink.left.parameter;
x0_right = sollink.right.state;
p_right = sollink.right.parameter;

links = xf_left - x0_right;

nlink = length(xf_left); %number of linkages
Derivlinks = [ eye(nlink), zeros(nlink,length(p_left)), ...

-eye(nlink), zeros(nlink,length(p_right))];

2.11 Output of Execution of GPOPS
Upon execution of GPOPS , new fields are created in the output structure output. In particular, upon
completion of the execution of GPOPS , the following new fields are created (in addition to the fields that
were created prior to running GPOPS on the problem):

• solution: an array of structures of length P (where P is the number of phases) containing the solution
in each phase

The pth element in the array of structures solution contains the solution in phase p ∈ [1, . . . , P ]. The fields
of the array of structures solution are as follows:

• solution(p).time: a column vector of size M × 1 containing the time at each point along the trajectory
(where M = N + 2 is the number of time points and N is the number of LG points)

• solution(p).state: a matrix of size M × n such that the rows contain the state at the time points along
the trajectory

• solution(p).control: a matrix of size M × m such that the rows contain the state at the time points
along the trajectory

• solution(p).parameter: a column vector of length q containing the static parameters

• solution(p).costate: a matrix of size M × n such that the rows contain the costate at each time point
along the trajectory

• solution(p).pathmult: a structure containing the Lagrange multipliers of the path constraints

• solution(p).Hamiltonian: a column vector of size M × 1 that contains the Hamiltonian at each time
point along the trajectory

• solution(p).Mayer cost: The Mayer part of the cost along the trajectory

• solution(p).Lagrange cost: The Lagrange (integrated) cost along the trajectory

2.12 Useful Information for Debugging a GPOPS Problem

2.12.1 Debugging Code when Using Automatic Differentiation

As stated above, one of the options in GPOPS is the use automatic differentiation, either the built-in code,
INTLAB or Matlab automatic Differentiation (MAD). As is often the case, the user may want to break in



2.12 Useful Information for Debugging a GPOPS Problem 39

the various functions to ensure proper coding of the functions. In the case where numerical derivatives
are used, the variables can be printed in the MATLAB command window by breaking in the function and
typing the appropriate variable name. However, when automatic differentiation is being used, all variables
are defined as custom MATLAB objects. The objects are not a real-valued variable, but is a MATLAB object
that contains information about both the value of the variables and the derivatives of the variables. If a user
wants to obtain the value of a variable, additional commands are necessary. In the built-in automatic differ-
entiator, the value is obtained using ”.value”. For example the value of a variable named “y” is obtained by
typing the command “y.value” (and not simply by typing “y”). When using INTLAB, the value is obtained
using ”.x” (see INTLAB documentation), i.e. the command “y.x” will return the value for variable named
”y”. Finally in MAD, the command to get a value is “getvalue” (see the TOMLAB/MAD documentation).
For example the value of a variable named “y” is obtained by typing the command “getvalue(y)”. The user
is urged to keep this in mind when using automatic differentiation to compute derivatives.

2.12.2 Dimensions of Arrays When Debugging GPOPS Code

One aspect of GPOPS that may appear confusing when debugging code pertains to the dimensions of the
arrays and the corresponding time values. It is important to remember that GPOPS uses collocation at
Legendre-Gauss points. Because the Legendre-Gauss points lie on the interior of the time interval of interest,
the dynamics, path constraints, and integrand cost are computed only at the Legendre-Gauss points. While
this may appear to be a bit strange, the fundamental point here is that Gaussian quadrature (which is used
in GPOPS ) only evaluates the functions at the Legendre-Gauss points. Do not try to “fool” GPOPS by
adding the endpoints to the computation of the dynamics, path constraints, or integrand cost. If you do this,
you will get an error because the dimensions are incorrect. For a more complete mathematical description
of the collocation method used in GPOP, see either Chapter 1 of this manual or the references contained in
the bibliography at the end of this manual.



Chapter 3

Examples of Using GPOPS

In this Chapter we provide three complete examples of using GPOPS . For each example the optimal
control problem is first described quantitatively, then the GPOPS code is provided.

3.1 Hyper-Sensitive Problem

Consider the following optimal control problem. Minimize the cost functional

J =
1
2

∫ tf

0

[
x2 + u2

]
dt (3–1)

subject to the dynamic constraint
ẋ = −x3 + u (3–2)

and the boundary conditions
x(0) = 1.5
x(tf ) = 1 (3–3)

with tf = 50. It is noted that this problem is taken from Rao (2000). The GPOPS code that solves this
problem is shown below. In particular, the following three MATLAB functions are defined:

• hyperSensitiveMain.m: MATLAB m-file (main driver) for problem

• hyperSensitiveCost.m: MATLAB function that evaluates the cost functional

• hyperSensitiveDae.m: MATLAB function that evaluates the differential-algebraic equations

The beginning and end of each function is labeled by a MATLAB comment.

%-----------------------------------
% BEGIN: script hyperSensitiveMain.m
%-----------------------------------
% This m-file is the main file for the following optimal control
% problem:
% minimize
% J = 0.5*(xˆ2+uˆ2)
% subject to
% dx/dt = -xˆ3 + u
% x(0) = 1.5
% x(tf) = 1
%------------------------------------------------------------------
% This example is taken from the following reference:
% Rao, A. V. and Mease, K. D., "Eigenvector Approximate Dichotomic



3.1 Hyper-Sensitive Problem 41

% Basis Method for Solving Hypersensitive Optimal Control
% Problems," Optimal Control Applications and Methods, Vol. 21,
% No. 1, 2000, pp. 1-19.
%------------------------------------------------------------------

clear setup limits guess

x0 = 1.5;
xf = 1;
xmin = -50;
xmax = 50;
umin = -50;
umax = 50;

iphase = 1;
limits(iphase).nodes = 50;
limits(iphase).time.min = [0 50];
limits(iphase).time.max = [0 50];
limits(iphase).state.min = [x0 xmin xf];
limits(iphase).state.max = [x0 xmax xf];
limits(iphase).control.min = umin;
limits(iphase).control.max = umax;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = [];
limits(iphase).path.max = [];
limits(iphase).event.min = [];
limits(iphase).event.max = [];
guess(iphase).time = [0; 20];
guess(iphase).state(:,1) = [x0; x0];
guess(iphase).control = [0; 0];
guess(iphase).parameter = [];

clear x0 xf xmin xmax umin umax

setup.name = ’HyperSensitive-Problem’;
setup.funcs.cost = ’hyperSensitiveCost’;
setup.funcs.dae = ’hyperSensitiveDae’;
setup.linkages = [];
setup.limits = limits;
setup.guess = guess;
setup.derivatives = ’automatic’;
setup.checkDerivatives = 0;
setup.direction = ’increasing’;
setup.autoscale = ’off’;

output = gpops(setup);

%-----------------------------------
% END: script hyperSensitiveMain.m
%-----------------------------------

%-------------------------------------
% BEGIN: function hyperSensitiveCost.m
%-------------------------------------
function [Mayer,Lagrange,DMayer,DLagrange] = hyperSensitiveCost(sol);

t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;
t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;
Mayer = zeros(size(t0));
Lagrange = 0.5*(x.ˆ2+u.ˆ2);



3.1 Hyper-Sensitive Problem 42

if nargout == 4
% DMayer = [ dM/dx0, dM/dt0, dM/dxf,
DMayer = [zeros(1,length(x0)), zeros(1,length(t0)), zeros(1,length(xf)), ...
... % dM/dtf, dM/dp]

zeros(1,length(tf)), zeros(1,length(p))];

% DLagrange = [ dL/dx, dL/du, dL/dp, dL/dt]
DLagrange =[ x, u, zeros(length(t),length(p)), zeros(size(t))];

end

%-------------------------------------
% END: function hyperSensitiveCost.m
%-------------------------------------

%------------------------------------
% BEGIN: function hyperSensitiveDae.m
%------------------------------------
function [dae Ddae] = hyperSensitiveDae(sol);

t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;

dae = -x.ˆ3+u;

if nargout == 2
% Ddae = [df/dx, df/du, df/dp, df/dt]
Ddae = [-3*x.ˆ2, ones(size(u)), zeros(length(t),length(p)), zeros(size(t))];

end

%-----------------------------------
% END: function hyperSensitiveDae.m
%-----------------------------------

The output of the above code from GPOPS is summarized in the following three plots that contain the
state (x), costate (λ), and the Hamiltonian (H), respectively, for the problem (where H = L + λf where
L = 0.5(x2 + u2) and f = −x3 + u).



3.1 Hyper-Sensitive Problem 43

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 t

 x
 (

t)

Figure 3.1 x(t) vs. t for one-dimensional problem.

0 10 20 30 40 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

 t

λ 
(t

)

Figure 3.2 λ(t) vs. t for one-dimensional problem.



3.2 Bryson-Denham Problem 44

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−4

 t

 H
 (

t)

Figure 3.3 H vs. t for one-dimensional problem.

3.2 Bryson-Denham Problem

Consider the following optimal control problem. Minimize the cost functional

J = x3(tf ) (3–4)

subject to the dynamic constraints
ẋ1 = x2

ẋ2 = u
ẋ3 = 1

2u
2

(3–5)

the path constraint
0 ≤ x1(t) ≤ 1/9 (3–6)

and the boundary conditions
x1(0) = 0
x2(0) = 1
x3(0) = 0
x1(tf ) = 0
x2(tf ) = −1

(3–7)

The above problem was originally formulated by Bryson and Denham (Bryson, et al., 1963) and is referred
to as the Bryson-Denham problem. The GPOPS code that solves the Bryson-Denham problem is shown
below. In particular, the following four MATLAB files are defined:

• brysonDenhamMain.m: MATLAB m-file (main driver) for problem

• brysonDenhamCost.m: MATLAB function that evaluates the cost functional

• brysonDenhamDae.m: MATLAB function that evaluates the differential-algebraic equation

• brysonDenhamEvent.m: MATLAB function that evaluates the event constraints



3.2 Bryson-Denham Problem 45

The beginning and end of each function is labeled by a MATLAB comment. It is noted that while all five
boundary conditions are simple bounds (and are, thus, linear, they are treated as general event constraints
in order to demonstrate the proper use of an event function.

