
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

User Manual for SparsePOP: a Sparse

Semidefinite Programming Relaxation of

Ppolynomial Optimization Problems

Hayato Waki, Sunyoung Kim,

Masakazu Kojima, Masakazu Muramatsu

and Hiroshi Sugimoto

March 2005, B–414. Revised December 2007

B-414 User Manual for SparsePOP: a Sparse Semidefinite Programming Relax-
ation of Ppolynomial Optimization Problems

Hayato Waki⋆, Sunyoung Kim†, Masakazu Kojima‡, Masakazu Muramatsu♯

Hiroshi Sugimoto♭

March 2005, revised December 2007

Abstract.
SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP)
relaxation method for approximating a global optimal solution of a polynomial optimiza-
tion problem (POP) proposed by Waki et al. The sparse SDP relaxation exploits a sparse
structure of polynomials in POPs when applying “a hierarchy of LMI relaxations of in-
creasing dimensions” by Lasserre. The efficiency of SparsePOP to approximate optimal
solutions of POPs is thus increased, and larger scale POPs can be handled. The software
package SparesPOP, this manual, and a test set of POPs from the literature are available
at http://www.is.titech.ac.jp/∼kojima/SparsePOP.

Key words.

Polynomial optimization problem, sparsity, global optimization, sums of squares optimiza-
tion, semidefinite programming relaxation, MATLAB software package

⋆ Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. Hay-
ato.Waki@is.titech.ac.jp

† Department of Mathematics, Ewha Women’s University, 11-1 Dahyun-dong,
Sudaemoon-gu, Seoul 120-750 Korea. A considerable part of this work was con-
ducted while this author was visiting Tokyo Institute of Technology. The research
was supported by Kosef R01-2005-000-10271-0. skim@ewha.ac.kr

‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. Research supported
by Grant-in-Aid for Scientific Research on Priority Areas 16016234 and by Grant-
in-Aid for Scientific Research (B) 19310096. kojima@is.titech.ac.jp

♯ Department of Computer Science, The University of Electro-Communications,
Chofugaoka, Chofu-Shi, Tokyo 182-8585 Japan. Research supported in part by
Grant-in-Aid for Young Scientists (B) 15740054. muramatu@cs.uec.ac.jp

♭ Department of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan.

1 Introduction

SparsePOP is a matlab package for finding global optimal solutions of polynomial opti-
mization problems (POPs). The package is an implementation of a sparse semidefinite
programming (SDP) relaxation method for POPs in [11], proposed to improve the efficiency
of Lasserre’s hierarchy of LMI relaxations of increasing dimensions [6]. SparsePOP exploits
the sparsity of POPs in a way that it can handle POPs of larger dimensions. See also [4, 5].

A general POP is described as follows: Let Rn and Zn
+ denote the n-dimensional Eu-

clidean space and the set of nonnegative integer vectors in Rn, respectively. A real-valued
polynomial fk(x) in x = (x1, x2, . . . , xn) ∈ Rn is expressed as

fk(x) =
∑

α∈Fk

ck(α)xα, x ∈ Rn, ck(α) ∈ R, Fk ⊂ Zn
+

(k = 0, 1, 2, . . . ,m), where xα = xα1
1 xα2

2 · · · xαn
n for every x = (x1, x2, . . . , xn) ∈ Rn and

every α ∈ Zn
+. We consider a POP in the following form:

minimize f0(x)
subject to fk(x) ≥ 0 (k = 1, 2, . . . , ℓ),

fk(x) = 0 (k = ℓ + 1, . . . ,m),
lbdi ≤ xi ≤ ubdi (i = 1, 2, . . . , n),

 (1)

where −∞ ≤ lbdi < ∞ and −∞ < ubdi ≤ ∞ (i = 1, 2, . . . , n). Let ζ∗ denote the optimal
value of the POP (1).

