
· 1

LMEF Manual

D.S. Vlachos and T.E. Simos

University of Peloponnese

e-mail: dvlachos@uop.gr, simos@uop.gr

1. INTRODUCTION

LMEF is a MATLAB program that calculates the coefficients of a linear multi-step
method with exponential fitting. A linear multistep method is of the form:

k
∑

j=0

ajyn−j − h

k
∑

j=0

bjy
′

n−j = 0 (1)

There are three types of methods that are handled by LMEF. The first one is explicit
methods, in which the user gives the a-coefficients and the program calculates the
b’s, assuming that b0 = 0. The second type is implicit methods in which again the
user gives the a-coefficients and the program calculates the b’s. Finaly, the third
type is BDF methods in which the user just gives the number of steps and the
program calculates the a-coefficients. The syntax of LMEF is:

[c,ct,r]=lmef(e_i , a , q , t);

where
e i is either ′e′ for explicit methods, ′i′ for implicit ones or ′b′ for

backward differentiation formulas (BDF methods are implicit but
as it was explained before, ′i′ for LMEF means that the program it
is asked to calculate the b-coefficients given the a-coefficients, while
′b′ means that the program is asked to calculate the a-coefficients
of a BDF method).

a is a column vector containing the values of the coefficients a’s
q is a row vector containing information about the number of the

frequencies to be fitted. The value 1 means that the method must
integrate exactly the term eqx while the value 2 means that the
method must integrate exactly the functions e±qx

t is a row vector containing the level of tuning for each given fre-
quency.

The output values are:
c is a vector containing all the coefficients, both the given and the

calculated ones in the form (a0, ..., ak, b0, ..., bk)T

ct is a vector containing the Taylor expansions of the coefficients c’s
r is the reminder of the method.

2 ·
If only the first two parameters are given, then algebraic fitting is assumed. If

the vector containing the level of tuning is missing, then simple fitting is assumed
(level of tuning equals to 0).

Both Taylor expansions of the coefficients c’s and calculation of the residual of
the method require either MATLAB build-in functions or external functions from
MAPLE like mtaylor which may fail to compute the expansion especially in multiple
frequency fitting although the limit of the expression under expansion always exists
(when frequencies or step size tends to zero). To solve this problem, a function called
my mtaylor has been developed which separates the numerator and denominator of
the expression under expansion, calculates the Taylor expansions of those two new
expressions and finally calculates the Taylor expansion of their quotient. It can be
easily proved that the expansion calculated in this way is exact up to the minimum
order of expansion of the nominator and denominator.

In the case of backward differentiation formulas, the values of the given a-
coefficients are neglected and only the dimension of the a-vector is used (the number
of steps).

LMEF performs some basic tests on the input parameters in the case of explicit
or implicit methods. Using the coefficients a, it calculates the roots of the charac-
teristic polynomial of the method and checks the following:

—1 must be a root of the characteristic polynomial.

—The roots must lie in the unit disc, and those that lie on the unit circle must
have multiplicity one, otherwise an error message is displayed and the calculations
stop.

2. CUSTOMIZATION

In the first lines of LMEF, there are some variables that can be altered by the user.
These are:

—te order : the order up to which Taylor expansions of the coefficients are calcu-
lated. The default value is 10.

—rc order : a root r is considered to lie in the unit disc if |r| < 1 + rc order. The
default value is 10−5.

3. TEST RUN

3.1 Algebraic fitting

Consider the method

yn − yn−1 = h
(

b0y
′

n + b1y
′

n−1 + b2y
′

n−2 + b3y
′

n−3

)

The call to LMEF is as follows:

>>[c,ct,e]=lmef(’i’,[1,-1,0,0]’);

We can see now the coefficients c’s and the residual of the method:

>> disp(c)

1

-1

· 3

0

0

3/8

19/24

-5/24

1/24

>> disp(e)

-19/720*y_5*h^5

where y 5 is a way to represent y(5)(x) and h∧5 means h5.