% -----------------------------
% Bryson-Denham Example Problem
% -----------------------------
% --------------------------------------------------
% This example is taken from the following reference:
% --------------------------------------------------
% Bryson, A. E., Denham, W. F., and Dreyfus, S. E., "Optimal
% Programming Problems with Inequality Constraints. I: Necessary
% Conditions for Extremal Solutions, AIAA Journal, Vol. 1, No. 11,
% November, 1963, pp. 2544-2550.
clear setup limits guess

x10 = 0;
x20 = 1;
x30 = 0;
x1f = 0;
x2f = -1;
x1min = -10;
x1max = 10;
x2min = x1min;
x2max = x1max;
x3min = x1min;
x3max = x1max;

param_min = [];
param_max = [];
path_min = 0;
path_max = 1/9;
event_min = [x10; x20; x30; x1f; x2f];
event_max = [x10; x20; x30; x1f; x2f];
duration_min = [];
duration_max = [];

iphase = 1;
limits(iphase).nodes = 50;
limits(iphase).time.min = [0 0];
limits(iphase).time.max = [0 50];
limits(iphase).state.min(1,:) = [x1min x1min x1min];
limits(iphase).state.max(1,:) = [x1max x1max x1max];
limits(iphase).state.min(2,:) = [x2min x2min x2min];
limits(iphase).state.max(2,:) = [x2max x2max x2max];
limits(iphase).state.min(3,:) = [x3min x3min x3min];
limits(iphase).state.max(3,:) = [x3max x3max x3max];
limits(iphase).control.min = -5000;
limits(iphase).control.max = 5000;
limits(iphase).parameter.min = param_min;
limits(iphase).parameter.max = param_max;
limits(iphase).path.min = path_min;
limits(iphase).path.max = path_max;
limits(iphase).event.min = event_min;
limits(iphase).event.max = event_max;
limits(iphase).duration.min = [];
limits(iphase).duration.max = [];
guess(iphase).time = [0; 0.5];
guess(iphase).state(:,1) = [x10; x1f];
guess(iphase).state(:,2) = [x20; x2f];
guess(iphase).state(:,3) = [x30; x30];
guess(iphase).control = [0; 0];
guess(iphase).parameter = [];

clear x10 x20 x30 x1f x2f x1min x1max x2min x2max x3min x3max
clear param_min param_max path_min path_max event_min event_max



3.2 Bryson-Denham Problem 46

clear duration_min duration_max iphase

setup.name = ’Bryson-Denham-Problem’;
setup.funcs.cost = ’brysonDenhamCost’;
setup.funcs.dae = ’brysonDenhamDae’;
setup.funcs.event = ’brysonDenhamEvent’;
setup.limits = limits;
setup.guess = guess;
setup.linkages = [];
setup.derivatives = ’automatic’;
setup.direction = ’increasing’;
setup.autoscale = ’off’;

output = gpops(setup);
solution = output.solution;
%------------------------------------
% END: script brysonDenhamMain.m
%------------------------------------
plotresults
close all

%------------------------------------
% BEGIN: function brysonDenhamCost.m
%------------------------------------
function [Mayer,Lagrange,DMayer,DLagrange]=brysonDenhamCost(sol);

t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;
t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;

Mayer = xf(3);
Lagrange = zeros(size(t));

if nargout == 4
DMayer = [0 0 0 0 0 0 1 0];
DLagrange = [zeros(size(t)) zeros(size(t)) zeros(size(t)) zeros(size(t)) zeros(size(t))];

end

%------------------------------------
% END: function brysonDenhamCost.m
%------------------------------------

%------------------------------------
% BEGIN: function brysonDenhamDae.m
%------------------------------------
function [dae,Ddae] = brysonDenhamDae(sol);

t = sol.time;
x = sol.state;
u = sol.control;
x1dot = x(:,2);
x2dot = u;
x3dot = u.ˆ2/2;
path = x(:,1);
dae = [x1dot x2dot x3dot path];
if nargout == 2

x1dotx1 = zeros(size(t));
x1dotx2 = ones(size(t));
x1dotx3 = zeros(size(t));
x1dotu = zeros(size(t));
x1dott = zeros(size(t));
x2dotx1 = zeros(size(t));



3.2 Bryson-Denham Problem 47

x2dotx2 = zeros(size(t));
x2dotx3 = zeros(size(t));
x2dotu = ones(size(t));
x2dott = zeros(size(t));
x3dotx1 = zeros(size(t));
x3dotx2 = zeros(size(t));
x3dotx3 = zeros(size(t));
x3dotu = u;
x3dott = zeros(size(t));
pathx1 = ones(size(t));
pathx2 = zeros(size(t));
pathx3 = zeros(size(t));
pathu = zeros(size(t));
patht = zeros(size(t));
Ddae = [x1dotx1 x1dotx2 x1dotx3 x1dotu x1dott;

x2dotx1 x2dotx2 x2dotx3 x2dotu x2dott;
x3dotx1 x3dotx2 x3dotx3 x3dotu x3dott;
pathx1 pathx2 pathx3 pathu patht];

end

%------------------------------------
% END: function brysonDenhamDae.m
%------------------------------------

The output from GPOPS of the Bryson-Denham problem coded above is summarized in the following
plots that contain the components of the state, the component of the costate, and the control, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

 t

 x
1(t

)

Figure 3.4 x1(t) vs. t for Bryson-Denham problem.



3.2 Bryson-Denham Problem 48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.5

0

0.5

1

 t

 x
2(t

)

Figure 3.5 x2(t) vs. t for Bryson-Denham problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5

4

 t

 x
3(t

)

Figure 3.6 x3(t) vs. t for Bryson-Denham problem.



3.2 Bryson-Denham Problem 49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−20

−15

−10

−5

0

5

10

15

20

 t

λ 1(t
)

Figure 3.7 λ1(t) vs. t for Bryson-Denham problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

 t

λ 2(t
)

Figure 3.8 λ2(t) vs. t for Bryson-Denham problem.



3.3 Multiple-Stage Launch Vehicle Ascent Problem 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

1

1

1

1

1

1

1

1

 t

λ 3(t
)

Figure 3.9 λ3(t) vs. t for Bryson-Denham problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−6

−5

−4

−3

−2

−1

0

 t

 u
(t

)

Figure 3.10 u(t) vs. t for Bryson-Denham problem.

3.3 Multiple-Stage Launch Vehicle Ascent Problem

The problem considered in this section is the ascent of a multiple-stage launch vehicle. The objective is to
maneuver the launch vehicle from the ground to the target orbit while maximizing the remaining fuel in



3.3 Multiple-Stage Launch Vehicle Ascent Problem 51

the upper stage. It is noted that this example is taken verbatim from Benson (2004).

3.3.1 Vehicle Properties

The launch vehicle considered in this example has two main stages along with nine strap-on solid rocket
boosters. The flight of the vehicle can be divided into four distinct phases. The first phase begins with the
rocket at rest on the ground and at time t0, the main engine and six of the nine solid boosters ignite. When
the boosters are depleted at time t1, their remaining dry mass is jettisoned. The final three boosters are then
ignited, and along with the main engine, represent the thrust for the second phase of flight. These three
remaining boosters are jettisoned when their fuel is exhausted at time t2, and the main engine alone creates
the thrust for the third phase. The fourth phase begins when the main engine fuel has been exhausted
(MECO) and the dry mass associated with the main engine is ejected at time t3. The thrust during phase
four is from a second stage, which burns until the target orbit has been reached (SECO) at time t4, thus
completing the trajectory. The specific characteristics of these rocket motors can be seen in Table 3.1. Note
that the solid boosters and main engine burn for their entire duration (meaning t1, t2, and t3 are fixed),
while the second stage engine is shut off when the target orbit is achieved (t4 is free).

Table 3.1 Mass and propulsion properties of the launch vehicle ascent problem.
Solid Boosters Stage 1 Stage 2

Total Mass (kg) 19290 104380 19300
Propellant Mass (kg) 17010 95550 16820

Engine Thrust (N) 628500 1083100 110094
Isp (sec) 284 301.7 462.4

Number of Engines 9 1 1
Burn Time (sec) 75.2 261 700

3.3.2 Dynamic Model

The equations of motion for a non-lifting point mass in flight over a spherical rotating planet are expressed
in Cartesian Earth centered inertial (ECI) coordinates as

ṙ = v

v̇ = − µ

‖r‖3
r +

T

m
u +

D
m

ṁ = − T

g0Isp

(3–8)

where r(t) =
[
x(t) y(t) z(t)

]T is the position, v =
[
vx(t) vy(t) vz(t)

]T is the Cartesian ECI ve-
locity, µ is the gravitational parameter, T is the vacuum thrust, m is the mass, g0 is the acceleration due to
gravity at sea level, Isp is the specific impulse of the engine, u =

[
ux uy uz

]T is the thrust direction,
and D =

[
Dx Dy Dz

]T is the drag force. The drag force is defined as

D = −1
2
CDArefρ‖vrel‖vrel (3–9)

where CD is the drag coefficient, Aref is the reference area, ρ is the atmospheric density, and vrel is the
Earth relative velocity, where vrel is given as

vrel = v − ω × r (3–10)

where ω is the angular velocity of the Earth relative to inertial space. The atmospheric density is modeled
as the exponential function

ρ = ρ0exp[−h/h0] (3–11)



3.3 Multiple-Stage Launch Vehicle Ascent Problem 52

where ρ0 is the atmospheric density at sea level, h = ‖r‖ − Re is the altitude, Re is the equatorial radius of
the Earth, and h0 is the density scale height. The numerical values for these constants can be found in Table
3.2.