The package accepts a POP as input, and outputs solution information and statistics.
The main part constructs a sparse SDP relaxation of the POP and uses SeDuMi [8] to obtain
an approximate global optimal solution. The structure of the software package SparsePOP
is shown in Figure 1. The function sparsePOP.m is the main function of SparsePOP. Note
the difference in the names of the function sparsePOP.m and the package SparsePOP. As
will be shown in Section 2, sparsePOP.m accepts two different formats of a POP: the GAMS
scalar format [2] that is more readable, and the SparsePOP format, a set of MATLAB data
types designed exclusively for SparsePOP. If a POP is read in the GAMS scalar format,
then a subfunction readGMS.m converts a GAMS scalar format of the POP to a sparsePOP
format of the POP. It is followed by checking the validity of the SparsePOP format of the
POP and the parameters optionally provided by the user or given by default. Then, ei-
ther SDPrelaxation.m or SDPrelaxationMex.m transforms the POP into an SDP relaxation
problem, and solves it with a MATLAB SDP solver SeDuMi. Once the POP (1) is solved,
the solution information is written using the MATLAB function printSolution.m. We refer
to the paper [11] for numerical results from SparsePOP.

The conversion from a POP to an SDP relaxation problem can be time-consuming if
implemented with MATLAB. The subfunction SDPrelaxationMex.m is developed in C++
to speed up this process. SparsePOP provides an option for choosing SDPrelaxation.m or
SDPrelaxationMex.m. If the C++ source programs can be compiled and linked into mex
files, the SDPrelaxationMex.m is recommended. Otherwise, the value of the parameter
param.mex should be changed from param.mex = 1 to param.mex = 0 in the defaultParam-
eter.m to choose the SDPrelaxation.m.

1

Input POP and parameters

readGMS.m

GAMS scalar

format

SparsePOP

 format

Check POP and parameters

SDPrelaxation.m

Solve SDP by SeDuMi

printSolution.m

param.mex=0

param.mex=1

Print Information

SDPrelaxationMex.m

Figure 1: The structure of the main function sparsePOP.m

This manual is organized as follows: Section 2 includes the description of two formats to
express polynomials and POPs. Exemplary execution is shown in Section 3. Section 4 con-
tains the discussion of how POPs having possibly multiple optimal solutions can be treated.
The main function sparsePOP.m and its subfunctions readGMS.m, SDPrelaxation.m, SD-
PrelaxationMex.m and printSolution.m shown in Figure 1 are described with their input
and output arguments in Section 5. The parameters to the subfunctions SDPrelaxation.m
and SDPrelaxationMex.m are explained in Section 6.

2 Representation of polynomial optimization problems

Polynomials in the objective function and constraints of a POP can be described in two ways
to be read by SparsePOP. If the GAMS scalar format is chosen, data in the GAMS scalar
format is converted into data in the SparsePOP format by the function readGMS.m. Or, we
can directly describe the objective and constraint polynomials in terms of the SparsePOP
format. As an illustrative example, we consider an inequality-equality constrained POP
with three variables x1, x2 and x3:

minimize −2x1 + 3x2 − 2x3

subject to 6x2
1 + 3x2

2 − 2x2x3 + 3x2
3 − 17x1 + 8x2 − 14x3 ≥ −19,

x1 + 2x2 + x3 ≤ 5,
5x2 + 3x3 ≤ 7,
0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2.

 (2)

2

2.1 The GAMS scalar format

The GAMS scalar format describing the POP (2) is:

* example1.gms

* This file contains the GAMS scalar format description of the problem

*

* minimize objvar = -2*x1 +3*x2 -2*x3

* subject to

* x1^2 + 3*x2^2 -2*x2*x3 +3*x3^2 -17*x1 +8*x2 -14*x3 >= -19,

* x1 + 2*x2 + x3 <= 5,

* 0 <= x1 <= 2, 0 <= x2 <= 1.

*

* To solve this problem by sparsePOP.m:

* >> param.relaxOrder = 3;

* >> sparsePOP(’example1.gms’,param);

*

* This problem is also described in terms of the SparsePOP format

* in the file example1.m. See Section 3 of the manual.

