
LSA: Description of methods

1. Introduction

This document contains a detailed description of methods implemented in subroutines PNET, PNED,
PNEC, PSED, PSEC, PSEN, PGAD, PGAC, PMAX, PSUM, PEQN, PEQL.

2. Matrix-free methods for general problems

Consider a general twice continuously differentiable function F : Rn → R, where n is large, and
assume that the structure of the Hessian matrix of F is unknown. In this case, subroutines PLIS,
PLIP, and PNET based on matrix-free methods can be used for seeking a local minimum of F . These
methods are realized in the line-search framework so that they generate a sequence of points xk ∈ Rn,
k ∈ N , by the simple process

xk+1 = xk + αkdk, (1)

where dk ∈ Rn is a direction vector and 0 < αk ≤ αk is a scalar step-size. The direction vector is
determined in such a way that

−dT
k g(xk) ≥ ε‖dk‖‖g(xk)‖ (2)

(the uniform descent condition) holds, where g(xk) is the gradient of F at the point xk and 0 < ε ≤ 1
(we use the value ε = 10−4 in our subroutines). The step-size is chosen in such a way that

F (xk+1) − F (xk) ≤ ε1 αk dT
k g(xk), dT

k g(xk+1) ≥ ε2 dT
k g(xk) (3)

(the weak Wolfe conditions) hold, where 0 < ε1 < 1/2 is a tolerance for the function value decrease
and ε1 < ε2 < 1 is a tolerance for the directional derivative increase (we use the values ε1 = 0.0001
and ε2 = 0.9 in our subroutines). The maximum step-size αk is given by the formula αk = ∆/‖dk‖,
where ∆ is an upper bound for the norm ‖xk+1 − xk‖ (parameter XMAX in our subroutines). The
step-size αk is chosen iteratively either by bisection (MES = 1), or by quadratic interpolation with two
function values (MES = 2), or by quadratic interpolation with two directional derivatives (MES = 3), or
by cubic interpolation (MES = 4). We start with the initial estimate αk = 1 if IEST = 0 or the initial
estimate is derived by using the lower bound for F (parameter FMIN in our subroutine) if IEST = 1.

The direction vector dk is usually computed by the formula dk = −Hkgk or by solving the linear
system Bkdk = −gk, where gk = g(xk), Bk is an approximation of the Hessian matrix G(xk), and
Hk is an approximation of its inverse. Limited-memory variable metric methods use the matrix Hk

implicitly (it is not stored). Similarly, the truncated Newton method uses the matrix Bk, which is not
stored as well. If the direction vector computed by using the above way does not satisfy the uniform
descent condition (2), a restart is performed, which implies that the direction vector dk = −gk,
satisfying (2), is used.

2.1 Limited-memory BFGS method

Subroutine PLIS is an implementation of the limited-memory BFGS method proposed in [13], [26].
This method works with matrices Hk = Hk

k , where Hk
k−m = γkI, γk > 0 and

Hk
j+1 = V T

j Hk
j Vj +

1

bj
sjs

T
j , Vj = I − 1

bj
yjs

T
j

for k − m ≤ j ≤ k − 1. Here sj = xj+1 − xj , yj = gj+1 − gj , aj = yT
j Hk

j yj , bj = yT
j sj . Thus
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(we use γk = bk−1/ak−1 in our implementation). The matrix Hk = Hk
k need not be constructed

explicitly since we need only a vector dk = −Hk
k gk, which can be computed by using two recurrences

(the Strang formula). First, vectors

uj = −





k−1
∏

i=j

Vi



 gk,

k − 1 ≥ j ≥ k − m, are computed by using the backward recurrence

σj = sT
j uj+1/bj ,

uj = uj+1 − σjyj ,

where uk = −gk. Then vectors

vj+1 =
bk−1

ak−1

(

j
∏

i=k−m

Vi

)T

uk−m +

j
∑

l=k−m

1

bl

(

j
∏

i=l+1

Vi

)T

sls
T
l ul+1,

k − m ≤ j ≤ k − 1, are computed by using the forward recurrence

vj+1 = vj + (σj − yT
j vj/bj)sj ,

where vk−m = (bk−1/ak−1)uk−m. Finally, we set dk = vk. Note that 2m vectors sj , yj , k − m ≤
j ≤ k − 1 are used and stored. The number of consecutive variable metric updates is defined as
m = min(MF, k− k), where MF is a parameter of the subroutine PLIS and k is an index of the iteration
corresponding to the last restart.

2.2 Shifted limited-memory variable metric methods

Subroutine PLIP is an implementation of shifted limited-memory variable metric methods proposed
in [?]. These methods work with matrices Hk = ζkI + UkUT

k , where n × m matrix Uk is updated
by formula Uk+1 = VkUk with a low rank matrix Vk chosen in such a way that the (modified) quasi-
Newton condition Uk+1U

T
k+1yk = ρks̃k with s̃k = sk − ζk+1yk is satisfied (we use the same notation,

namely sk, yk, ak, bk as in Section 2.1). This condition can be replaced by equations

UT
k+1yk = zk, Uk+1zk = ρks̃k, ‖zk‖2 = ρkyT

k s̃k.

where zk is an optional vector parameter. Note that the last equality, which is a consequence of the
first two equalities, is the only restriction laid on the vector zk. To simplify the notation, we define
vectors uk = UT

k yk and vk = UT
k H−1

k sk = −αkUT
k gk.

The choice of a shift parameter ζk+1 is a crucial part of shifted limited-memory variable metric
methods. The value

ζk+1 = µk
bk

‖yk‖2
, µk =

√

1 − ‖uk‖2/ak

1 +
√

1 − b2
k/(‖sk‖2‖yk‖2)

is used in subroutine PLIP. The most efficient shifted limited-memory variable metric methods can be
derived by a variational principle. Let Tk be a symmetric positive definite matrix. It can be shown

(see [?]) that the Frobenius norm ‖T−1/2
k (Uk+1−Uk)‖2

F is minimal on the set of all matrices satisfying
the quasi-Newton condition if and only if

Uk+1 = Uk − Tkyk

yT
k Tkyk

yT
k Uk +

(

ρks̃k − Ukzk +
yT

k Ukzk

yT
k Tkyk

Tkyk

)

zT
k

‖zk‖2
.

Here Tkyk and zk are vector parameters defining a class of shifted limited-memory variable metric
methods. Using suitable values of these vectors, we obtain particular methods of this class.

Assuming that Tkyk and ρks̃k − Ukzk are linearly dependent and setting

zk = ϑkvk, ϑk = ±
√

ρkyT
k s̃k/‖vk‖2
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we obtain rank 1 variationally derived method (VAR1), where

Uk+1 = Uk − ρks̃k − ϑkUkvk

ρkyT
k s̃k − ϑkuT

k vk
(uk − ϑkvk)

T
,

which gives the best results for the choice sgn(ϑkuT
k vk) = −1. Method VAR1 is chosen if MET = 1 in

the subroutine PLIP. Using zk given above and setting Tkyk = s̃k, which corresponds to the BFGS
method in the full-memory case, we obtain rank 2 variationally derived method (VAR2), where

Uk+1 = Uk − s̃k

yT
k s̃k

uT
k +

(

ρk
s̃k

ϑk
− Ukvk +

uT
k vk

yT
k s̃k

s̃k

)

vT
k

‖vk‖2
.

Method VAR2 is chosen if MET = 2 in the subroutine PLIP. The efficiency of both these methods
depends on the value of the correction parameter ρk. This value is determined by the formula ρk =√

νkεk. Here νk = µk/(1 − µk), µk is a relative shift parameter defined above and

εk =
√

1 − ‖uk‖2/ak

is a damping factor of µk. The number of columns of the matrix Uk is defined as m = min(MF, k− k),
where MF is a parameter of the subroutine PLIP and k is an index of the iteration corresponding to
the last restart.