Table 3.2 Constants used in the launch vehicle example.

Constant Value
Payload Mass (kg) 4164

Aref (m2) 4π
Cd 0.5

ρ0 (kg/m3) 1.225
h0 (km) 7.2
t1 (s) 75.2
t2 (s) 150.4
t3 (s) 261

Re (km) 6378.14
VE (km/s) 7.905

3.3.3 Constraints

The launch vehicle starts on the ground at rest (relative to the Earth) at time t0, so that the ECI initial
conditions are

r(t0) = r0 =
[

5605.2 0 3043.4
]T km

v(t0) = v0 =
[

0 0.4076 0
]T km/s

m(t0) = m0 = 301454 kg

(3–12)

which corresponds to the Cape Canaveral launch site. The terminal constraints define the target geosyn-
chronous transfer orbit (GTO), which is defined in orbital elements as

af = 24361.14 km,
ef = 0.7308,
if = 28.5 deg,

Ωf = 269.8 deg,
ωf = 130.5 deg

(3–13)

The orbital elements, a, e, i,Ω, and ω represent the semi-major axis, eccentricity, inclination, right ascension
of the ascending node (RAAN), and argument of perigee, respectively. Note that the true anomaly, ν, is
left undefined since the exact location within the orbit is not constrained. These orbital elements can be
transformed into ECI coordinates via the transformation, To2c, where To2c is given in (Bate, et al., 2001).

In addition to the boundary constraints, there exists both a state path constraint and a control path
constraint in this problem. A state path constraint is imposed to keep the vehicle’s altitude above the
surface of the Earth, so that

|r| ≥ Rr (3–14)

where Re is the radius of the Earth, as seen in Table 3.2. Next, a path constraint is imposed on the control
to guarantee that the control vector is unit length, so that

|u| = 1 (3–15)

Lastly, each of the four phases in this trajectory is linked to the adjoining phases by a set of linkage
conditions. These constraints force the position and velocity to be continuous and also account for the mass



3.3 Multiple-Stage Launch Vehicle Ascent Problem 53

ejections, as
r(p)(tf )− r(p+1)(t0) = 0,
v(p)(tf )− v(p+1)(t0) = 0, (p = 1, . . . , 3)

m(p)(tf )−m(p)
dry −m(p+1)(t0) = 0

(3–16)

where the superscript (p) represents the phase number.
The optimal control problem is then to find the control, u, that minimizes the cost function

J = −m(4)(tf ) (3–17)

subject to the conditions of Eqs. (3–8), (3–12), (3–13), (3–14), and (3–15).
The MATLAB code that solves the multiple-stage launch vehicle ascent problem using GPOPS is shown

below. In particular, this problem requires the specification of a function that computes the cost functional,
the differential-algebraic equations (which, it is noted, include both the differential equations and the path
constraints), and the event constraints in each phase of the problem along with the phase-connect (i.e., link-
age) constraints. The problem was posed in SI units and the built-in autoscaling procedure was used.

% --------------------------------------------
% Multiple-Stage Launch Vehicle Ascent Example
% --------------------------------------------
% -----------------------------------------------------------------------
% This example can be found in one of the following three references:
% Benson, D. A., A Gauss Pseudospectral Transcription for Optimal
% Control, Ph.D. Thesis, Department of Aeronautics and
% Astronautics, Massachusetts Institute of Technology, November 2004.
%
% Huntington, G. T. Advancement and Analysis of a Gauss
% Pseudospectral Transcription for Optimal Control, Ph.D. Thesis,
% Department of Aeronautics and Astronautics, Massachusetts
% Institute of Technology, May 2007.
%
% Huntington, G. T., Benson, D. A., Kanizay, N., Darby, C. L.,
% How, J. P., and Rao, A. V., "Computation of Boundary Controls
% Using a Gauss Pseudospectral Method," 2007 Astrodynamics
% Specialist Conference, Mackinac Island, Michigan, August 19-23, 2007.
% -----------------------------------------------------------------------
clear setup limits guess linkages

global CONSTANTS

omega = 7.29211585e-5; % Earth rotation rate (rad/s)
omega_matrix = [0 -omega 0; omega 0 0; 0 0 0];
CONSTANTS.omega_matrix = omega_matrix; % Rotation rate matrix (rad/s)
CONSTANTS.mu = 3.986012e14; % Gravitational parameter (mˆ3/sˆ2)
CONSTANTS.cd = 0.5; % Drag coefficient
CONSTANTS.sa = 4*pi; % Surface area (mˆ2)
CONSTANTS.rho0 = 1.225; % sea level gravity (kg/mˆ3)
CONSTANTS.H = 7200.0; % Density scale height (m)
CONSTANTS.Re = 6378145.0; % Radius of earth (m)
CONSTANTS.g0 = 9.80665; % sea level gravity (m/sˆ2)

lat0 = 28.5*pi/180; % Geocentric Latitude of Cape Canaveral
x0 = CONSTANTS.Re*cos(lat0); % x component of initial position
z0 = CONSTANTS.Re*sin(lat0); % z component of initial position
y0 = 0;
r0 = [x0; y0; z0];
v0 = CONSTANTS.omega_matrix*r0;

bt_srb = 75.2;
bt_first = 261;
bt_second = 700;

t0 = 0;



3.3 Multiple-Stage Launch Vehicle Ascent Problem 54

t1 = 75.2;
t2 = 150.4;
t3 = 261;
t4 = 961;

m_tot_srb = 19290;
m_prop_srb = 17010;
m_dry_srb = m_tot_srb-m_prop_srb;
m_tot_first = 104380;
m_prop_first = 95550;
m_dry_first = m_tot_first-m_prop_first;
m_tot_second = 19300;
m_prop_second = 16820;
m_dry_second = m_tot_second-m_prop_second;
m_payload = 4164;
thrust_srb = 628500;
thrust_first = 1083100;
thrust_second = 110094;
mdot_srb = m_prop_srb/bt_srb;
ISP_srb = thrust_srb/(CONSTANTS.g0*mdot_srb);
mdot_first = m_prop_first/bt_first;
ISP_first = thrust_first/(CONSTANTS.g0*mdot_first);
mdot_second = m_prop_second/bt_second;
ISP_second = thrust_second/(CONSTANTS.g0*mdot_second);

af = 24361140;
ef = 0.7308;
incf = 28.5*pi/180;
Omf = 269.8*pi/180;
omf = 130.5*pi/180;
nuguess = 0;
cosincf = cos(incf);
cosOmf = cos(Omf);
cosomf = cos(omf);
oe = [af ef incf Omf omf nuguess];
[rout,vout] = launchoe2rv(oe,CONSTANTS.mu);
rout = rout’;
vout = vout’;

m10 = m_payload+m_tot_second+m_tot_first+9*m_tot_srb;
m1f = m10-(6*mdot_srb+mdot_first)*t1;
m20 = m1f-6*m_dry_srb;
m2f = m20-(3*mdot_srb+mdot_first)*(t2-t1);
m30 = m2f-3*m_dry_srb;
m3f = m30-mdot_first*(t3-t2);
m40 = m3f-m_dry_first;
m4f = m_payload;

CONSTANTS.thrust_srb = thrust_srb;
CONSTANTS.thrust_first = thrust_first;
CONSTANTS.thrust_second = thrust_second;
CONSTANTS.ISP_srb = ISP_srb;
CONSTANTS.ISP_first = ISP_first;
CONSTANTS.ISP_second = ISP_second;

rmin = -2*CONSTANTS.Re;
rmax = -rmin;
vmin = -10000;
vmax = -vmin;

iphase = 1;
limits(iphase).nodes = 15;
limits(iphase).time.min = [t0 t1];
limits(iphase).time.max = [t0 t1];
limits(iphase).state.min(1,:) = [r0(1) rmin rmin];
limits(iphase).state.max(1,:) = [r0(1) rmax rmax];
limits(iphase).state.min(2,:) = [r0(2) rmin rmin];