3.2 Simple exponential fitting part 1

Consider the same method as in A1 but now the method must integrate exactly
the function eqx. The call to LMEF is as follows:

>> [c,ct,e]=lmef(’i’,[1,-1,0,0]’,[1]);

We can see now, for example, b0 and the Taylor expansion of b0 which in the c-vector
is c(5):

>> pretty(c(5))

1/12 (12 exp(3/2 q_1 h~) + 16 q_1 h~ exp(- 1/2 q_1 h~)

- 23 q_1 h~ exp(1/2 q_1 h~) - 12 exp(1/2 q_1 h~)

- 5 q_1 h~ exp(- 3/2 q_1 h~))/(q_1 h~ (3 exp(- 1/2 q_1 h~)

- 3 exp(1/2 q_1 h~) - exp(- 3/2 q_1 h~) + exp(3/2 q_1 h~)))

>> disp(ct(5));

3/8-19/720*q_1*h-1/180*q_1^2*h^2+1/12096*q_1^3*h^3+...

and finally the residual

>> disp(e);

19/720*(-y_5+y_4*q_1)*h^5

In the above expressions, y n represents y(n) and q 1 the frequency. We can easily
verify that both the coefficients c’s and the residual of the method tend to the
classical values calculated in A1 when q 1 → 0:

>> syms q_1

>> limit(e,q_1,0)

ans =

-19/720*y_5*h^5

>> limit(c,q_1,0)

ans =

1

-1

0

0

4 ·
3/8

19/24

-5/24

1/24

3.3 Simple exponential fitting part 2

Again as in A2 but now the functions e±qx must be fitted. The call to LMEF is as
follows:

>> [c,ct,e]=lmef(’i’,[1,-1,0,0]’,[2]);

The Taylor expansion of b0 is (c(5):

>> disp(ct(5));

3/8-3/160*q_1^2*h^2+3/2240*q_1^4*h^4-31/268800*q_1^6*h^6+...

The residual of the method is:

>> disp(e);

19/720*(-y_5+y_3*q_1^2)*h^5

Again we can check the values of the coefficients c’s and the residual when q 1 → 0.

>> syms q_1

>> limit(c,q_1,0)

ans =

1

-1

0

0

3/8

19/24

-5/24

1/24

>> limit(e,q_1,0)

ans =

-19/720*y_5*h^5

3.4 Exponential fitting with level of tuning greater than 0

Again as in A3 but know, the functions e±qx and xe±qx must be fitted. The call to
LMEF is as follows:

>> [c,ct,e]=lmef(’i’,[1,-1,0,0]’,[2],[1]);

The Taylor expansion of b0 and the residual are:

>> disp(ct(5));

3/8-3/80*q_1^2*h^2+5/896*q_1^4*h^4-113/134400*q_1^6*h^6+...

· 5

>> disp(e);

-19/720*(y_5+y_1*q_1^4-2*y_3*q_1^2)*h^5

Again, the limit of the coefficients c’s and the residual, when q 1 → 0 are:

>> syms q_1

>> limit(c,q_1,0)

ans =

1

-1

0

0

3/8

19/24

-5/24

1/24

>> limit(e,q_1,0)

ans =

-19/720*y_5*h^5

3.5 Exponential fitting with two frequencies

Again as in A1 but know, the functions e±q1x and e±q2x must be fitted. The call
to LMEF is as follows:

>> [c,ct,e]=lmef(’i’,[1,-1,0,0]’,[2,2]);

The Taylor expansion of b0 and the residual are:

>> disp(ct(5));

3/8+(-3/160*q_1^2-3/160*q_2^2)*h^2+

(-43/4480*q_1^2*q_2^2-11/2240*q_2^4-11/2240*q_1^4+1/53222400*

(11/20*q_1^2+11/20*q_2^2)*(604800*q_1^2+604800*q_2^2))*h^4+...