2.3 Inexact truncated Newton method

Subroutine PNET is based on a line-search realization of the Newton method, which uses conjugate
gradient (CG) iterations for solving a system of linear equations G(x)d = −g(x) (g(x) and G(x) are
the gradient and the Hessian matrix of the function F : Rn → R at the point x, respectively). Since
the matrix G(x) can be indefinite, a modification of the (possibly preconditioned) CG method is
used, which terminates if a negative curvature is detected. More precisely, we set d1 = 0, g1 = g(x),
h1 = C−1g1, p1 = −h1, σ1 = gT

1 h1 and for i = 1, 2, 3, . . . we proceed in the following way. If
‖gi‖ ≤ ω(x)‖g(x)‖, where ω(x) is a local precision (see (5)), then we set d = di and terminate the
computation, else we set

qi = G(x)pi, τi = pT
i qi.

If τi < τ (τ is the lowest permitted local curvature), then we set d = −g(x) (if i = 1) or d = di (if
i > 1) and terminate the computation, else we set αi = σi/τi and compute

di+1 = di + αipi, gi+1 = gi + αiqi,

hi+1 = C−1gi+1, σi+1 = gT
i+1hi+1,

pi+1 = −hi+1 + (σi+1/σi)pi.

The principal feature of the inexact truncated Newton method is the fact that the Hessian matrix
G(x) is not used explicitly, but the vector G(x)pi is computed by numerical differentiation using the
formula

G(x)pi ≈
g(x + δipi) − g(x)

δi
, (4)

where δi =
√

εM/‖pi‖ (εM is the machine precision). Thus one extra gradient evaluation is needed in
every CG iteration.

The CG method is terminated if τi < τ (a small curvature is detected) or if ‖gi‖ ≤ ω(x)‖g(x)‖ (a
sufficient precision is achieved). We use the value τ = 10−60 in subroutine PNET. The value ω(x) is
chosen according to the inexact Newton approach [7]. In the k-th Newton iteration we use the value

ω(xk) = min
(

√

‖g(xk)‖, 1/k, ω
)

, (5)

where ω = 0.8 in subroutine PNET.
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The matrix C serving as a preconditioner (symmetric and positive definite) cannot be derived from
the Hessian matrix, which is not known explicitly. If MOS2 = 1 (MOS2 is a parameter of the subroutine
PNET), the unpreconditioned CG method (C = I) is used. If MOS2 = 2, we use the preconditioner
obtained by the limited memory BFGS method. In this case C−1 = Hk = Hk

k , where Hk
k is a matrix

defined in Subsection 2.1. This matrix need not be constructed explicitly, since we need only the
vector hi = C−1gi = Hk

k gi (i is an inner index of the CG method), which can be computed by using
two recurrences (the Strang formula). First, vectors uj , k − 1 ≥ j ≥ k − m, are computed by using
the backward recurrence

σj = sT
j uj+1/bj ,

uj = uj+1 − σjyj ,

where uk = gi. Then vectors vj+1, k − m ≤ j ≤ k − 1, are computed by using the forward recurrence

vj+1 = vj + (σj − yT
j vj/bj)sj ,

where vk−m = (bk−1/ak−1)uk−m. Finally, we set hi = vk. Note that 2m additional vectors sj =
xj+1 − xj , yj = gj+1 − gj , k − m ≤ j ≤ k − 1, has to be stored if MOS2 = 2.

2.4 Active set strategy for box constraints

If box constraints are considered, then a simple active set strategy is used. To simplify the notation,
we omit the iteration index k in the following description. Every iteration is started by the detection
of new candidates for active constraints. Thus we set

xi = xl
i, Ix

i = −1 if Ix
i = 1, xi ≤ xl

i + εc max(|xl
i|, 1),

xi = xu
i , Ix

i = −2 if Ix
i = 2, xi ≥ xu

i − εc max(|xu
i |, 1),

xi = xl
i, Ix

i = −3 if Ix
i = 3, xi ≤ xl

i + εc max(|xl
i|, 1),

xi = xu
i , Ix

i = −4 if Ix
i = 3, xi ≥ xu

i − εc max(|xu
i |, 1),

Ix
i = −5 if Ix

i = 5

for 1 ≤ i ≤ n, where εc is a required precision (we use the value εc = 10−8 in our subroutines). After
computing gradient g = g(x), we determine a projected gradient gp and a chopped gradient gc in such
a way that

gp
i = 0, gc

i = min(0, gi) for Ix
i = −1 or Ix

i = −3,

gp
i = 0, gc

i = max(0, gi) for Ix
i = −2 or Ix

i = −4,

gp
i = 0, gc

i = 0 for Ix
i = −5,

gp
i = gi, gc

i = 0 for Ix
i ≥ 0.

If ‖gc‖∞ > ‖gp‖∞ and the previous step was successful, we delete insubstantial active constraints by
setting

Ix
i = 1 if Ix

i = −1 and gi < 0,

Ix
i = 2 if Ix

i = −2 and gi > 0,

Ix
i = 3 if Ix

i = −3 and gi < 0,

Ix
i = 3 if Ix

i = −4 and gi > 0.

In this way, we have obtained a current set of active constraints for the direction determination, step-
size selection and variable metric update. This active set defines a reduced problem with variables
xi, Ix

i < 0, fixed. If we introduce a matrix Z containing columns ei, Ix
i ≥ 0 (ei is the i-th column

of the unit matrix), we can define a reduced gradient gr = ZT g and reduced matrices Hr or Br to
obtain reduced direction vectors dr = −Hrgr or Brdr = −gr. Finally, we use the direction vector
d = Zdr. In this way, we can adapt an arbitrary line-search or trust-region method to solve the
reduced problem. Since the set of active constraints can change, we have to use a suitable restart
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strategy (conditions for setting Br = I, Hr = I or dr = −gr). To guarantee a descent, the restart is
always performed when more then one insubstantial active constraint is deleted. The preconditioned
truncated Newton method is restarted after every change of the set of active constraints.

¿From a practical point of view, it is not advantageous to construct reduced quantities. A better
way is to construct projected gradients gp = ZZT g and projected matrices Hp = ZZT HZZT + Y Y T

or Bp = ZZT BZZT + Y Y T , where Y contains columns ei, Ix
i < 0, to obtain direction vectors

d = −Hpgp or Bpd = −gp. Matrices Hp or Bp are block diagonal (with blocks Hr, I or Br, I) and
they can be updated by using projected vectors sp = ZZT s = ZZT (x+ − x) and yp = ZZT (g+ − g).
Thus it suffices to use projected quantities instead of standard ones. Diagonal blocks of matrices Hp

or Bp can be easily derived from their sparsity pattern by considering only the elements Hp
ij or Bp

ij

for which Ix
i ≥ 0, Ix

j ≥ 0 hold simultaneously. These blocks are then used in matrix multiplications
and matrix decompositions.

Before the step-size selection, we have to determine the maximum step-size α to assure the feasibility.
This is computed by the formula α = min(α1, α2, α3, α4, ∆/‖d‖), where ∆ is an upper bound for the
norm ‖xk+1 − xk‖ (parameter XMAX in our subroutines) and

α1 = min
Ix

i
=1,di<0

xl
i − xi

di
, α2 = min

Ix
i
=2,di>0

xu
i − xi

di
,

α3 = min
Ix

i
=3,di<0

xl
i − xi

di
, α4 = min

Ix
i
=3,di>0

xu
i − xi

di

(we use the value ∞ if a corresponding set is empty).