3.3 Multiple-Stage Launch Vehicle Ascent Problem 55

limits(iphase).state.max(2,:) = [r0(2) rmax rmax];
limits(iphase).state.min(3,:) = [r0(3) rmin rmin];
limits(iphase).state.max(3,:) = [r0(3) rmax rmax];
limits(iphase).state.min(4,:) = [v0(1) vmin vmin];
limits(iphase).state.max(4,:) = [v0(1) vmax vmax];
limits(iphase).state.min(5,:) = [v0(2) vmin vmin];
limits(iphase).state.max(5,:) = [v0(2) vmax vmax];
limits(iphase).state.min(6,:) = [v0(3) vmin vmin];
limits(iphase).state.max(6,:) = [v0(3) vmax vmax];
limits(iphase).state.min(7,:) = [m10 m1f m1f];
limits(iphase).state.max(7,:) = [m10 m10 m10];
limits(iphase).control.min(1,:) = -1;
limits(iphase).control.max(1,:) = 1;
limits(iphase).control.min(2,:) = -1;
limits(iphase).control.max(2,:) = 1;
limits(iphase).control.min(3,:) = -1;
limits(iphase).control.max(3,:) = 1;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = 1;
limits(iphase).path.max = 1;
guess(iphase).time = [t0; t1];
guess(iphase).state(:,1) = [r0(1); r0(1)];
guess(iphase).state(:,2) = [r0(2); r0(2)];
guess(iphase).state(:,3) = [r0(3); r0(3)];
guess(iphase).state(:,4) = [v0(1); v0(1)];
guess(iphase).state(:,5) = [v0(2); v0(2)];
guess(iphase).state(:,6) = [v0(3); v0(3)];
guess(iphase).state(:,7) = [m10; m1f];
guess(iphase).control(:,1) = [1; 1];
guess(iphase).control(:,2) = [0; 0];
guess(iphase).control(:,3) = [0; 0];
guess(iphase).parameter = [];

iphase = 2;
limits(iphase).nodes = 15;
limits(iphase).time.min = [t1 t2];
limits(iphase).time.max = [t1 t2];
limits(iphase).state.min(1,:) = [rmin rmin rmin];
limits(iphase).state.max(1,:) = [rmax rmax rmax];
limits(iphase).state.min(2,:) = [rmin rmin rmin];
limits(iphase).state.max(2,:) = [rmax rmax rmax];
limits(iphase).state.min(3,:) = [rmin rmin rmin];
limits(iphase).state.max(3,:) = [rmax rmax rmax];
limits(iphase).state.min(4,:) = [vmin vmin vmin];
limits(iphase).state.max(4,:) = [vmax vmax vmax];
limits(iphase).state.min(5,:) = [vmin vmin vmin];
limits(iphase).state.max(5,:) = [vmax vmax vmax];
limits(iphase).state.min(6,:) = [vmin vmin vmin];
limits(iphase).state.max(6,:) = [vmax vmax vmax];
limits(iphase).state.min(7,:) = [m2f m2f m2f];
limits(iphase).state.max(7,:) = [m20 m20 m20];
limits(iphase).control.min(1,:) = -1;
limits(iphase).control.max(1,:) = 1;
limits(iphase).control.min(2,:) = -1;
limits(iphase).control.max(2,:) = 1;
limits(iphase).control.min(3,:) = -1;
limits(iphase).control.max(3,:) = 1;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = 1;
limits(iphase).path.max = 1;
guess(iphase).time = [t1; t2];
guess(iphase).state(:,1) = [r0(1); r0(1)];
guess(iphase).state(:,2) = [r0(2); r0(2)];
guess(iphase).state(:,3) = [r0(3); r0(3)];
guess(iphase).state(:,4) = [v0(1); v0(1)];



3.3 Multiple-Stage Launch Vehicle Ascent Problem 56

guess(iphase).state(:,5) = [v0(2); v0(2)];
guess(iphase).state(:,6) = [v0(3); v0(3)];
guess(iphase).state(:,7) = [m20; m2f];
guess(iphase).control(:,1) = [1; 1];
guess(iphase).control(:,2) = [0; 0];
guess(iphase).control(:,3) = [0; 0];
guess(iphase).parameter = [];

iphase = 3;
limits(iphase).nodes = 15;
limits(iphase).time.min = [t2 t3];
limits(iphase).time.max = [t2 t3];
limits(iphase).state.min(1,:) = [rmin rmin rmin];
limits(iphase).state.max(1,:) = [rmax rmax rmax];
limits(iphase).state.min(2,:) = [rmin rmin rmin];
limits(iphase).state.max(2,:) = [rmax rmax rmax];
limits(iphase).state.min(3,:) = [rmin rmin rmin];
limits(iphase).state.max(3,:) = [rmax rmax rmax];
limits(iphase).state.min(4,:) = [vmin vmin vmin];
limits(iphase).state.max(4,:) = [vmax vmax vmax];
limits(iphase).state.min(5,:) = [vmin vmin vmin];
limits(iphase).state.max(5,:) = [vmax vmax vmax];
limits(iphase).state.min(6,:) = [vmin vmin vmin];
limits(iphase).state.max(6,:) = [vmax vmax vmax];
limits(iphase).state.min(7,:) = [m3f m3f m3f];
limits(iphase).state.max(7,:) = [m30 m30 m30];
limits(iphase).control.min(1,:) = -1;
limits(iphase).control.max(1,:) = 1;
limits(iphase).control.min(2,:) = -1;
limits(iphase).control.max(2,:) = 1;
limits(iphase).control.min(3,:) = -1;
limits(iphase).control.max(3,:) = 1;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = 1;
limits(iphase).path.max = 1;
guess(iphase).time = [t2; t3];
guess(iphase).state(:,1) = [rout(1); rout(1)];
guess(iphase).state(:,2) = [rout(2); rout(2)];
guess(iphase).state(:,3) = [rout(3); rout(3)];
guess(iphase).state(:,4) = [vout(1); vout(1)];
guess(iphase).state(:,5) = [vout(2); vout(2)];
guess(iphase).state(:,6) = [vout(3); vout(3)];
guess(iphase).state(:,7) = [m30; m3f];
guess(iphase).control(:,1) = [0; 0];
guess(iphase).control(:,2) = [0; 0];
guess(iphase).control(:,3) = [1; 1];
guess(iphase).parameter = [];

iphase = 4;
limits(iphase).nodes = 15;
limits(iphase).time.min = [t3 t3];
limits(iphase).time.max = [t3 t4];
limits(iphase).state.min(1,:) = [rmin rmin rmin];
limits(iphase).state.max(1,:) = [rmax rmax rmax];
limits(iphase).state.min(2,:) = [rmin rmin rmin];
limits(iphase).state.max(2,:) = [rmax rmax rmax];
limits(iphase).state.min(3,:) = [rmin rmin rmin];
limits(iphase).state.max(3,:) = [rmax rmax rmax];
limits(iphase).state.min(4,:) = [vmin vmin vmin];
limits(iphase).state.max(4,:) = [vmax vmax vmax];
limits(iphase).state.min(5,:) = [vmin vmin vmin];
limits(iphase).state.max(5,:) = [vmax vmax vmax];
limits(iphase).state.min(6,:) = [vmin vmin vmin];
limits(iphase).state.max(6,:) = [vmax vmax vmax];
limits(iphase).state.min(7,:) = [m4f m4f m4f];
limits(iphase).state.max(7,:) = [m40 m40 m40];



3.3 Multiple-Stage Launch Vehicle Ascent Problem 57

limits(iphase).control.min(1,:) = -1;
limits(iphase).control.max(1,:) = 1;
limits(iphase).control.min(2,:) = -1;
limits(iphase).control.max(2,:) = 1;
limits(iphase).control.min(3,:) = -1;
limits(iphase).control.max(3,:) = 1;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = 1;
limits(iphase).path.max = 1;
limits(iphase).event.min = [af; ef; incf; Omf; omf];
limits(iphase).event.max = [af; ef; incf; Omf; omf];
guess(iphase).time = [t3; t4];
guess(iphase).state(:,1) = [rout(1) rout(1)];
guess(iphase).state(:,2) = [rout(2) rout(2)];
guess(iphase).state(:,3) = [rout(3) rout(3)];
guess(iphase).state(:,4) = [vout(1) vout(1)];
guess(iphase).state(:,5) = [vout(2) vout(2)];
guess(iphase).state(:,6) = [vout(3) vout(3)];
guess(iphase).state(:,7) = [m40; m4f];
guess(iphase).control(:,1) = [0; 0];
guess(iphase).control(:,2) = [0; 0];
guess(iphase).control(:,3) = [1; 1];
guess(iphase).parameter = [];

ipair = 1; % First pair of phases to connect
linkages(ipair).left.phase = 1;
linkages(ipair).right.phase = 2;
linkages(ipair).min = [0; 0; 0; 0; 0; 0; -6*m_dry_srb];
linkages(ipair).max = [0; 0; 0; 0; 0; 0; -6*m_dry_srb];

ipair = 2; % Second pair of phases to connect
linkages(ipair).left.phase = 2;
linkages(ipair).right.phase = 3;
linkages(ipair).min = [0; 0; 0; 0; 0; 0; -3*m_dry_srb];
linkages(ipair).max = [0; 0; 0; 0; 0; 0; -3*m_dry_srb];

ipair = 3; % Third pair of phases to connect
linkages(ipair).left.phase = 3;
linkages(ipair).right.phase = 4;
linkages(ipair).min = [0; 0; 0; 0; 0; 0; -m_dry_first];
linkages(ipair).max = [0; 0; 0; 0; 0; 0; -m_dry_first];

setup.autoscale = ’on’;
setup.name = ’Launch-Vehicle-Ascent’;
setup.funcs.cost = ’launchCost’;
setup.funcs.dae = ’launchDae’;
setup.funcs.event = ’launchEvent’;
setup.funcs.link = ’launchConnect’;
setup.derivatives = ’automatic’;
% setup.derivatives = ’analytic’;
setup.checkDerivatives = 1;
setup.direction = ’increasing’;
setup.limits = limits;
setup.linkages = linkages;
setup.guess = guess;

if isequal(setup.derivatives,’automatic-intlab’),
CONSTANTS.derivatives = ’automatic-intlab’;

else
CONSTANTS.derivatives = [];

end;

output = gpops(setup);
solution = output.solution;



3.3 Multiple-Stage Launch Vehicle Ascent Problem 58

function [Mayer,Lagrange, DMayer, DLagrange] = launchCost(sol);

global CONSTANTS

t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;
t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;

Lagrange = zeros(size(t));
if sol.phase==4,

Mayer = -xf(7);
else

Mayer = zeros(size(t0));
end;