>> disp(e);

-19/720*(y_1*q_1^2*q_2^2-q_1^2*y_3-y_3*q_2^2+y_5)*h^5

Again the limit of the coefficients c’s and the residual when both q 1, q 2 → 0 are:

>> syms q_1 q_2

>> limit(limit(b,q_1,0),q_2,0)

ans =

1

-1

0

0

3/8

6 ·
19/24

-5/24

1/24

>> limit(limit(e,q_1,0),q_2,0)

ans =

-19/720*y_5*h^5

3.6 Backward Differentiation Formula with Algebraic Fitting

Consider now the formula

4
∑

j=0

ajyn−j = h · y′

n (2)

We can calculate the a-coefficients by calling lmef:

>> [c,ct,e]=lmef(’b’,[1 1 1 1 1]’);

The coefficients are:

>> c

c =

25/12

-4

3

-4/3

1/4

1

0

0

0

0

and the truncation error

>> e

e =

-1/5*y_5*h^5

3.7 Backward Differentiation Formula with Exponential Fitting

Consider again the formula of A.6 but now we want the method to be trigonomet-
rically fitted. Then

>> [c,ct,e]=lmef(’b’,[1 1 1 1 1]’,[2]);

Then, the Taylor expansion of a0 is:

· 7

>> ct(1)

ans =

25/12+1/6*q_1^2*h^2-5/72*q_1^4*h^4+25/864*q_1^6*h^6-

125/10368*q_1^8*h^8+625/124416*q_1^10*h^10...

and the truncation error

>> e

e =

1/5*(y_3*q_1^2-y_5)*h^5

Again, it is easily verified that in the case of q 1 → 0 we get the method of A.6.

4. TESTING THE CONSTRUCTED METHODS

In order to test the constructed methods, we provide the program wrapping.m.
Function ¡¡wrapping¿¿ tests a linear multistep method. Call the function:

>>wrapping(c,problem,h,N)

where

—’c’ are the coefficients of the method in symbolic form [a,b]

—’problem’ i a handle to the function f, such that y′(t) = f(t, y(t)). The detailed
communication protocol with this function is the following:

—Call problem(0,0,1) to display a message

—Call problem(h,k,2) to calculate the first k-values with step size -h

—Call problem(Y,n omega,3) to calculate a set of n omega frequencies given the
current value Y

—Call problem(Y,t,4) to calculate the Jacobian given the current value Y and
the current time -t

—Call problem(t,Y) to calculate the derivative at time -t given Y=Y(t)

—’h’ is the integration step

—’N’ is the iterations number

The output is:

—Y, the values of the calculated function. The value at position -i-, corresponds
to t=(i-1)*h

—T, a vector with the times at which Y is calculated

4.1 Test problem

As a test example, we calculate the motion of two bodies in a reference system
that is fixed in one of them. Moreover, the motion is planar, thus, we only have
to calculate the x and y coordinates of the second body. The differential equations

8 ·
are:

ẍ = − x
√

x2 + y2
3

ÿ = − y
√

x2 + y2
3

and the initial conditions are

x(0) = 1 − ǫ ẋ(0) = 0

y(0) = 0 ẏ(0) =
√

1+ǫ
1−ǫ

where ǫ is the eccentricity. By setting y1 = x, y2 = y, y3 − y′
1 and y4 = y′

2, we get
the first order system:

y1

y2

y3

y4

′

=

y3

y4

− y1√
y2

1
+y2

2

3

− y2√
y2

1
+y2

2

3

(3)

In the first case (low eccentricity = 0.2) we consider the explicit method EM −4:

[c,ct,e]=lmef(’e’,[1,-1,1,-1]’);

and the method EM − 4TF with trigonometric fitting:

[c_o,ct_o,e_o]=lmef(’e’,[1,-1,1,-1]’,[2]);

The detailed sequence of MATLAB commands is:

>>[c,ct,e]=lmef(’e’,[1,-1,1,-1]’);

>>[c_o,ct_o,e_o]=lmef(’e’,[1,-1,1,-1]’,[2]);