3. Inexact discrete Newton methods for sparse problems

Consider a general twice continuously differentiable function F : Rn → R, where n is large, and
assume that the Hessian matrix G(x) = [Gij(x)] = [∂2F (x)/(∂xi∂xj)] is sparse. In this case, discrete
versions of the Newton method can be efficiently used for seeking a local minimum of F . These
methods are based on the fact that sufficiently sparse Hessian matrices can be estimated by using a
small number of gradient differences [5]. We use the algorithm proposed in [35] in subroutines PNED,
PNEC. The sparsity pattern of the Hessian matrix (only the upper part) is stored in the coordinate
form (if ISPAS = 1) or in the standard compressed row format (if ISPAS = 2) using arrays IH and JH.
For example, if the Hessian matrix has the pattern

G =













∗ ∗ ∗ 0 ∗
∗ ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗













(asterisks denote nonzero elements), then arrays IH and JH contain elements

IH =
[

1 1 1 1 2 2 3 3 4 5
]

, JH =
[

1 2 3 5 2 4 3 5 4 5
]

if ISPAS = 1 or

IH =
[

1 5 7 9 10 11
]

, JH =
[

1 2 3 5 2 4 3 5 4 5
]

if ISPAS = 2. In the first case, nonzero elements in the upper part of the Hessian matrix can be sorted
in an arbitrary order (not only by rows as in the above example) and arrays IH and JH have to be
declared with lengths n+m, where m is the number of nonzero elements. In the second case, nonzero
elements can be sorted only by rows. Components of IH contain addresses of the diagonal elements
in this sequence and components of JH contain corresponding column indices (note that IH has n + 1
elements and the last element is equal to m + 1). Arrays IH and JH have to be declared with lengths
n + 1 and m, respectively.
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Since the Hessian matrix can be indefinite, discrete versions of the Newton method are realized
in the trust-region framework. Let Bk be a gradient-difference approximation of the Hessian matrix
Gk = G(xk). Denote

Qk(d) =
1

2
dT Bkd + gT

k d

the quadratic function which locally approximates the difference F (xk + d) − F (xk),

ωk(d) = (Bkd + gk)/‖gk‖
the accuracy of the direction determination and

ρk(d) =
F (xk + d) − F (xk)

Qk(d)

the ratio of the actual and the predicted decrease of the objective function. Trust-region methods
(used in subroutines PNED, PNEC, PGAD, PGAC) generate points xk ∈ Rn, k ∈ N , in such a way that x1

is arbitrary and

xk+1 = xk + αkdk, k ∈ N, (6)

where dk ∈ Rn are direction vectors and αk ≥ 0 are step-sizes. Direction vectors dk ∈ Rn are chosen
to satisfy conditions

‖dk‖ ≤ ∆k, (7)

‖dk‖ < ∆k ⇒ ‖ωk(dk)‖ ≤ ωk, (8)

−Qk(dk) ≥ σ‖gk‖min(‖dk‖, ‖gk‖/‖Bk‖), (9)

where 0 ≤ ωk ≤ ω < 1 and 0 < σ < 1 (we use the value ω = 0.9 in our subroutines; σ is a theoretical
value given implicitly). Step-sizes αk ≥ 0 are selected so that

ρk(dk) ≤ 0 ⇒ αk = 0, (10)

ρk(dk) > 0 ⇒ αk = 1. (11)

Trust-region radii 0 < ∆k ≤ ∆ are chosen in such a way that 0 < ∆1 ≤ ∆ (∆1 and ∆ are given by
parameters XDEL and XMAX in our subroutines) and

ρk(dk) < ρ ⇒ β‖dk‖ ≤ ∆k+1 ≤ β‖dk‖, (12)

ρ ≤ ρk(dk) ≤ ρ ⇒ ∆k+1 = ∆k, (13)

ρ < ρk(dk) ⇒ ∆k+1 = min(γ∆k+1, ∆), (14)

where 0 < β ≤ β < 1 < γ and 0 < ρ < ρ < 1 (we use the values β = 0.05, β = 0.75, γ = 2, ρ = 0.1,
ρ = 0.9 in our subroutines). Note that the initial trust-region radius ∆1 is computed by a simple
formula when XDEL = 0. This formula depends on a gradient norm ‖gk‖ and contains a lower bound
for F (parameter FMIN in our subroutines) if INITS = 1. If INITS = 0, parameter FMIN need not be
defined.

The direction vector satisfying (7)–(9) can be computed by four different strategies. Subroutines
PNED,PGAD are based on matrix decomposition methods. They use either the Dennis–Mei (double dog-
leg) method [9] (if MOS = 1) or the Moré–Sorensen method [25] (if MOS = 2). Subroutines PNEC,PGAC
are based on matrix iterative methods. They use either the Steihaug–Toint method [30], [31] (if
MOS1 = 1) or the shifted Steihaug–Toint method [16] (if MOS1 = 2). To simplify the description of
these methods, we omit the outer index k and denote the inner index by i.

3.1 Matrix decomposition Moré–Sorensen trust region method

The most sophisticated methods are based on a computation of the optimal locally constrained step.
A vector d ∈ Rn is obtained by solving a subproblem

minimize Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ ∆. (15)
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Necessary and sufficient conditions for this solution are

‖d‖ ≤ ∆, (B + λI)d + g = 0, B + λI � 0, λ ≥ 0, λ(∆ − ‖d‖) = 0 (16)

(we use the symbol � for ordering by positive semidefiniteness). The Moré–Sorensen method [25] is
based on solving a nonlinear equation

1/‖d(λ)‖ = 1/∆ with (B + λI)d(λ) = −g

by the Newton method using a modification of the sparse Choleski decomposition of B+λI (we use the
Gill–Murray decomposition [10]. More precisely, we determine µ

1
as the maximal diagonal element

of the matrix −B, set λ1 = max(µ
1
, 0), λ1 = ‖g‖/∆ + ‖B‖, λ1 = λ1 and for i = 1, 2, 3, . . . we proceed

in the following way. Carry out the Gill–Murray decomposition B + λiI + Ei = RT
i Ri (see [10]) for

more details). If Ei 6= 0, determine a vector vi ∈ Rn such that ‖vi‖ = 1 and vT
i (B + λiI)vi < 0, set

µ
i
= λi − vT

i (B +λiI)vi, λi = µ
i
, λi = λi and repeat this process (i.e., carry out the new Gill–Murray

decomposition B + λiI + Ei = RT
i Ri). If Ei = 0, compute a vector di ∈ Rn by solving the equation

RT
i Ridi + g = 0. If ‖di‖ > δ∆, set λi+1 = λi and λi+1 = λi. If δ∆ ≤ ‖di‖ ≤ δ∆ or ‖di‖ < δ∆ and

λi = 0, set d = di and terminate the computation. If ‖di‖ < δ∆ and λi 6= 0, set λi+1 = λi, λi+1 = λi,
determine a vector vi ∈ Rn such that ‖vi‖ = 1 and vT

i di ≥ 0, which is a good approximation of an
eigenvector of the matrix B corresponding to its minimal eigenvalue, and compute a number αi ≥ 0
such that ‖di + αivi‖ = ∆. If

α2
i ‖Rivi‖2 ≤ (1 − δ2)(‖Ridi‖2 + λi∆

2),

set d = di + αivi and terminate the computation, otherwise set µ
i
= λi − ‖Rivi‖2. In this case or if

‖di‖ > δ∆, compute a vector vi ∈ Rn by solving the equation RT
i vi = di and set

λi+1 := λi +
‖di‖2

‖vi‖2

(‖di‖ − ∆

∆

)

.

If λi+1 < λi+1, set λi+1 = λi+1. If λi+1 > λi+1, set λi+1 = λi+1. We use the values δ = 0.9 and

δ = 1.1 in our subroutines.

3.2 Matrix decomposition Dennis–Mei trust region method

The Moré–Sorensen method is very robust but requires 2-3 Choleski-type decompositions per iteration
on average. Simpler methods are based on minimization of Q(d) on a two-dimensional subspace
containing the Cauchy step dC = −(gT g/gT Bg)g and the Newton step dN = −B−1g. The Dennis–
Mei double dog-leg method described in [9] seeks d as a linear combination of these two steps. This
method uses vectors d = dN if ‖dN‖ ≤ ∆ or d = (∆/‖dC‖)dC if ‖dC‖ ≥ ∆. In the remaining case (if
‖dC‖ < ∆ < ‖dN‖), d is a convex combination of dC and τdN , where τ = max(dT

CdC/dT
CdN , ∆/‖dN‖),

such that ‖d‖ = ∆.
The Newton step is computed by using the sparse Gill–Murray decomposition [10], which has the

form B + E = LDLT = RT R, where E is a positive semidefinite diagonal matrix (equal to zero when
B is positive definite), L is a lower triangular matrix, D is a positive definite diagonal matrix and R
is an upper triangular matrix. The matrix LDLT = RT R then replaces B in Q(d). The Dennis–Mei
method requires only one Choleski-type decomposition per iteration.