% avoid calc of derivs in not necessary
if nargout == 4

if sol.phase
% DMayer = [ dM/dx0, dM/dt0, dM/dxf,
DMayer = [zeros(1,length(x0)), zeros(1,length(t0)), [zeros(1,6) -1], ...
... % dM/dtf, dM/dp]

zeros(1,length(tf)), zeros(1,length(p))];
else

% DMayer = [ dM/dx0, dM/dt0, dM/dxf,
DMayer = [zeros(1,length(x0)), zeros(1,length(t0)), zeros(1,length(xf)), ...
... % dM/dtf, dM/dp]

zeros(1,length(tf)), zeros(1,length(p))];
end

% DLagrange = [ dL/dx, dL/du, dL/dp, dL/dt]
DLagrange =[ zeros(size(x)), zeros(size(u)), zeros(length(t),length(p)), zeros(size(t))];

end

function [dae Ddae] = launchDae(sol);

global CONSTANTS;
t = sol.time;
x = sol.state;
u = sol.control;
p = sol.parameter;
iphase = sol.phase;
r = x(:,1:3);
v = x(:,4:6);
m = x(:,7);

rad = sqrt(sum(r.*r,2));
omega_matrix = CONSTANTS.omega_matrix;
vrel = v-r*omega_matrix.’;
speedrel = sqrt(sum(vrel.*vrel,2));
if isequal(CONSTANTS.derivatives,’automatic-intlab’),

% to eliminate divide by zero in INTLAB deriv calc
speedrel(logical(speedrel == 0)) = 1;

end;
altitude = rad-CONSTANTS.Re;
rho = CONSTANTS.rho0*exp(-altitude/CONSTANTS.H);
bc = (rho./(2*m)).*CONSTANTS.sa*CONSTANTS.cd;
bcspeed = bc.*speedrel;
% bcspeedmat = [bcspeed bcspeed bcspeed];
bcspeedmat = repmat(bcspeed,1,3);



3.3 Multiple-Stage Launch Vehicle Ascent Problem 59

Drag = -bcspeedmat.*vrel;
muoverradcubed = CONSTANTS.mu./rad.ˆ3;
muoverradcubedmat = [muoverradcubed muoverradcubed muoverradcubed];
grav = -muoverradcubedmat.*r;

if iphase==1,
T_srb = 6*CONSTANTS.thrust_srb*ones(size(t));
T_first = CONSTANTS.thrust_first*ones(size(t));
T_tot = T_srb+T_first;
m1dot = -T_srb./(CONSTANTS.g0*CONSTANTS.ISP_srb);
m2dot = -T_first./(CONSTANTS.g0*CONSTANTS.ISP_first);
mdot = m1dot+m2dot;

elseif iphase==2,
T_srb = 3*CONSTANTS.thrust_srb*ones(size(t));
T_first = CONSTANTS.thrust_first*ones(size(t));
T_tot = T_srb+T_first;
m1dot = -T_srb./(CONSTANTS.g0*CONSTANTS.ISP_srb);
m2dot = -T_first./(CONSTANTS.g0*CONSTANTS.ISP_first);
mdot = m1dot+m2dot;

elseif iphase==3
T_first = CONSTANTS.thrust_first*ones(size(t));
T_tot = T_first;
mdot = -T_first./(CONSTANTS.g0*CONSTANTS.ISP_first);

elseif iphase==4,
T_second = CONSTANTS.thrust_second*ones(size(t));
T_tot = T_second;
mdot = -T_second./(CONSTANTS.g0*CONSTANTS.ISP_second);

end;

path = sum(u.*u,2);
Toverm = T_tot./m;
Tovermmat = [Toverm Toverm Toverm];
thrust = Tovermmat.*u;

rdot = v;
vdot = thrust+Drag+grav;

dae = [rdot vdot mdot path];

% avoid calc of derivs in not necessary
if nargout == 2

% to eliminate divide by zero in analytic deriv calc
speedrel(logical(speedrel == 0)) = 1;

Ddae = zeros(8*length(t),11);
N = length(t); %number of nodes

% drdot/dx
Ddae(1:N,4) = 1; % drdot1/dv1
Ddae(N+1:2*N,5) = 1; % drdot2/dv2
Ddae(2*N+1:3*N,6) = 1; % drdot3/dv3

% dvdot/dx
dDrag1_dr1 = bc.*vrel(:,2).*vrel(:,1)./speedrel*CONSTANTS.omega_matrix(2,1) ...

+ bc.*speedrel.*vrel(:,1).*r(:,1)./rad./CONSTANTS.H;
dDrag1_dr2 = -bc.*vrel(:,1).*vrel(:,1)./speedrel*CONSTANTS.omega_matrix(2,1) ...

+ bc.*speedrel.*vrel(:,1)./CONSTANTS.H.*r(:,2)./rad ...
- bc.*speedrel*CONSTANTS.omega_matrix(2,1);

dDrag1_dr3 = bc.*speedrel.*vrel(:,1)./CONSTANTS.H.*r(:,3)./rad;
dDrag2_dr1 = bc.*vrel(:,2).*vrel(:,2)./speedrel*CONSTANTS.omega_matrix(2,1) ...

+ bc.*speedrel.*vrel(:,2)./CONSTANTS.H.*r(:,1)./rad ...
+ bc.*speedrel*CONSTANTS.omega_matrix(2,1);

dDrag2_dr2 = -bc.*vrel(:,1).*vrel(:,2)./speedrel*CONSTANTS.omega_matrix(2,1) ...
+ bc.*speedrel.*vrel(:,2)./CONSTANTS.H.*r(:,2)./rad;

dDrag2_dr3 = bc.*speedrel.*vrel(:,2)./CONSTANTS.H.*r(:,3)./rad;



3.3 Multiple-Stage Launch Vehicle Ascent Problem 60

dDrag3_dr1 = bc.*vrel(:,2).*vrel(:,3)./speedrel*CONSTANTS.omega_matrix(2,1) ...
+ bc.*speedrel.*vrel(:,3)./CONSTANTS.H.*r(:,1)./rad;

dDrag3_dr2 = -bc.*vrel(:,1).*vrel(:,3)./speedrel*CONSTANTS.omega_matrix(2,1) ...
+ bc.*speedrel.*vrel(:,3)./CONSTANTS.H.*r(:,2)./rad;

dDrag3_dr3 = bc.*speedrel.*vrel(:,3)./CONSTANTS.H.*r(:,3)./rad;

dgrav1_dr1 = -muoverradcubed + 3*CONSTANTS.mu.*r(:,1).ˆ2./rad.ˆ5;
dgrav1_dr2 = 3*CONSTANTS.mu.*r(:,1).*r(:,2)./rad.ˆ5;
dgrav1_dr3 = 3*CONSTANTS.mu.*r(:,1).*r(:,3)./rad.ˆ5;
dgrav2_dr1 = 3*CONSTANTS.mu.*r(:,2).*r(:,1)./rad.ˆ5;
dgrav2_dr2 = -muoverradcubed + 3*CONSTANTS.mu.*r(:,2).ˆ2./rad.ˆ5;
dgrav2_dr3 = 3*CONSTANTS.mu.*r(:,2).*r(:,3)./rad.ˆ5;
dgrav3_dr1 = 3*CONSTANTS.mu.*r(:,3).*r(:,1)./rad.ˆ5;
dgrav3_dr2 = 3*CONSTANTS.mu.*r(:,3).*r(:,2)./rad.ˆ5;
dgrav3_dr3 = -muoverradcubed + 3*CONSTANTS.mu.*r(:,3).ˆ2./rad.ˆ5;

Ddae(3*N+1:4*N,1) = dDrag1_dr1 + dgrav1_dr1; % dvdot1/dr1
Ddae(3*N+1:4*N,2) = dDrag1_dr2 + dgrav1_dr2; % dvdot1/dr2
Ddae(3*N+1:4*N,3) = dDrag1_dr3 + dgrav1_dr3; % dvdot1/dr3
Ddae(4*N+1:5*N,1) = dDrag2_dr1 + dgrav2_dr1; % dvdot2/dr1
Ddae(4*N+1:5*N,2) = dDrag2_dr2 + dgrav2_dr2; % dvdot2/dr2
Ddae(4*N+1:5*N,3) = dDrag2_dr3 + dgrav2_dr3; % dvdot2/dr3
Ddae(5*N+1:6*N,1) = dDrag3_dr1 + dgrav3_dr1; % dvdot3/dr1
Ddae(5*N+1:6*N,2) = dDrag3_dr2 + dgrav3_dr2; % dvdot3/dr2
Ddae(5*N+1:6*N,3) = dDrag3_dr3 + dgrav3_dr3; % dvdot3/dr3

dDrag1_dv1 = -bc.*speedrel - bc.*vrel(:,1).ˆ2./speedrel;
dDrag1_dv2 = -bc.*vrel(:,1).*vrel(:,2)./speedrel;
dDrag1_dv3 = -bc.*vrel(:,1).*vrel(:,3)./speedrel;
dDrag2_dv1 = -bc.*vrel(:,2).*vrel(:,1)./speedrel;
dDrag2_dv2 = -bc.*speedrel - bc.*vrel(:,2).ˆ2./speedrel;
dDrag2_dv3 = -bc.*vrel(:,2).*vrel(:,3)./speedrel;
dDrag3_dv1 = -bc.*vrel(:,3).*vrel(:,1)./speedrel;
dDrag3_dv2 = -bc.*vrel(:,3).*vrel(:,2)./speedrel;
dDrag3_dv3 = -bc.*speedrel - bc.*vrel(:,3).ˆ2./speedrel;

