
1 • J. He et al.

ORGANIZATION AND USAGE

The README file distributed with the package describes the physical organization

of the package into files, and includes the basic instructions for compiling, testing,

and running the installed serial and parallel codes. This document describes the

organization and usage of the key modules, driver subroutines, and test programs.

Package Organization

Figure 5.1 shows the high level organization of VTDIRECT95. The module VTdi-

rect MOD declares the user called driver subroutine VTdirect for the serial code.

Correspondingly, the module pVTdirect MOD declares the user called parallel driver

subroutine pVTdirect, the subroutine pVTdirect init for MPI initialization, the

subroutine pVTdirect finalize for MPI finalization, as well as the data types,

parameters, and auxiliary functions used exclusively in the parallel code.

sample_pmain.f95

VTdirect.f95

VTdirect_MOD pVTdirect_MOD

pVTdirect.f95

sample_main.f95 objfunc.f95 use

include

module

file

REAL_PRECISION VTDIRECT_CHKPT

shared_modules.f95

VTDIRECT_COMMSUBVTDIRECT_GLOBAL

Fig. 5.1. The module/file dependency map.

The two driver subroutines VTdirect and pVTdirect share the modules: (1)

REAL PRECISION from HOMPACK90 (Watson et al. [1997]) for specifying the real

data type, (2) VTDIRECT GLOBAL containing definitions of derived data types, pa-

rameters, and module procedures, (3) VTDIRECT COMMSUB containing the subrou-

tines and functions common to both the serial and parallel versions, and (4) VTDI-

RECT CHKPT defining data types and module procedures for the checkpointing fea-

ture. These shared modules are merged in the file shared modules.f95 as shown

in Figure 5.1. sample main and sample pmain are sample main programs that call

VTdirect and pVTdirect, respectively, to optimize five test objective functions de-

fined in objfunc.f95 and verify the installation. The dependencies between the

package components are depicted in Figure 5.1.

In the sample serial main program sample main each test objective function illus-

trates a different way of calling the driver subroutine VTdirect. The calls illustrate

the four different stopping rules—maximum number of iterations MAX ITER, max-

imum number of function evaluations MAX EVL, minimum box diameter MIN DIA,

and minimum relative decrease in objective function value OBJ CONV. For the last

objective function, a multiple best box (MBB) output is illustrated. Details of the

arguments are in comments at the beginning of the subroutine VTdirect. Different

parallel schemes are used in the test cases for pVTdirect, called by the sample par-

allel main program sample pmain. Both sample main programs print to standard



2 • J. He et al.

out the stopping rule satisfied, the minimum objective function value, the minimum

box diameter, and the number of iterations, function evaluations, and the minimum

vector(s). In addition, the test output for pVTdirect lists the number of masters

per subdomain and the number of subdomains.

Different computation precision and different compiled code on different systems

may require different numbers of iterations or evaluations to reach the desired

solution accuracy (1.0E-03) specified in the test programs. If a test program fails

to locate the optimum value or the optimum point given the stopping conditions in

the supplied namelist input file, the stopping conditions can be adjusted accordingly.

Using VTDIRECT95

One of the virtues of DIRECT, shared by VTDIRECT95, is that it only has one

tuning parameter (ǫ) beyond the problem definition and stopping condition. Using

VTDIRECT95 basically takes three simple steps. First, define the objective func-

tion with an input argument for the point coordinates (c), an output argument for

evaluation status (iflag), and an output variable for the returned function value

(f). A nonzero return value for iflag is used to indicate that c is infeasible or f

is undefined at c. The user written objective function is a FUNCTION procedure

that must conform to the interface:

INTERFACE

FUNCTION Obj Func(c, iflag) RESULT(f)

USE REAL PRECISION, ONLY: R8

REAL(KIND = R8), DIMENSION(:), INTENT(IN):: c

INTEGER, INTENT(OUT):: iflag

REAL(KIND = R8):: f

END FUNCTION Obj Func

END INTERFACE

Second, allocate the required arrays and specify appropriate input parameters to

call one of the driver subroutines. In the parallel case, the MPI initialization and

finalization subroutines need to be called before and after calling the parallel driver

subroutine (pVTdirect), unless MPI is initialized and finalized elsewhere in the same

application. The required arrays include the input lower (L) and upper (U) bounds,

and an output array for the optimum vector (X). Additionally, in the parallel version,

the return status is also an array, required to be allocated beforehand, to hold

statuses returned from subdomains, even if only one domain exists, in which case

the size of the status array is one. If the user desires to specify the optional input

argument BOX SET, an array of boxes must be allocated and an optional weight

array W for dimensional scaling may also be allocated.

All other input parameters specified in the argument list of the driver subrou-

tine are conveniently read in from a NAMELIST file, as illustrated in the sample

main programs. Using namelist files is an elegant way of varying input parameters

as needed, without recompiling the program. The namelist file pdirectRO.nml

shown below is to test pVTdirect for optimizing the 4-dimensional problem RO.

The parameters are grouped into four categories (NAMELISTs): parallel scheme



VTDIRECT95 • 3

PSCHEME, problem configuration PROBLEM, optimization parameters OPTPARM, and

checkpointing option CHKPTOP. This example uses two subdomains and two mas-

ters per subdomain, and the stopping condition is when the minimum box diameter

reaches 1.0E-05. The checkpointing feature is activated when chkpt start equals

1 (saving) or 2 (recovery). The program will terminate if the checkpoint file errors

occur as explained in the section on error handling (cf. Section 3.4). It is the user’s

responsibility to maintain the checkpoint files, including renaming or removing old

files.

&PSCHEME n subdomains=2 n masters=2 bin=1 /

&PROBLEM N=4

LB(1:4)=-2.048,-2.048,-2.048,-2.048

UB(1:4)=2.048,2.048,2.048,2.048 /

&OPTPARM iter lim=0 eval lim=0 diam lim=1.0E-5 objf conv=0.0

eps fmin=0.0 c switch=1 min sep=0.0 weight(1:4)=1,1,1,1

n optbox=1 /

&CHKPTOP chkpt start=0 /

Finally, the last step is to interpret the return status, collect the results, and

deallocate the arrays as needed. The return status consists of two digits. The tens

digit indicates the general status: 0 for a successful run, 1 for an input parameter

error, 2 for a memory allocation error or failure, and 3 for a checkpoint file error.

The stopping condition for a successful run is further indicated in the units digit,

which also points to the exact source of error if a nonzero status is returned. For

example, a return status of 33 means the checkpoint file header does not match

with the current setting. All the error codes and interpretations can be found in

the source code documentation. A successful run returns the optimum value and

vector(s) in the user-prepared variables and arrays. In order to receive a report

on the actual number of iterations/evaluations, or minimum box diameter, these

optional arguments must be present in the argument list. The final results of calling

pVTdirect are merged on processor 0 (the root master), so proc id is returned

to designate the root to report the results. VTDIRECT95 is designed so that the

optimization results may be directly fed to another procedure or process, the typical

situation in large scale scientific computing.