3.3 Matrix iterative Steihaug–Toint trust region method

If B is not sufficiently sparse, then the sparse Choleski-type decomposition of B is expensive. In this
case, methods based on preconditioned conjugate gradient (CG) iterations are more suitable. Steihaug
[30] and Toint [31] proposed a method based on the fact that Q(di+1) < Q(di) and ‖di+1‖C > ‖di‖C

(where ‖di‖2
C = dT

i Cdi) hold in the preconditioned CG iterations if CG coefficients are positive. We
either obtain an unconstrained solution with a sufficient precision or stop on the trust-region boundary
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if a negative curvature is indicated or if the trust-region is left. More precisely, we set d1 = 0, g1 = g,
p1 = −C−1g and for i = 1, 2, 3, . . . we proceed in the following way. If ‖gi‖ ≤ ω‖g‖, then set d = di

and terminate the computation, otherwise set

qi = Bpi, αi = gT
i C−1gi/pT

i qi.

If αi ≤ 0, determine αi ≥ 0 in such a way that ‖di + αipi‖ = ∆, set d := di + αipi and terminate the
computation, otherwise compute di+1 = di + αipi. If ‖di+1‖ ≥ ∆, determine αi ≥ 0 in such a way
that ‖di + αipi‖ = ∆, set d := di + αipi and terminate the computation, otherwise compute

gi+1 = gi + αiqi, βi = gT
i+1C

−1gi+1/gT
i C−1gi

pi+1 = −C−1gi+1 + βipi.

The matrix C serves as a preconditioner (symmetric and positive definite). If MOS2 = 1 (MOS2 is a
parameter of subroutines PNEC,PGAC), then no preconditioning is performed (C = I), if MOS2 = 2, an
incomplete Choleski decomposition of the matrix B is used, and if MOS2 = 3, a preliminary solution
obtained by the incomplete Choleski decomposition can be accepted. In this case, we first compute
p1 = −C−1g. If ‖Bp1 + g‖ ≤ ω‖g‖, we set d = p1 and terminate the computation, otherwise we
continue by CG iterations as above.

There are two possible ways that the Steihaug–Toint method can be preconditioned. The first way
uses norms ‖di‖Ci

(instead of ‖di‖) in (7)–(14), where Ci are preconditioners chosen. This possibility
has been tested in [11] and showed that such a way is not always efficient. This is caused by the
fact that norms ‖di‖Ci

, i ∈ N , vary considerably in the major iterations and preconditioners Ci,
i ∈ N , can be ill-conditioned. The second way uses Euclidean norms in (7)–(14) even if arbitrary
preconditioners Ci, i ∈ N , are used. In this case the trust region can be left prematurely and the
direction vector obtained can be farther from the optimal locally-constrained step than that obtained
without preconditioning. This shortcoming is usually compensated by the rapid convergence of the
preconditioned CG method. Our computational experiments indicated that the second way is more
efficient in general and we use it in our subroutines.

3.4 Matrix iterative shifted Steihaug–Toint trust region method

Since the optimal locally constrained step has to satisfy the equation (B+λI)d+g = 0, where λ ≥ 0
is the optimal Lagrange multiplier (see (16)), it seems to be advantageous to apply the Steihaug–Toint
method to the subproblem

minimize Q̃(d) = Qλ̃(d) =
1

2
dT (B + λ̃I)d + gT d s.t. ‖d‖ ≤ ∆, (17)

where λ̃ ≥ 0 is an approximation of the optimal λ. The number λ̃ ≥ 0 is found by solving a small-size
subproblem

minimize
1

2
d̃T T d̃ + ‖g‖eT

1 d̃ s.t. ‖d̃‖ ≤ ∆ (18)

with the tridiagonal matrix T obtained by using a small number of Lanczos steps. This method com-
bines good properties of the Moré–Sorensen and the Steihaug–Toint methods and can be successfully
preconditioned by the second way described in the previous subsection. The point on the trust-region
boundary obtained by this method is usually closer to the optimal solution in comparison with the
point obtained by the original Steihaug–Toint method.

The above considerations form a basis for the shifted Steihaug–Toint method proposed in [16]. This
method consists of the three steps:

(1) Let m = MOS1 (the default value is MOS1 = 5). Determine a tridiagonal matrix T of order m by
using m steps of the (unpreconditioned) Lanczos method (described, e.g., in [11], [14]) applied to
the matrix B with the initial vector g.

(2) Solve the subproblem (18) by using the Moré–Sorensen method described in Section 3.1 to obtain
a Lagrange multiplier λ̃.
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(3) Apply the (preconditioned) Steihaug–Toint method described in Section 3.3 to the subproblem
(17) to obtain a direction vector d = d(λ̃).

Let λ̃ be the Lagrange multiplier of small-size subproblem (18) and λ be the Lagrange multiplier
obtained by the Moré–Sorensen method applied to the original trust-region subproblem (15). It can
be shown (see [16]) that 0 ≤ λ̃ ≤ λ. This inequality assures that λ = 0 implies λ̃ = 0 so ‖d‖ < ∆
implies λ̃ = 0. Thus the shifted Steihaug–Toint method reduces to the standard one in this case.
At the same time, if B is positive definite and λ̃ > 0, then one has ∆ ≤ ‖(B + λ̃I)−1g‖ < ‖B−1g‖.
Thus the unconstrained minimizer of the shifted quadratic function (17) is closer to the trust-region
boundary than the unconstrained minimizer of the original quadratic function (15) and we can expect
that d(λ̃) is closer to the optimal locally constrained step than d(0). Finally, if λ̃ > 0, then the matrix
B + λ̃I is better conditioned than B and we can expect that the shifted Steihaug–Toint method will
converge more rapidly than the original one.

4. Methods for partially separable problems

Consider a function of the form

F (x) =

na
∑

i=1

fi(x), (19)

where fi(x), 1 ≤ i ≤ na (na is usually large), are smooth particular functions depending on a small
number of variables (ni, say). In this case, the Jacobian matrix J(x) = [Jij(x)] = [∂fi(x)/∂xj ] is
sparse. In subroutines PSED, PSEC, and PSEN, the sparsity pattern of the Jacobian matrix is stored
in the coordinate form (if ISPAS = 1) or in the standard compressed row format (if ISPAS = 2) using
arrays IAG and JAG. For example, if the Jacobian matrix has the pattern

J =













∗ ∗ 0 ∗
∗ ∗ ∗ 0
∗ 0 0 ∗
0 ∗ ∗ 0
∗ 0 ∗ 0













(asterisks denote nonzero elements) then arrays IAG and JAG contain elements

IAG =
[

1 1 1 2 2 2 3 3 4 4 5 5
]

, JAG =
[

1 2 4 1 2 3 1 4 2 3 1 3
]

,

if ISPAS = 1 or

IAG =
[

1 4 7 9 11 13
]

, JAG =
[

1 2 4 1 2 3 1 4 2 3 1 3
]

,

if ISPAS = 2. In the first case, nonzero elements can be sorted in an arbitrary order (not only by rows
as in the above example). Arrays IAG and JAG have to be declared with lengths na + ma and ma,
respectively, where ma is the number of nonzero elements. In the second case, nonzero elements can
be sorted only by rows. Components of IAG contain total numbers of nonzero elements in all previous
rows increased by 1 and elements of JAG contain corresponding column indices (note that IAG has
na + 1 elements and the last element is equal to ma + 1). Arrays IAG and JAG have to be declared
with lengths na +1 and ma, respectively. This representation of sparse Jacobian matrices is also used
in subroutines PGAD, PGAC, PMAX, PSUM, PEQN, PEQL described in the subsequent sections.

Using the sparsity pattern of the Jacobian matrix, we can define packed gradients ĝi(x) ∈ Rni

and packed Hessian matrices Ĝi(x) ∈ Rni×ni of functions fi(x), 1 ≤ i ≤ na, as dense but small-
size vectors and matrices. Note that ĝi(x) = ZT

i gi(x), Ĝi(x) = ZT
i Gi(x)Zi and gi(x) = Ziĝi(x),

Gi(x) = ZiĜi(x)ZT
i , 1 ≤ i ≤ na, where gi(x) and Gi(x) are original gradients and Hessian matrices

of functions fi(x), respectively, and Zi ∈ Rn×ni are matrices containing columns of the unit matrix
corresponding to the variables appearing in fi(x).
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Methods for partially separable problems are implemented in the line-search framework mentioned
in Section 2. A direction vector dk is computed by solving a system of linear equations with a matrix
Bk, which is an approximation of the Hessian matrix computed from approximations of packed Hessian
matrices, see (22) below. Subroutines PSED and PSEN use the Gill–Murray matrix decomposition. In
this case, Bk is replaced by LkDkLT

k = Bk + Ek, where Lk is a lower triangular matrix, Dk is a
positive definite diagonal matrix, and Ek is a positive semidefinite diagonal matrix chosen in such
a way that Bk + Ek is positive definite (more details are given in [10]). Subroutine PSEC uses the
preconditioned conjugate gradient method described in Subsection 2.1, where multiplications by Bk

are explicitly used instead of (4) and ω = 0.9 in (5).