Ddae(3*N+1:4*N,4) = dDrag1_dv1; % dvdot1/dv1
Ddae(3*N+1:4*N,5) = dDrag1_dv2; % dvdot1/dv2
Ddae(3*N+1:4*N,6) = dDrag1_dv3; % dvdot1/dv3
Ddae(4*N+1:5*N,4) = dDrag2_dv1; % dvdot2/dv1
Ddae(4*N+1:5*N,5) = dDrag2_dv2; % dvdot2/dv2
Ddae(4*N+1:5*N,6) = dDrag2_dv3; % dvdot2/dv3
Ddae(5*N+1:6*N,4) = dDrag3_dv1; % dvdot3/dv1
Ddae(5*N+1:6*N,5) = dDrag3_dv2; % dvdot3/dv2
Ddae(5*N+1:6*N,6) = dDrag3_dv3; % dvdot3/dv3

dDrag1_dm = -Drag(:,1)./m;
dDrag2_dm = -Drag(:,2)./m;
dDrag3_dm = -Drag(:,3)./m;

Ddae(3*N+1:4*N,7) = dDrag1_dm - thrust(:,1)./m; % dvdot1/dm
Ddae(4*N+1:5*N,7) = dDrag2_dm - thrust(:,2)./m; % dvdot2/dm
Ddae(5*N+1:6*N,7) = dDrag3_dm - thrust(:,3)./m; % dvdot3/dm

%dvdot/du
Ddae(3*N+1:4*N,8) = Toverm; % dvdot1/du1
Ddae(4*N+1:5*N,9) = Toverm; % dvdot2/du2
Ddae(5*N+1:6*N,10) = Toverm; % dvdot3/du3

% mass dynamics independant of State
% Ddae(6*N+1:7*N,:) = 0

%dpath/du
Ddae(7*N+1:8*N,8) = 2*u(:,1); % dp/du1
Ddae(7*N+1:8*N,9) = 2*u(:,2); % dp/du2
Ddae(7*N+1:8*N,10) = 2*u(:,3); % dp/du3

end



3.3 Multiple-Stage Launch Vehicle Ascent Problem 61

function [event Devent] = launchEvent(sol);

global CONSTANTS
t0 = sol.initial.time;
x0 = sol.initial.state;
tf = sol.terminal.time;
xf = sol.terminal.state;
p = sol.parameter;
iphase = sol.phase;

if iphase==4,
oe = launchrv2oe(xf(1:3),xf(4:6),CONSTANTS.mu);
event = oe(1:5);

else
event = [];

end;

% avoid calc of derivs in not necessary
if nargout == 2

if iphase == 4
Doe = launchrv2oe_D(xf(1:3),xf(4:6),CONSTANTS.mu,CONSTANTS.Re);

% Devents = [dE/dx0, dE/dt0, dE/dxf, dE/dtf, dE/dp]
lx0 = length(x0);
lp = length(p);
Devent = [zeros(5,lx0), zeros(5,1), [Doe, zeros(5,1)], zeros(5,1), zeros(5,lp)];

else
Devent = [];

end
end

function oe = launchrv2oe(rv,vv,mu);

K = [0;0;1];
hv = cross(rv,vv);
nv = cross(K,hv);
n = sqrt(nv.’*nv);
h2 = (hv.’*hv);
v2 = (vv.’*vv);
r = sqrt(rv.’*rv);
ev = 1/mu *( (v2-mu/r)*rv - (rv.’*vv)*vv );
p = h2/mu;
%
% now compute the oe’s
%
e = sqrt(ev.’*ev); % eccentricity
a = p/(1-e*e); % semimajor axis
i = acos(hv(3)/sqrt(h2)); % inclination
Om = acos(nv(1)/n); % RAAN
if ( nv(2) < 0-eps ) % fix quadrant

Om = 2*pi-Om;
end;
om = acos(nv.’*ev/n/e); % arg of periapsis
if ( ev(3) < 0 ) % fix quadrant

om = 2*pi-om;
end;
nu = acos(ev.’*rv/e/r); % true anomaly
if ( rv.’*vv < 0 ) % fix quadrant

nu = 2*pi-nu;
end;
oe = [a; e; i; Om; om; nu]; % assemble "vector"

function [ri,vi] = launchoe2rv(oe,mu)



3.3 Multiple-Stage Launch Vehicle Ascent Problem 62

a=oe(1); e=oe(2); i=oe(3); Om=oe(4); om=oe(5); nu=oe(6);
p = a*(1-e*e);
r = p/(1+e*cos(nu));
rv = [r*cos(nu); r*sin(nu); 0];
vv = sqrt(mu/p)*[-sin(nu); e+cos(nu); 0];
cO = cos(Om); sO = sin(Om);
co = cos(om); so = sin(om);
ci = cos(i); si = sin(i);
R = [cO*co-sO*so*ci -cO*so-sO*co*ci sO*si;
sO*co+cO*so*ci -sO*so+cO*co*ci -cO*si;
so*si co*si ci];

ri = R*rv;
vi = R*vv;

The output of the above code from GPOPS is summarized in the following three plots that contain the
altitude, speed, and controls.

0 200 400 600 800 1000
6350

6400

6450

6500

6550

6600

6650

 t (s)

al
tit

ud
e 

(k
m

)

 

 

Phase 1
Phase 2
Phase 3
Phase 4

Figure 3.11 Altitude vs. time for the launch vehicle ascent problem.



3.4 Minimum Time-to-Climb of a Supersonic Aircraft 63

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

 t (s)

sp
ee

d 
(m

/s
)

 

 

Phase 1
Phase 2
Phase 3
Phase 4

Figure 3.12 Inertial speed vs. time for the launch vehicle ascent problem.

0 200 400 600 800 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 t (s)

C
om

po
ne

nt
s 

of
 C

on
tr

ol

 

 

Phase 1
Phase 2
Phase 3
Phase 4

Figure 3.13 Controls vs. time for the launch vehicle ascent problem.

3.4 Minimum Time-to-Climb of a Supersonic Aircraft

The problem considered in this section is the classical minimum time-to-climb of a supersonic aircraft. The
objective is to determine the minimum-time trajectory and control from take-off to a specified altitude and



3.4 Minimum Time-to-Climb of a Supersonic Aircraft 64

speed. This problem was originally stated in the open literature in the work of Bryson, et al. (1969), but the
model used in this study was taken from Betts (2001) with the exception that a linear extrapolation of the
thrust data as found in Betts (2001) was performed in order to fill in the “missing” data points.

The minimum time-to-climb problem for a supersonic aircraft is posed as follows. Minimize the cost
functional

J = tf (3–18)

subject to the dynamic constraints

Ė =
v(T −D)

mg
(3–19)

ḣ = v sin γ (3–20)

γ̇ =
g

v
[n− cos γ] (3–21)

(3–22)

and the boundary conditions

h(0) = 0 ft (3–23)
v(0) = 129.3144 m/s (3–24)
γ(0) = 0 rad (3–25)
h(tf ) = 19995 m (3–26)
v(tf ) = 295.09 ft/s (3–27)
γ(tf ) = 0 rad (3–28)

where E is the the energy altitude, h is the altitude, γ is the flight path angle, m is the vehicle mass, n is the
load factor, T is the magnitude of the thrust force, and D is the magnitude of the drag force.

The MATLAB code that solves the minimum time-to-climb of a supersonic aircraft is shown below.

% Minimum Time-to-Climb Problem
% The vehicle model for this problem is taken
% from the following two references:
% Seywald, H., Clifs, E. M., and Well, K. H.,
% "Range Optimal Trajectories for an Aircraft Flying in
% the Vertical Plane," Journal of Guidance, Control, and Dynamics,
% Vol. 17, No. 2, March-April, 1994.
%
% Rao, A. V., Extension of a Computational Singular Perturbation
% Methodology to Optimal Control Problems, Ph.D. Thesis, Dept. of
% Mechanical and Aerospace Engineering, Princeton University,
% June 1996.

clear setup limits guess CONSTANTS
global CONSTANTS
CoF(1,:) = [2.61059846050e-2;

-8.57043966269e-2;
1.07863115049e-1;
-6.44772018636e-2;
1.64933626507e-2;
0];

CoF(2,:) = [1.37368651246e0;
-4.57116286752e0;
5.72789877344e0;
-3.25219000620e0;
7.29821847445e-1;
0];

CoF(3,:) = [1.23001735612e0;
-2.97244144190e0;
2.78009092756e0;



3.4 Minimum Time-to-Climb of a Supersonic Aircraft 65

-1.16227834301e0;
1.81868987624e-1;
0];

CoF(4,:) = [1.42392902737e1;
-3.24759126471e1;
2.96838643792e1;
-1.33316812491e1;
2.87165882405e0;
-2.27239723756e-1];

CoF(5,:) = [0.11969995703e6;
-0.14644656421e5;
-0.45534597613e3;
0.49544694509e3;
-0.46253181596e2;
0.12000480258e1];

CoF(6,:) = [-0.35217318620e6;
0.51808811078e5;
0.23143969006e4;
-0.22482310455e4;
0.20894683419e3;
-0.53807416658e1];

CoF(7,:) = [0.60452159152e6;
-0.95597112936e5;
-0.38860323817e4;
0.39771922607e4;
-0.36835984294e3;
0.94529288471e1];

CoF(8,:) = [-0.43042985701e6;
0.83271826575e5;
0.12357128390e4;
-0.30734191752e4;
0.29388870979e3;
-0.76204728620e1];

CoF(9,:) = [0.13656937908e6;
-0.32867923740e5;
0.55572727442e3;
0.10635494768e4;
-0.10784916936e3;
0.28552696781e1];