*

* To obtain a tight bound for the optimal objective value by the function

* sparsePOP.m, set the parameter param.relaxOrder = 3.

* The description consists of 5 parts except comment lines

* starting the character ’*’. The 5 parts are:

* < List of the names of variables >

* < List of the names of nonnegative variables >

* < List of the names of constraints >

* < The description of constraints >

* < Lower and upper bounds of variables >

* < List of the names of variables >

Variables x1,x2,x3,objvar;

* ’objvar’ represents the value of the objective function.

* < List of the names of nonnegative variables >

Positive Variables x1, x2;

* < List of the names of constraints >

Equations e1,e2,e3,e4;

* < The description of constraints >

* Each line should start with the name of a constraint in the list of names

* of constraints, followed by ’.. ’. The symbols ’*’, ’+’, ’-’, ’^’, ’=G=’

* (not less than), ’=E=’ (equal to) and ’=L=’ (not larger than) can be used

* in addition to the variables in the list of the names of variables and real

* numbers. One constraint can be described in more than one lines;

3

* for example,

* e2.. - 17*x1 + 8*x2 - 14*x3 +6*x1^2 + 3*x2^2 - 2*x2*x3 + 3*x3^2 =G= -19;

* is equivalent to

* e2.. - 17*x1 + 8*x2 - 14*x3 +6*x1^2

* + 3*x2^2 - 2*x2*x3 + 3*x3^2 =G= -19;

* Note that the first letter of a line can not be ’*’ except comment lines.

* minimize objvar = -2*x1 +3*x2 -2*x3

e1.. 2*x1 - 3*x2 + 2*x3 + objvar =E= 0;

* 6*x1^2 + 3*x2^2 -2*x2*x3 +3*x3^2 -17*x1 +8*x2 -14*x3 >= -19

e2.. - 17*x1 + 8*x2 - 14*x3 +6*x1^2 + 3*x2^2 - 2*x2*x3 + 3*x3^2 =G= -19;

* x1 + 2*x2 + x3 <= 5

e3.. x1 + 2*x2 + x3 =L= 5;

* 5*x2 + 2*x3 = 7

e4.. 5*x2 + 2*x3 =E= 7;

* < Lower and upper bounds on variables >

* Each line should contain exactly one bound;

* For 0.5 <= x3 <= 2, we set

* x3.lo = 0.5;

* x3.up = 2;

* A line such that ’x3.lo = 0.5; x3.up = 2;’ is not allowed.

* x1 <= 2

x1.up = 2;

* x2 <= 1

x2.up = 1;

* end of example1.gms

Many examples of the GAMS scaler format of POPs can be found in the directory

example/GMSformat/,

which are from [3]; we have added and/or modified lower and upper bounds of some of the
problems.

If polynomials in the GAMS scalar format include parentheses, then param.symbolicMath
= 1 should be set. The value 1, in sparsePOP.m, is sent to the function readGMS.m where
symbolic expansion takes place using the Symbolic Math Toolbox. If the Symbolic Math
Toolbox is not available, expanded polynomials should be prepared in the GAMS scalar
format and set param.symbolicMath = 0.

We note that the GAMS scalar format is different from the GAMS format. The GAMS
scalar format is produced by the program “convert” from the GAMS format. In the GAMS

4

scalar format that can be used in SparsePOP, the right-hand side of an inequality or an
equality should be a single constant, “objvar” is reserved as a keyword to represent the
value of the objective function, only multivariate polynomials are handled, and no integer
constraint is allowed. As seen in example1.gms, “Variables”, “Positive variables”, “Equa-
tions” can not appear more than once. For more details, we refer to the examples included
in SparsePOP and [2].