4.1 Partitioned variable metric methods

Subroutines PSED, PSEC are based on partitioned variable metric updates [12], which consider each
particular function separately. Thus approximations B̂i, 1 ≤ i ≤ na, of the packed Hessian matrices
Ĝi(x) are updated by using the quasi-Newton conditions B̂+

i ŝi = ŷi, where ŝi = ZT
i s = ZT

i (x+ − x)
and ŷi = ĝ+

i − ĝi = ZT
i (g+

i − gi) (we omit outer index k and replace index k + 1 by + in this section).
Therefore, a variable metric update can be used for each of the particular functions. However, there
is a difference between the classic and the partitioned approach, since conditions ŝT

i ŷi > 0, which are

necessary for positive definiteness of B̂+
i , are not guaranteed for all 1 ≤ i ≤ na. This difficulty is

unavoidable and an efficient algorithm has to handle this situation.
Subroutines PSED, PSEC use three strategies. If MET = 1, then the safeguarded partitioned BFGS

updates

B̂+
i = B̂i +

ŷiŷ
T
i

ŝT
i ŷi

− B̂iŝi(B̂iŝi)
T

ŝT
i B̂iŝi

, ŝT
i ŷi > 0, (20)

B̂+
i = B̂i, ŝT

i ŷi ≤ 0

are used. If MET = 2, then the BFGS updates are combined with the rank-one updates

B̂+
i = B̂i +

(ŷi − B̂iŝi)(ŷi − B̂iŝi)
T

ŝT
i (ŷi − B̂iŝi)

, |ŝT
i (ŷi − B̂iŝi)| ≥ εM |ŝT

i B̂iŝi|, (21)

B̂+
i = B̂i, |ŝT

i (ŷi − B̂iŝi)| < εM |ŝT
i B̂iŝi|,

where εM is the machine precision. We use a strategy, which is based on the observation that (20)
usually leads to the loss of convergence if too many particular functions have indefinite Hessian
matrices. We start with the partitioned BFGS update (20). If n− ≥ θna, where n− is a number of
particular functions with a negative curvature and θ is a threshold value, then (21) is used for all
particular functions in all subsequent iterations (we use the value θ = 1/2 in the subroutines PSED,
PSEC). If MET = 3, then packed matrices B̂i ≈ Ĝi(x) are computed by using gradient differences. This
strategy is in fact the partitioned discrete Newton method.

A disadvantage of partitioned variable metric methods (MET = 1, MET = 2) is the fact that approx-
imations of packed Hessian matrices need to be stored. Therefore, the number of stored elements
can be much greater than the number of nonzero elements in the sparse Hessian matrix. Moreover,
operations with packed Hessian matrices (decomposition, multiplication) are usually unsuitable (time
consuming). Thus the sparse approximation of the Hessian matrix

B =

na
∑

i=1

ZiB̂iZ
T
i (22)

(stored as in Section 3) is constructed in subroutines PSED, PSEC. Then a direction vector d, used
in line search, is computed by solving the linear system Bd = −g. The partitioned Newton method
(MET = 3) does not store packed matrices B̂i, 1 ≤ i ≤ na, since they are immediately added to matrix
(22).
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4.2 Partitioned variable metric method for nonsmooth functions

Assume that functions fi(x), 1 ≤ i ≤ na, appearing in (19), are nonsmooth, locally Lipschitz, and
we are able to compute (Clarke) subgradients gi ∈ ∂fi(x), 1 ≤ i ≤ na, at any point x ∈ Rn. Then
also F (x) is locally Lipschitz and since locally Lipschitz function is differentiable almost everywhere
by the Rademacher theorem, usually ∂F (x) = {∇F (x)}. A special feature of nonsmooth functions is
the fact that the gradient ∇F (x) changes discontinuously and is not small in the neighborhood of a
local minimum. Thus the standard optimization methods cannot be used efficiently.

The most commonly used approach for solving nonsmooth optimization problems is based on the
bundle principle. In this case, values F (xk), g(xk) ∈ ∂F (xk) at a single point xk are replaced by
a bundle of values Fj = F (zj), gj ∈ ∂F (zj) obtained at trial points zj , j ∈ Jk ⊂ {1, . . . , k}. This
bundle of values serves for defining a piecewise quadratic function (with a quadratic regularizing term),
which is used for direction determination by solving a quadratic programming subproblem. Usually,
the bundle contains many dense subgradients. Thus a dense quadratic programming subproblem with
many constraints has to be solved, which is unsuitable in the large-scale cases. This disadvantage can
be overcome by the bundle variable metric method described in [36], which uses a bundle with three
subgradients at most for defining a quadratic programming subproblem. Subroutine PSEN is based on
the partitioned bundle variable metric method described in [23], which combines ideas from [36] with
partitioned variable metric updates.

Using aggregate subgradients g̃k and aggregated subgradient locality measures β̃k (where g̃1 = g1

and β̃1 = 0 in the first iteration), the partitioned bundle variable metric method generates a sequence
of basic points {xk} ⊂ Rn and a sequence of trial points {zk} ⊂ Rn such that

xk+1 = xk + αL
k dk, zk+1 = xk + αR

k dk,

where dk = −(B−1
k + ρI)g̃k is a direction vector and αR

k > 0, αR
k ≥ αL

k ≥ 0 are appropriately chosen
step-sizes. At the same time, Bk is a matrix obtained by partitioned variable metric updates and ρ
is a correction parameter (parameter ETA3 in subroutine PSEN). Step-sizes αR

k and αL
k are chosen by

a special line-search procedure in such a way that either

F (xk + αL
k dk) ≤ F (xk) − εLαR

Lwk

or

dT
k g(xk + αR

k dk) ≥ γk+1 − εRwk.

Here 0 < εL < 1/2, εL < εR < 1 are suitable constants (we use the values εL = 10−4, εR = 0.25 in
our subroutine), g(xk + αR

k dk) ∈ ∂F (xk + αR
k dk), wk = −(g̃k)T dk + 2β̃k and

γk+1 = max
(

|F (xk) − F (xk + αR
k dk) + αR

k dT
k g(xk + αR

k dk)|, γ‖αR
k dk‖2

)

where γ is a subgradient locality measure parameter (parameter ETA5 in subroutine PSEN). In the
first case (descent step) we set zk+1 = xk+1 = xk + αL

k dk, βk+1 = 0 and substitute β̃k+1 = 0,
g̃k+1 = gk+1 ∈ ∂F (zk+1). In the second case (null step) we set zk+1 = xk + αR

k dk, xk+1 = xk,

βk+1 = γk+1 and determine β̃k+1, g̃k+1 by the aggregation procedure.
The aggregation procedure is very simple. Denoting by l the lowest index satisfying xl = xk (index

of the iteration after the last descent step) and using the subgradients gl, gk+1, g̃k and the subgradient
locality measures βl = 0, βk+1, β̃k, we determine multipliers

λ1
k ≥ 0, λ2

k ≥ 0, λ3
k ≥ 0, λ1

k + λ2
k + λ3

k = 1,

which minimize the quadratic function

(λ1gl + λ2gk+1 + λ3g̃k)T (B−1
k + ρI)(λ1gl + λ2gk+1 + λ3g̃k) + 2(λ1βl + λ2βk+1 + λ3β̃k),

and set

g̃k+1 = λ1
kgl + λ2

kgk+1 + λ3
kg̃k, β̃k+1 = λ1

kβl + λ2
kβk+1 + λ3

kβ̃k.
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After obtaining points xk+1, zk+1 and subgradient gk+1 ∈ ∂F (zk+1), the matrix Bk is updated. To
satisfy conditions for the global convergence, we use special symmetric rank-one updates after null
steps. This guarantees that elements of Bk do not decrease. After descent steps, the safeguarded BFGS
updates can be used. As the function F (x) is partially separable, the matrix Bk can be expressed in
form (22) (we omit outer index k and replace index k + 1 by +). Thus we set