CoF(10,:) = [-0.16647992124e5;
0.49102536402e4;
-0.23591380327e3;
-0.13626703723e3;
0.14880019422e2;
-0.40379767869e0];

CoFZ = [-3.48643241e-2;
3.50991865e-3;
-8.33000535e-5;
1.15219733e-6];

CONSTANTS.CoF = CoF;
CONSTANTS.CoFZ = CoFZ;

g = 9.80665;
m = 37000/2.2;
feettometer = .3048;

h0 = 0*feettometer;
hf = 65600*feettometer;
v0 = 424.26*feettometer;
vf = 968.148*feettometer;
e0 = (v0ˆ2/(2*g)+h0);
ef = (vfˆ2/(2*g)+hf);
fpa0 = 0;
fpaf = 0;

hmin = 0*feettometer;



3.4 Minimum Time-to-Climb of a Supersonic Aircraft 66

hmax = 69000*feettometer;
vmin = 1*feettometer;
vmax = 2000*feettometer;
emin = (vminˆ2/(2*g)+hmin);
emax = (vmaxˆ2/(2*g)+hmax);
fpamin = -40/180*pi;
fpamax = -fpamin;
umin = -10;
umax = 10;
t0min = 0;
t0max = 0;
tfmin = 100;
tfmax = 350;

% Phase 1 Information
iphase = 1;
limits(iphase).nodes = 50;
limits(iphase).time.min = [t0min tfmin];
limits(iphase).time.max = [t0max tfmax];
limits(iphase).state.min(1,:) = [h0 hmin hf];
limits(iphase).state.max(1,:) = [h0 hmax hf];
limits(iphase).state.min(2,:) = [e0 emin ef];
limits(iphase).state.max(2,:) = [e0 emax ef];
limits(iphase).state.min(3,:) = [fpa0 fpamin fpaf];
limits(iphase).state.max(3,:) = [fpa0 fpamax fpaf];
limits(iphase).control.min = umin;
limits(iphase).control.max = umax;
limits(iphase).parameter.min = [];
limits(iphase).parameter.max = [];
limits(iphase).path.min = [];
limits(iphase).path.max = [];
limits(iphase).event.min = [];
limits(iphase).event.max = [];
limits(iphase).duration.min = [];
limits(iphase).duration.max = [];
guess(iphase).time = [t0min; tfmax];
guess(iphase).state(:,1) = [hf/2; hf/2];
guess(iphase).state(:,2) = [ef/2; ef/2];
guess(iphase).state(:,3) = [fpamax/2; fpamax/2];
guess(iphase).control = [0; 0];
guess(iphase).parameter = []; % No parameters in Phase 1

setup.name = ’Minimum-Time-to-Climb-Problem’;
setup.funcs.cost = ’minimumClimbCost’;
setup.funcs.dae = ’minimumClimbDae’;
setup.funcs.link = ’’;
setup.limits = limits;
setup.guess = guess;
setup.derivatives = ’automatic’;
setup.direction = ’increasing’;
setup.autoscale = ’on’;

output = gpops(setup);

solution = output.solution;

function [Mayer,Lagrange]=minimumClimbCost(solcost);

t0 = solcost.initial.time;
x0 = solcost.initial.state;
tf = solcost.terminal.time;
xf = solcost.terminal.state;
t = solcost.time;
x = solcost.state;
u = solcost.control;
p = solcost.parameter;



3.4 Minimum Time-to-Climb of a Supersonic Aircraft 67

Mayer = tf;
Lagrange = zeros(size(t));

function daeout = minimumClimbDae(soldae);

global CONSTANTS

CoF = CONSTANTS.CoF;
CoFZ = CONSTANTS.CoFZ;

t = soldae.time;
x = soldae.state;
u = soldae.control;
p = soldae.parameter;
h = x(:,1);
E = x(:,2);
fpa = x(:,3);

g = 9.80665;
m = 37000./2.2;
S = 60;
hbar = h./1000;

%rho calculation
z = CoFZ(1).*hbar+CoFZ(2).*hbar.ˆ2+CoFZ(3).*hbar.ˆ3+CoFZ(4).*hbar.ˆ4;
r = 1.0228066.*exp(-z);
y = -0.12122693.*hbar+r-1.0228055;
rho = 1.225.*exp(y);
%rho calculation

%speed of sound%
theta = 292.1-8.87743.*hbar+0.193315.*hbar.ˆ2+(3.72e-3).*hbar.ˆ3;
a = 20.0468.*sqrt(theta);
%speed of sound%

%Velocity and mach
Eminush = (E-h).ˆ2;
Eminush = sqrt(Eminush);
v = sqrt(2.*g.*Eminush);

M = v./a;
%Velocity and mach

%Who are lift and drag
q = 0.5.*rho.*v.*v.*S;
L = m.*g.*u;
M0 = M.ˆ0;
M1 = M.ˆ1;
M2 = M.ˆ2;
M3 = M.ˆ3;
M4 = M.ˆ4;
M5 = M.ˆ5;
numeratorCD0 = CoF(1,1).*M0+CoF(1,2).*M1+CoF(1,3).*M2+CoF(1,4).*M3+CoF(1,5).*M4;
denominatorCD0 = CoF(2,1).*M0+CoF(2,2).*M1+CoF(2,3).*M2+CoF(2,4).*M3+CoF(2,5).*M4;
Cd0 = numeratorCD0./denominatorCD0;
numeratorK = CoF(3,1).*M0+CoF(3,2).*M1+CoF(3,3).*M2+CoF(3,4).*M3+CoF(3,5).*M4;
denominatorK = CoF(4,1).*M0+CoF(4,2).*M1+CoF(4,3).*M2+CoF(4,4).*M3+CoF(4,5).*M4+CoF(4,6).*M5;
K = numeratorK./denominatorK;
D = q.*(Cd0+K.*((m.ˆ2).*(g.ˆ2)./(q.ˆ2)).*(u.ˆ2));
%Who are lift and drag

%Who is thrust
e0 = CoF(5,1).*M0+CoF(6,1).*M1+CoF(7,1).*M2+CoF(8,1).*M3+CoF(9,1).*M4+CoF(10,1).*M5;
e1 = CoF(5,2).*M0+CoF(6,2).*M1+CoF(7,2).*M2+CoF(8,2).*M3+CoF(9,2).*M4+CoF(10,2).*M5;
e2 = CoF(5,3).*M0+CoF(6,3).*M1+CoF(7,3).*M2+CoF(8,3).*M3+CoF(9,3).*M4+CoF(10,3).*M5;
e3 = CoF(5,4).*M0+CoF(6,4).*M1+CoF(7,4).*M2+CoF(8,4).*M3+CoF(9,4).*M4+CoF(10,4).*M5;



3.4 Minimum Time-to-Climb of a Supersonic Aircraft 68

e4 = CoF(5,5).*M0+CoF(6,5).*M1+CoF(7,5).*M2+CoF(8,5).*M3+CoF(9,5).*M4+CoF(10,5).*M5;
e5 = CoF(5,6).*M0+CoF(6,6).*M1+CoF(7,6).*M2+CoF(8,6).*M3+CoF(9,6).*M4+CoF(10,6).*M5;

T = (e0.*hbar.ˆ0+e1.*hbar.ˆ1+e2.*hbar.ˆ2+e3.*hbar.ˆ3+e4.*hbar.ˆ4+e5.*hbar.ˆ5).*9.80665./2.2;
%Who is thrust

%************************************************

%User Input - Give me f in dot(x) = f
%*********************

Edot = v./(m.*g).*(T-D);
hdot = v.*sin(fpa);
fpadot = g./v.*(L./(m.*g)-cos(fpa));

daeout = [hdot Edot fpadot];

function daeout = minimumClimbDae(soldae);

global CONSTANTS

CoF = CONSTANTS.CoF;
CoFZ = CONSTANTS.CoFZ;

t = soldae.time;
x = soldae.state;
u = soldae.control;
p = soldae.parameter;
h = x(:,1);
E = x(:,2);
fpa = x(:,3);

g = 9.80665;
m = 37000./2.2;
S = 60;
hbar = h./1000;

%rho calculation
z = CoFZ(1).*hbar+CoFZ(2).*hbar.ˆ2+CoFZ(3).*hbar.ˆ3+CoFZ(4).*hbar.ˆ4;
r = 1.0228066.*exp(-z);
y = -0.12122693.*hbar+r-1.0228055;
rho = 1.225.*exp(y);
%rho calculation

%speed of sound%
theta = 292.1-8.87743.*hbar+0.193315.*hbar.ˆ2+(3.72e-3).*hbar.ˆ3;
a = 20.0468.*sqrt(theta);
%speed of sound%

%Velocity and mach
Eminush = (E-h).ˆ2;
Eminush = sqrt(Eminush);
v = sqrt(2.*g.*Eminush);

M = v./a;
%Velocity and mach

%Who are lift and drag
q = 0.5.*rho.*v.*v.*S;
L = m.*g.*u;
M0 = M.ˆ0;
M1 = M.ˆ1;
M2 = M.ˆ2;
M3 = M.ˆ3;
M4 = M.ˆ4;