>>f_02(0.2,0,5);% set the eccentricity to 0.2

>>[Y_,T_]=wrapping(c,@f_02,0.075,1500);

>>t=subs(c_o,’q_1’,’sqrt(-1)*q_1’);

>>[Y_o,T_o]=wrapping(t,@f_02,0.075,1500);

>>plot(Y_(:,1),Y(:,2),’g’);

>>hold on

>>plot(Y_o(:,1),Y_o(:,2),’r’);

Figure 1 presents the calculated position of the second body using methods
EM − 4 and EM − 4EF using step size h = 0.075 for 112, 5 periods. The rel-
ative error in energy, momentum and angular momentum is also shown. The effect
of trigonometric fitting is obvious from this figure.

In the second case (high eccentricity = 0.75) we consider the explicit method
EM − 7:

[c,ct,e]=lmef(’e’,[1,-1,1,0,-1,1,-1]’);

the method EM − 7TF with trigonometric fitting:

[c_o,ct_o,e_o]=lmef(’e’,[1,-1,1,0,-1,1,-1]’,[2]);

· 9

and the BDF method BDF − 5:

[c_b,ct_b,e_b]=lmef(’b’,[1,1,1,1,1]’);

The detailed sequence of MATLAB commands is:

>>[c,ct,e]=lmef(’e’,[1,-1,1,0,-1,1,-1]’);

>>[c_o,ct_o,e_o]=lmef(’e’,[1,-1,1,0,-1,1,-1]’,[2]);

>>[c_b,ct_b,e_b]=lmef(’b’,[1,1,1,1,1]’);

>>f_02(0.75,0,5);% set the eccentricity to 0.75

>>[Y_,T_]=wrapping(c,@f_02,0.01,750);

>>t=subs(c_o,’q_1’,’sqrt(-1)*q_1’);

>>[Y_o,T_o]=wrapping(t,@f_02,0.01,750);

>>[Y_b,T_b]=wrapping(c_b,@f_02,0.001,750);

>>plot(Y_(:,1),Y(:,2),’g’);

>>hold on

>>plot(Y_o(:,1),Y_o(:,2),’b’);

>>plot(Y_b(:,1),Y_b(:,2),’r’);

Figure 2 presents the calculated position of the second body using methods
EM − 7, EM − 7TF and BDF − 5 with step size h = 0.01 for 7, 5periods. Sim-
ple trigonometric fitting cannot stabilize the solution, although the implicit BDF
method keeps the second body on the expected orbit.

10 ·

−3 −2 −1 0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

X

Y

0 20 40 60 80 100 120

10
−4

10
−2

10
0

Time (× 2π)

R
el

at
iv

e
E

rr
or

 in
 E

ne
rg

y

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time (× 2π)

R
el

at
iv

e
E

rr
or

 in
 M

om
en

tu
m

75 80 85 90 95 100 105 110 115
10

−1

10
0

10
1

Time (× 2π)

R
el

at
iv

e
E

rr
or

 in
 A

ng
ul

ar
 M

om
en

tu
m

a. b.

c. d.

Fig. 1. Integration of the 2-body problem for eccentricity ǫ = 0.2, step size h = 0.075 for 112.5
periods. (a) The calculated position of the second body using methods EM − 4 (dotted line)
and EM − 4TF (solid line), (b) the relative error in energy for the method EM − 4 (dotted line)
and EM − 4TF (solid line), (c) the relative error in momentum for the method EM − 4 (dotted
line) and EM − 4TF (solid line) and (d) the relative error in angular momentum for the method

EM − 4 (dotted line) and EM − 4TF (solid line).

· 11

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

4

2−Body problem, Eccentricity=0.75

EM−7 method
EM−7

TF
 method

BDF−5 method

Fig. 2. The calculated position of the second body using methods EM−7 (dotted line), EM−7TF

(dashed line) and BM − 5 (solid line) with step size h = 0.01 for 7, 5periods.