B̂+
i = B̂i +

ŷiŷ
T
i

ŝT
i ŷi

− B̂iŝi(B̂iŝi)
T

ŝT
i B̂iŝi

, ŝT
i ŷi > 0,

B̂+
i = B̂i, ŝT

i ŷi ≤ 0

after a descent step or

B̂+
i = B̂i +

(ŷi − B̂iŝi)(ŷi − B̂iŝi)
T

ŝT
i (ŷi − B̂iŝi)

, ŝT
i (ŷi − B̂iŝi) ≥ εM ŝT

i B̂iŝi,

B̂+
i = B̂i, ŝT

i (ŷi − B̂iŝi) < εM ŝT
i B̂iŝi

after a null step (εM is the machine precision). Here ŝi = ZT
i si and ŷi = ĝ+

i − ĝi = ZT
i (g+

i −gi), where
g+

i and gi are subgradients computed at points z+ and x, respectively (aggregated subgradients g̃+
i

and g̃i are not used in variable metric updates).
Since the quadratic programming subproblem used in the aggregation procedure is very simple,

initial step-size α = 1 need not be a good choice in connection with its solution. Therefore we store and
use a bundle of values Fj = F (zj), gj ∈ ∂F (zj) obtained at trial points zj , j ∈ Jk = {k − m, . . . , k}.
Here m is a size of the bundle (parameter MB of subroutine PSEN). These values are used for the
construction of a piecewise linear function which serves for determination of a better initial step-size.
More details are given in [23].

5. Hybrid methods for nonlinear least-squares

Consider a function of the form

F (x) =
1

2

na
∑

i=1

f2
i (x) =

1

2
fT (x)f(x) (23)

(sum of squares), where fi(x), 1 ≤ i ≤ na (na is usually large), are smooth functions depending on a
small number of variables (ni, say). In this case, the Jacobian matrix J(x) = [Jij(x)] = [∂fi(x)/∂xj ]
is sparse. The sparsity pattern of the Jacobian matrix is stored using arrays IAG and JAG in the way
described in Section 4.

Using the Jacobian matrix, we can express the gradient g(x) and the Hessian matrix G(x) in the
form

g(x) =

na
∑

i=1

fi(x)gi(x) = JT (x)f(x),

G(x) =

na
∑

i=1

(

gi(x)gT
i (x) + fi(x)Gi(x)

)

= JT (x)J(x) + C(x)

(Gi(x) are Hessian matrices of fi(x), 1 ≤ i ≤ na, and C(s) is a second order term). The well-
known Gauss-Newton method uses the matrix JT (x)J(x) instead of the Hessian matrix G(x) =
JT (x)J(x) + C(x) (i.e., it omits the second order information contained in C(x)). We assume that
the matrix JT (x)J(x) is sparse (then also C(x) is sparse).

The matrix JT (x)J(x) is frequently ill-conditioned (even singular) so that the Gauss-Newton
method and its modifications require trust-region realizations. For computing a trust-region step,
subroutine PGAD uses matrix decomposition methods and subroutine PGAC uses matrix iterative meth-
ods. These methods and their choices (using variables MOS MOS1, and MOS2) are described in Section 3.
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If the minimum value F (x∗) is large (large residual problem), the Gauss-Newton method can be
inefficient. Therefore, modifications that use the estimation of the second-order term have been
developed. These modifications are based on the fact (proven in [1]) that (Fk − Fk+1)/Fk → 1 if
Fk → 0 Q-superlinearly and (Fk − Fk+1)/Fk → 0 if Fk → F ∗ > 0. Thus we can use the following
philosophy. Let xk+1 be a vector obtained by the trust-region strategy described in Section 3. If
xk+1 6= xk, we compute Fk+1 = F (xk+1), Jk+1 = J(xk+1) and set

Bk+1 = JT
k+1Jk+1, Fk − Fk+1 > ϑFk,

Bk+1 = JT
k+1Jk+1 + Ck+1, Fk − Fk+1 ≤ ϑFk,

where Ck+1 is an approximation of the second order term and ϑ is a suitable value (parameter ETA in
subroutines PGAD and PGAC).

Large-scale correction matrix Ck+1 cannot be obtained by dense variable metric updates [1], which
are frequently used for medium-size problems. Fortunately, simple corrections utilizing sparsity also
increase the efficiency of the Gauss-Newton method. In subroutines PGAD and PGAC we have imple-
mented three hybrid methods proposed in [15] (specified by the variable MEC), which are described in
the subsequent subsections. To simplify the notation, we omit outer index k and replace index k + 1
by +.

5.1 Gauss-Newton method with sparse variable metric corrections

If MEC = 1, the sparse variable metric corrections (Marwil updates) are used. In the first iteration (or
after a restart) we use the matrix B = JT J . In the subsequent iterations we set

B+ = (J+)T J+, F − F+ > ϑF,

B+ = PSPQG((J+)T J+), F − F+ ≤ ϑF,

where PS realizes an orthogonal projection into the subspace of symmetric matrices of order n and
PQG realizes an orthogonal projection into the intersection of the subspace of matrices having the same
sparsity pattern as JT J and the linear manifold of matrices satisfying the quasi-Newton condition
Ws = y with s = x+ − x, y = g+ − g. Thus

PSW = (W + WT )/2,

(PGW )ij = Wij , (JT J)ij 6= 0,

(PGW )ij = 0, (JT J)ij = 0,

for a given square matrix W , and

PQG((J+)T J+) = PG((J+)T J+ + usT ),

where u ∈ Rn is a solution of the linear system Du = y − (J+)T J+s with a diagonal matrix D such
that

Dii =
∑

(JT J)ij 6=0

(eT
j s)2

(ej is the j-th column of the unit matrix).

5.2 Gauss-Newton method with the Newton corrections

If MEC = 2, the Newton corrections are used. In the first iteration (or after a restart) we use the matrix
B = JT J . In the subsequent iterations we set

B+ = (J+)T J+, F − F+ > ϑF,

B+ = (J+)T J+ +

na
∑

i=1

f+
i G+

i , F − F+ ≤ ϑF,
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where G+
i , 1 ≤ i ≤ na, are approximations of Hessian matrices determined by using gradient differences

at the point x+.

5.3 Gauss-Newton method with partitioned variable metric corrections

If MEC = 3, the partitioned variable metric corrections (symmetric rank-one updates) are used. In the
first iteration (or after a restart) we use the matrix B = JT J . In the subsequent iterations we set

B+ = (J+)T J+, F − F+ > ϑF,

B+ = (J+)T J+ +

na
∑

i=1

f+
i ZiB̂

+
i ZT

i , F − F+ ≤ ϑF,

where Zi, 1 ≤ i ≤ na, are matrices defined in Section 4 and B̂+
i , 1 ≤ i ≤ na, are packed matrices

updated using symmetric rank-one formulas

B̂+
i = B̂i +

(ŷi − B̂iŝi)(ŷi − B̂iŝi)
T

ŝT
i (ŷi − B̂iŝi)

, |ŝT
i (ŷi − B̂iŝi)| ≥ εM |ŝT

i B̂iŝi|,

B̂+
i = B̂i, |ŝT

i (ŷi − B̂iŝi)| < εM |ŝT
i B̂iŝi|

(εM is the machine precision), where B̂i = I, 1 ≤ i ≤ na, in the first iteration (or after a restart).
A disadvantage of partitioned variable metric corrections is the fact that approximations of packed
Hessian matrices need to be stored. Thus the choice MEC = 3 is usually less suitable than choices
MEC = 1 and MEC = 2.
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6. Primal interior-point methods for minimax optimization

Consider a function of the form

F (x) = max
1≤i≤na

fi(x) (24)

(pointwise maximum), where fi(x), 1 ≤ i ≤ na (na is usually large), are smooth functions depending on
a small number of variables (ni, say). In this case, the Jacobian matrix J(x) = [Jij(x)] = [∂fi(x)/∂xj ]
is sparse. The sparsity pattern of the Jacobian matrix is stored using arrays IAG and JAG in the way
described in Section 4.