3.4 Minimum Time-to-Climb of a Supersonic Aircraft 69

M5 = M.ˆ5;
numeratorCD0 = CoF(1,1).*M0+CoF(1,2).*M1+CoF(1,3).*M2+CoF(1,4).*M3+CoF(1,5).*M4;
denominatorCD0 = CoF(2,1).*M0+CoF(2,2).*M1+CoF(2,3).*M2+CoF(2,4).*M3+CoF(2,5).*M4;
Cd0 = numeratorCD0./denominatorCD0;
numeratorK = CoF(3,1).*M0+CoF(3,2).*M1+CoF(3,3).*M2+CoF(3,4).*M3+CoF(3,5).*M4;
denominatorK = CoF(4,1).*M0+CoF(4,2).*M1+CoF(4,3).*M2+CoF(4,4).*M3+CoF(4,5).*M4+CoF(4,6).*M5;
K = numeratorK./denominatorK;
D = q.*(Cd0+K.*((m.ˆ2).*(g.ˆ2)./(q.ˆ2)).*(u.ˆ2));
%Who are lift and drag

%Who is thrust
e0 = CoF(5,1).*M0+CoF(6,1).*M1+CoF(7,1).*M2+CoF(8,1).*M3+CoF(9,1).*M4+CoF(10,1).*M5;
e1 = CoF(5,2).*M0+CoF(6,2).*M1+CoF(7,2).*M2+CoF(8,2).*M3+CoF(9,2).*M4+CoF(10,2).*M5;
e2 = CoF(5,3).*M0+CoF(6,3).*M1+CoF(7,3).*M2+CoF(8,3).*M3+CoF(9,3).*M4+CoF(10,3).*M5;
e3 = CoF(5,4).*M0+CoF(6,4).*M1+CoF(7,4).*M2+CoF(8,4).*M3+CoF(9,4).*M4+CoF(10,4).*M5;
e4 = CoF(5,5).*M0+CoF(6,5).*M1+CoF(7,5).*M2+CoF(8,5).*M3+CoF(9,5).*M4+CoF(10,5).*M5;
e5 = CoF(5,6).*M0+CoF(6,6).*M1+CoF(7,6).*M2+CoF(8,6).*M3+CoF(9,6).*M4+CoF(10,6).*M5;

T = (e0.*hbar.ˆ0+e1.*hbar.ˆ1+e2.*hbar.ˆ2+e3.*hbar.ˆ3+e4.*hbar.ˆ4+e5.*hbar.ˆ5).*9.80665./2.2;
%Who is thrust

%************************************************

%User Input - Give me f in dot(x) = f
%*********************

Edot = v./(m.*g).*(T-D);
hdot = v.*sin(fpa);
fpadot = g./v.*(L./(m.*g)-cos(fpa));

daeout = [hdot Edot fpadot];

The output of the above code from GPOPS is summarized in the following three plots that contain the
altitude, speed, flight path angle, and angle of attack:



3.4 Minimum Time-to-Climb of a Supersonic Aircraft 70

0 50 100 150 200
−5

0

5

10

15

20

t (s)

h 
(k

m
)

Figure 3.14 Altitude vs. Time for supersonic aircraft minimum time-to-climb.

0 50 100 150 200
−5

0

5

10

15

20

25

30

35

40

t (s)

γ (
de

g)

Figure 3.15 Flight path angle vs. Time for supersonic aircraft minimum time-to-climb.



3.5 Some Concluding Remarks 71

0 50 100 150 200
−2

−1

0

1

2

3

4

t (s)

n 
(d

eg
)

Figure 3.16 Angle of attack vs. Time for supersonic aircraft minimum time-to-climb.

3.5 Some Concluding Remarks

While GPOPS has been designed to take some of the cumbersomeness out of solving an optimal control
problem numerically, the user must still be wary of several aspects of computational optimal control that
will make it easier to use GPOPS . First, as noted earlier, it is highly recommended that the user scale the
problem manually because the automatic scaling procedure is by no means foolproof. Second, the choice
of variables to solve an optimal control problem can make all the difference in the world as to how quickly
and reliably a solution is obtained. For example, atmospheric flight problems with large lift maneuvers
tend to be easier to solve if spherical coordinates (where position is parameterized using radius, longitude,
and latitude, while velocity is parameterized using speed, flight path angle, and heading angle) are used as
compared to Cartesian coordinates whereas launch vehicle ascent problems (which have no lift) tend to be
better parameterized using Cartesian coordinates. Finally, even if the optimizer returns the result that the
optimality conditions have been satisfied, it is extremely important to analyze the solution to make sure that
(1) the solution is the one corresponding to the problem that the user wants to solve and (2) if the solution
makes sense. In short, a great deal of time in solving optimal control problems is spent in formulation and
analysis.



References

Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover Publications, New York,
1971.

Benson, D. A., A Gauss Pseudospectral Transcription for Optimal Control, Ph.D. Dissertation, Department of
Aeronautics and Astronautics, MIT, November 2004.

Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V., “Direct Trajectory Optimization and
Costate Estimation via an Orthogonal Collocation Method,”, Journal of Guidance, Control, and Dynamics,
Vol. 29, No. 6, November-December, 2006, pp. 1435–1440.

Betts, J. T., Practical Methods for Optimal Control Using Nonlinear Programming, SIAM Press, Philadelphia,
2001.

Bryson, A. E., Denham, W. F., and Dreyfus, S. E., “Optimal Programming Problems with Inequality Con-
straints. I: Necessary Conditions for Extremal Solutions”, AIAA Journal, Vol. 1, No. 11, November 1963,
pp. 2544-2550.

Bryson, A. E., Desai, M. N., and Hoffman, W. C., “Energy-State Approximation in Performance Optimiza-
tion of Supersonic Aircraft,” Journal of Aircraft, Vol. 6, No. 6, 1969, pp. 481–488.

Davis, P., Interpolation and Approximation, Dover Publications, 1975.

Elnagar, G., Kazemi, M., Razzaghi, M., “The Pseudospectral Legendre Method for Discretizing Optimal
Control Problems,” IEEE Transactions on Automatic Control Vol. 40, No. 10, October 1995.

Elnagar, G. and Kazemi, M., “Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dy-
namical Systems,” Computational Optimization and Applications, Vol. 11, 1998, pp. 195-217.

Gill, P. E., Murray, W., and Saunders, M. A., “User’s Guide for SNOPT Version 7: Software for Large-Scale
Nonlinear Programming,” Report, University of California, San Diego, 24 April 2007.

Huntington, G. T. and Rao, A. V., “Optimal Spacecraft Formation Configuration Using a Gauss Pseudospec-
tral Method,” Proceedings of the 2005 AAS/AISS Spaceflight Mechanics Meeting, AAS Paper 05-103, Copper
Mountain, Colorado, January 23–27, 2005.

Huntington, G. T., Benson, D. A., and Rao, A. V., “Post-Optimality Evaluation and Analysis of a Formation
Flying Problem via a Gauss Pseudospectral Method,” Proceedings of the 2005 AAS/AIAA Astrodynamics
Specialist Conference, AAS Paper 05-339, Lake Tahoe, California, August 7–11, 2005.

Huntington, G. T. and Rao, A. V., “Optimal Reconfiguration of a Spacecraft Formation via a Gauss Pseu-
dospectral Method,” Proceedings of the 2005 AAS/AIAA Astrodynamics Specialist Conference, AAS Paper
05-338, Lake Tahoe, California, August 7–11, 2005.

Huntington, G. T., Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control,
Ph.D. Dissertation, Department of Aeronautics and Astronautics, MIT, May 2007.

Huntington, G. T. and Rao, A. V., “Design of Optimal Tetrahedral Spacecraft Formations,” The Journal of the
Astronautical Sciences, to appear in 2007.



REFERENCES 73

Huntington, G. T., Benson, D. A., How, J. P., Kanizay, N., Darby, C. L., and Rao, A. V., “Computation
of Boundary Controls Using a Gauss Pseudospectral Method,” 2007 Astrodynamics Specialist Conference,
Mackinac Island, Michigan, AAS Paper 07-381, August 21–24, 2007.

Kirk, D. E., Optimal Control Theory, Dover Publications, 1970.

Martins, J. R. R., Sturdza, P., and Alonso, J. J., “The Complex-Step Derivative Approximation,” ACM Trans-
actions on Mathematical Software, Vol. 29, No. 3, 2003, pp. 245–262.

Pontryagin, L.S., Boltyanskii, V., Gamkrelidze, R., Mischenko, E., The Mathematical Theory of Optimal Pro-
cesses, New York: Interscience, 1962.

Rao, A. V. and Mease, K. D., “Eigenvector Approximate Dichotomic Basis Method for Solving Hyper-
Sensitive Optimal Control Problems,” Optimal Control Applications and Methods, Vol. 21, No. 1, 2000,
pp. 1–19.


	Introduction to Gauss Pseudospectral Optimization Software (GPOPS )
	Gauss Pseudospectral Method Employed by GPOPS 
	Gauss Pseudospectral Discretization of Continuous Bolza Problem 
	KKT Conditions of the NLP
	First-Order Optimality Conditions of Continuous Bolza Problem 
	Gauss Pseudospectral Discretized Necessary Conditions
	Costate Estimate
	Computation of Boundary Controls
	Organization of GPOPS 
	Notation Used Throughout Remainder of This Manual

	Constructing an Optimal Control Problem in GPOPS 
	Preliminary Information
	Call to GPOPS 
	Syntax for Setup Structure 
	Specifying Function Names Used in Optimal Control Problem
	Syntax for limits Structure 
	Syntax for linkages Array of Structures 
	Syntax of Each Function in Optimal Control Problem
	Specifying an Initial Guess of The Solution 
	Scaling of Optimal Control Problem
	Different Options for Specification of Derivatives
	Output of Execution of GPOPS 
	Useful Information for Debugging a GPOPS Problem

	Examples of Using GPOPS 
	Hyper-Sensitive Problem
	Bryson-Denham Problem
	Multiple-Stage Launch Vehicle Ascent Problem
	Minimum Time-to-Climb of a Supersonic Aircraft
	Some Concluding Remarks