Primal interior point methods for minimax optimization, proposed in [17], are based on three basic
ideas. First, minimization of F is equivalent to the nonlinear programming problem with n + 1
variables x ∈ Rn, z ∈ R:

minimize z subject to fi(x) ≤ z, 1 ≤ i ≤ na. (25)

Secondly, this constrained problem is replaced by a sequence of unconstrained problems

minimize Bµ(x, z) = z − µ

na
∑

i=1

log(z − fi(x)),

where z > F (x) and µ > 0 (we assume that µ → 0 monotonically). Finally, the extra variable z is
eliminated by solving the scalar nonlinear equation

na
∑

i=1

µ

z − fi(x)
= 1, (26)

which follows from the first-order necessary conditions for the barrier function Bµ(x, z) with fixed
x ∈ Rn. The above equation has a unique root zµ(x) such that F (x)+ µ ≤ zµ(x) ≤ F (x)+ naµ. This
approach leads to inexact unconstrained minimizations of functions Bµ(x) = Bµ(x, zµ(x)) for suitable
values of µ using the fact that

∇Bµ(x) = gµ(x) = JT (x)uµ(x)

and

∇2Bµ(x) = Gµ(x) + JT (x)Vµ(x)J(x) − JT (x)Vµ(x)eeT Vµ(x)J(x)

eT Vµ(x)e
,

where

uµ(x) =





µ/(zµ(x) − f1(x))
. . .

µ/(zµ(x) − fna
(x))



 , e =





1
. . .
1



 ,

Gµ(x) =

na
∑

i=1

eT
i uµ(x)∇2fi(x),

Vµ(x) = diag
(

µ/(zµ(x) − f1(x))2, . . . , µ/(zµ(x) − fna
(x))2

)

.

The Hessian matrix ∇2Bµ(x) of the barrier function Bµ(x) is positive definite if Gµ(x) (the Hessian
matrix of the Lagrangian function) is positive definite.

Subroutine PMAX is based on a line search realization of the Newton-like methods. Thus x+ = x+αd,
where ∇2Bµ(x)d = −gµ(x) and α is a suitable step-size. In fact, we use an approximation of ∇2Bµ(x),
such that Gµ(x) is determined either by partitioned variable metric updates described in Section 4 (if
MED = 1) or by gradient differences as in [5] (if MED = 2). In the second case, the matrix Gµ(x) is not
positive definite in general so a restart strategy guaranteeing descent is used (more details are given
in [17]). If MED = 1, then we define reduced approximations of the Hessian matrices G̃i = ZT

i GiZi,
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1 ≤ i ≤ na, as in Section 4. New reduced approximations of the Hessian matrices are computed by
the formulas

G̃+
i =

1

γ̃i

(

G̃i −
G̃is̃is̃

T
i G̃i

s̃T
i G̃is̃i

)

+
ỹiỹ

T
i

s̃T
i ỹi

, s̃T
i ỹi > 0, (27)

G̃+
i = G̃i, s̃T

i ỹi ≤ 0,

where

s̃i = ZT
i (x+ − x), ỹi = ZT

i (∇fi(x
+) −∇fi(x)), 1 ≤ i ≤ na,

and where either γ̃i = 1 or γ̃ = s̃T
i G̃is̃i/s̃T

i ỹi. The particular choice of γ̃i is determined by the
controlled scaling strategy described in [19]. In the first iteration we set G̃i = I, 1 ≤ i ≤ na, where I
are unit matrices of suitable orders. Finally, G+

i = ZiG̃
+
i ZT

i , 1 ≤ i ≤ na.
A very important part of the primal interior point method is an update of the barrier parameter

µ. There are two requirements, which play opposite roles. First, µ → 0 should hold, since this is the
main property of every interior-point method. On the other hand, round-off errors can cause that
zµ(x) = F (x) when µ is too small and |F (x)| is sufficiently large (since F (x)+µ ≤ zµ(x) ≤ F (x)+naµ),
which leads to a breakdown (division by zµ(x) − F (x) = 0). Thus a lower bound µ for the barrier
parameter (parameter ETA5 in subroutine PMAX) is used.

The efficiency of the primal interior point method is also sensitive to the way in which the barrier
parameter decreases. Subroutine PMAX uses the formula

µk+1 = max
(

µ̃k+1, µ
)

,

where

µ̃k+1 = min
[

max(λµk, µk/(100µk + 1)), max(‖gµk
(xk)‖2, 10−2k)

]

and where λ is the rate of the barrier parameter decrease (parameter ETA4 in subroutine PMAX).
Subroutine PMAX serves for minimization of three particular functions. If IEXT < 0, then function

(24) is considered. If IEXT = 0, then

F (x) = max
1≤i≤na

|fi(x)| = max
1≤i≤na

[max(fi(x),−fi(x))] .

If IEXT > 0, then

F (x) = max
1≤i≤na

(−fi(x)).

7. Primal interior-point methods for l1 optimization

Consider a function of the form

F (x) =

na
∑

i=1

|fi(x)| (28)

(a sum of absolute values), where fi(x), 1 ≤ i ≤ na (na is usually large), are smooth functions
depending on a small number of variables (ni, say). In this case, the Jacobian matrix J(x) = [Jij(x)] =
[∂fi(x)/∂xj ] is sparse. The sparsity pattern of the Jacobian matrix is stored using arrays IAG and
JAG in the way described in Section 4.

Primal interior point methods for l1 optimization, proposed in [18], are based on three basic ideas.
First, minimization of F is equivalent to the nonlinear programming problem with n + na variables
x ∈ Rn, z ∈ Rna :

minimize

na
∑

i=1

zi subject to − zi ≤ fi(x) ≤ zi, 1 ≤ i ≤ na. (29)
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Secondly, this constrained problem is replaced by a sequence of unconstrained problems

minimize Bµ(x, z) =

na
∑

i=1

zi − µ

na
∑

i=1

log(zi − fi(x)) − µ

na
∑

i=1

log(zi + fi(x))

=

na
∑

i=1

zi − µ

na
∑

i=1

log(z2
i − f2

i (x))

where zi > |fi(x)|, 1 ≤ i ≤ na, and µ > 0 (we assume that µ → 0 monotonically). Finally, the extra
variables zi, 1 ≤ i ≤ na, are eliminated by solving the set of quadratic equations

2µzi

z2
i − f2

i (x)
= 1, 1 ≤ i ≤ na,

which follow from the first-order necessary conditions for the barrier function Bµ(x, z) with fixed
x ∈ Rn. Solutions of the above equations define a vector zµ(x) ∈ Rna , where

zµ(x)i = eT
i zµ(x) = µ +

√

µ2 + f2
i (x), 1 ≤ i ≤ na. (30)

This approach leads to inexact unconstrained minimizations of functions

Bµ(x) = Bµ(x, zµ(x)) =

na
∑

i=1

[(zµ(x)i − µ log(zµ(x)i)] − naµ log(2µ) (31)

for suitable values of µ using the fact that

∇Bµ(x) = gµ(x) = JT (x)uµ(x)

and

∇2Bµ(x) = Gµ(x) + JT (x)Vµ(x)J(x),

where

uµ(x) =





f1(x)/zµ(x)1
. . .

fna
(x)/zµ(x)na



 , (32)

Gµ(x) =

na
∑

i=1

eT
i uµ(x)∇2fi(x),

Vµ(x) = diag
(

2µ/(zµ(x)21 + f2
1 (x)), . . . , 2µ/(zµ(x)2na

+ f2
na

(x))
)

(33)

(note that differences z2
i − f2

i (x), 1 ≤ i ≤ m, sensitive to round-off errors, are not used in formulas
(30)–(33)). The Hessian matrix ∇2Bµ(x) of the barrier function Bµ(x) is positive definite if Gµ(x)
(the Hessian matrix of the Lagrangian function) is positive definite.

Subroutine PSUM is based on a trust-region realization of the Newton-like methods. The Dennis–Mei
(dog-leg) method described in Section 3 is used for computation of the trust-region step d using the
quadratic model

Q(d) =
1

2
dT∇2Bµ(x)d + gT

µ (x)d

(more details are given in [18]). In fact, we use an approximation of ∇2Bµ(x), such that Gµ(x) is
determined either by partitioned variable metric updates described in Section 4 (if MED = 1) or by
gradient differences as in [5] (if MED = 2). If MED = 1, then we define reduced approximations of the
Hessian matrices G̃i = ZT

i GiZi, 1 ≤ i ≤ na, as in Section 4. New reduced approximations of the
Hessian matrices are computed by the formulas (27) described in Section 6.

A very important part of the primal interior point method is an update of the barrier parameter
µ. There are two requirements, which play opposite roles. First, µ → 0 should hold, since this is
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the main property of every interior-point method. On the other hand, matrix ∇2Bµ(x) can be very
ill-conditioned when µ is too small. Thus a lower bound µ for the barrier parameter (parameter ETA5
in subroutine PSUM) is used.

The efficiency of the primal interior point method is also sensitive to the way in which the barrier
parameter decreases. Subroutine PSUM uses the formula

µk+1 = max(µ, ‖gk(xk)‖2) if ρ(dk) ≥ ρ and ‖gk(xk)‖2 ≤ µk/100,

and µk+1 = µk otherwise (ρ(dk) and ρ are defined in Section 3).

8. Methods for sparse systems of nonlinear optimization

Consider the system of nonlinear equations

f(x) = 0, (34)

where f : Rn → Rn is a continuously differentiable mapping and assume that the Jacobian matrix
J(x) = [Jij(x)] = [∂fi(x)/∂xj ] is sparse. The sparsity pattern of the Jacobian matrix is stored using
arrays IAG and JAG in the way described in Section 4 (where na = n). Let A be an approximation of
the Jacobian matrix J = J(x) and let F = F (x) = (1/2)‖f(x)‖2. Methods considered in this section
are realized in the line-search framework. They generate a sequence of points xk ∈ Rn, k ∈ N , such
that

xk+1 = xk + αkdk, k ∈ N, (35)

where dk ∈ Rn is a direction vector determined as an approximate solution of the linear system
Akd + fk = 0 such that

‖Akdk + fk‖ ≤ ωk‖fk‖ (36)

with the precision 0 ≤ ωk ≤ ω < 1 and αk is the step-size chosen in such a way that it is the first
member of the sequence αj

k, j ∈ N , where α1
k = 1 and βαj

k ≤ αj+1
k ≤ βαj

k with 0 < β ≤ β < 1,
satisfying

Fk+1 − Fk ≤ −ε1αkfT
k Akdk, (37)

with the line search parameter 0 < ε1 < 1/2. We use the values β = 0.1, β = 0.9 and ε1 = 10−4 in our

subroutines. The value αj+1
k can be determined by a bisection (MES = 1) or by a two-point quadratic

interpolation (MES = 2) or by a three-point quadratic interpolation (MES = 3) or by a three-point cubic
interpolation (MES = 4).

To obtain a superlinear rate of convergence, the condition ωk → 0 has to be satisfied. Therefore,
we set

ωk = min(max(‖fk‖ν , γ(‖fk‖/‖fk−1‖)α), 1/k, ω),

where ν = 1/2, γ = 1, α = (1 +
√

5)/2 and ω = 1/2.
If Ak 6= Jk, then a safeguard based on restarts is used. It consists in setting Ak+1 = Jk+1 if j > j

or Ak = Jk (with repeating the k-th iteration) if j > j, where 0 < j < j. We use the values j = 1 and

j = 5. The restart of the form Ak = Jk is also used whenever

−dT
k JT

k fk ≤ ε‖dk‖‖JT
k fk‖,

where 0 < ε < 1 is a restart tolerance (we use the value ε = 10−12 in our subroutines).
The direction vector dk (an approximate solution of the linear system Akd + fk = 0) is determined

by using the preconditioned smoothed CGS method described in [34]. To simplify the description of
this method, we omit the outer index k and denote the inner index by i. Let h = AT f . We set s1 = 0,
s1 = 0, r1 = f , r1 = f , p1 = f , u1 = f and for i = 1, 2, 3, . . . we proceed in the following way. If
‖ri‖ ≤ ω‖f‖, then set d = si and terminate the process. Otherwise compute

vi = AC−1pi, αi = hT ri/hT vi,
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qi = ui − αivi,

si+1 = si + αiC
−1(ui + qi),

ri+1 = ri + αiAC−1(ui + qi), βi = hT ri+1/hT ri,

ui+1 = ri+1 + βiqi, pi+1 = ui+1 + βi(qi + βipi),

[λi, µi]
T = arg min

[λ,µ]T ∈R2

‖ri+1 + λ(ri − ri+1) + µvi‖,

si+1 = si+1 + λi(si − si+1) + µiC
−1pi,

ri+1 = ri+1 + λi(ri − ri+1) + µivi.

The matrix C serves as a preconditioner. The choice C = I is used if MOS2 = 1 or C is defined as an
incomplete LU decomposition of the matrix A if MOS2 = 2 (MOS2 is a parameter of the subroutines
PEQN and PEQL). If MOS2 = 3, a preliminary solution obtained by the incomplete LU decomposition
can be accepted. In this case, we first compute vectors d1 = −C−1f , r1 = Ad1 + f . If ‖r1‖ ≤ ω‖f‖,
then we set d = d1 and terminate the process, otherwise we continue by CGS iterations as above.

More details concerning globally convergent line-search methods for systems of nonlinear equations
can be found in [22].

8.1 Inexact discrete Newton method

Subroutine PEQN is an implementation of the inexact discrete Newton method. This simple method
is based on the elementwise differentiation. We always set Ak = J(xk), where

Jij(x) =
fi(x + δjej) − fi(x)

δj
(38)

for all pairs (i, j) corresponding to structurally nonzero elements of J(x). Thus we need m scalar
function evaluations (i.e. m/n equivalent vector function evaluations), where m is the number of
structurally nonzero elements of J(x).

Nonzero elements of sparse Jacobian matrix J(x) can be also derived by using the groupwise dif-
ferentiation [4]. Since our comparative tests have shown that the efficiencies of both these approaches
are practically the same (see [22]), we use the simpler elementwise differentiation in our subroutines.

8.2 Inverse column-update quasi-Newton method

Subroutine PEQL is an implementation of the inverse column update method, which is introduced in
[24]. This method uses an approximation Sk = A−1

k of the inverse Jacobian matrix J−1
k . Therefore,

we simply set dk = −Skfk if a restart is not used. Denote by

sk = xk+1 − xk, sk−1 = xk − xk−1, . . . , sk−m = xk−m+1 − xk−m,

yk = fk+1 − fk, yk−1 = fk − fk−1, . . . , yk−m = fk−m+1 − fk−m

the last m differences of points and function vectors, respectively, where the lower index k − m
corresponds to the iteration with the restart. Let

|eT
ik−1

yk−1| = max
1≤i≤n

|eT
i yk−1|, . . . , |eT

ik−m
yk−m| = max

1≤i≤n
|eT

i yk−m|

(where ei, 1 ≤ i ≤ n, are columns of the unit matrix). Then the vector Skfk can be computed by the
formula

Skfk = Sk−mfk +
eT
ik−1

fk

eT
ik−1

yk−1
vk−1 + . . . +

eT
ik−m

fk

eT
ik−m

yk−m
vk−m,

where vk−1 = dk−1 − Sk−1yk−1, . . ., vk−m = dk−m − Sk−myk−m are vectors computed recursively by
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the formula

vk = dk − Skyk = dk − Sk−myk −
eT
ik−1

yk

eT
ik−1

yk−1
vk−1 − . . . −

eT
ik−m

yk

eT
ik−m

yk−m
vk−m.

In both of these formulae we use the matrix Sk−m = (Lk−mUk−m)−1, where Lk−mUk−m is the
incomplete LU decomposition of the Jacobian matrix J(xk−m) computed by (38). Note that the
vectors eik−1

, . . ., eik−m
do not need to be stored. We only use indices of their unique nonzero

elements. The limited memory column update method needs to be restarted periodically after m
iterations (parameter MF in the subroutine PEQL), since at most m vectors can be stored.
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