2.2 The SparsePOP format

Alternatively, a POP can be described directly using the SparsePOP format. A polynomial
class is defined for this purpose as follows:

poly.typeCone = 1 if f(x) ∈ R[x] is used as an objective function,
= 1 if f(x) ∈ R[x] is used as an inequality constraint f(x) ≥ 0,
= -1 if f(x) ∈ R[x] is used as an equality constraint f(x) = 0.

poly.degree = the degree of f(x).
poly.dimVar = the dimension of the variable vector x.
poly.noTerms = the number of terms of f(x).
poly.supports = a set of supports of f(x),

a poly.noTerms × poly.dimVar matrix.
poly.coef = coefficients,

a column vector of poly.noTerms dimension.

The name objPoly is for the objective polynomial function f0(x) and ineqPolySys{j} (j =
1, 2, . . . ,m) for the polynomials fj(x) (j = 1, 2, . . . ,m) of the constraints. The problem (2)
is described using the polynomial class as follows.

function [objPoly,ineqPolySys,lbd,ubd] = example1;

%%%%%%%%%%%%%%

% example1.m

%%%%%%%%%%%%%%

%

% The SparsePOP format data for the example1:

%

% minimize -2*x1 +3*x2 -2*x3

% subject to

% x1^2 + 3*x2^2 -2*x2*x3 +3*x3^2 -17*x1 +8*x2 -14*x3 >= -19,

% x1 + 2*x2 + x3 <= 5,

% 5*x2 + 2*x3 = 7,

% 0 <= x1 <= 2, 0 <= x2 <= 1.

%

% To solve the problem by sparsePOP.m:

% >> param.relaxOrder = 3;

% >> sparsePOP(’example1’,param);

%

% This problem is also described in terms of the GAMS scalar format in the

% file example1.gms. See Section 3 of the manual.

5

%

%’example1’

% objPoly

% -2*x1 +3*x2 -2*x3

objPoly.typeCone = 1;

objPoly.dimVar = 3;

objPoly.degree = 1;

objPoly.noTerms = 3;

objPoly.supports = [1,0,0; 0,1,0; 0,0,1];

objPoly.coef = [-2; 3; -2];

% ineqPolySys

% 19 -17*x1 +8*x2 -14*x3 +6*x1^2 +3*x2^2 -2*x2*x3 +3*x3^2 >= 0,

ineqPolySys{1}.typeCone = 1;

ineqPolySys{1}.dimVar = 3;

ineqPolySys{1}.degree = 2;

ineqPolySys{1}.noTerms = 8;

ineqPolySys{1}.supports = [0,0,0; 1,0,0; 0,1,0; 0,0,1; ...

2,0,0; 0,2,0; 0,1,1; 0,0,2];

ineqPolySys{1}.coef = [19; -17; 8; -14; 6; 3; -2; 3];

%

% 5 -x1 -2*x2 -x3 >= 0.

ineqPolySys{2}.typeCone = 1;

ineqPolySys{2}.dimVar = 3;

ineqPolySys{2}.degree = 1;

ineqPolySys{2}.noTerms = 4;

ineqPolySys{2}.supports = [0,0,0; 1,0,0; 0,1,0; 0,0,1];

ineqPolySys{2}.coef = [5; -1; -2; -1];

%

% 7 -5*x2 -2*x3 = 0.

ineqPolySys{3}.typeCone = -1;

ineqPolySys{3}.dimVar = 3;

ineqPolySys{3}.degree = 1;

ineqPolySys{3}.noTerms = 3;

ineqPolySys{3}.supports = [0,0,0; 0,1,0; 0,0,1];

ineqPolySys{3}.coef = [7; -5; -2];

% lower bounds for variables x1, x2 and x3.

% 0 <= x1, 0 <= x2, -infinity < x3:

lbd = [0,0,-1.0e10];

% upper bounds for variables x1, x2 and x3

% x1 <= 2, x2 <= 1, x3 < infinity:

ubd = [2,1,1.0e10];

return

% end of example1.m

We note that -1.0e10 in lbd and 1.0e10 in ubd mean −∞ and ∞, respectively, indicating
x3 can take any value in the above example. The functions simplifyPolynomial.m, plusPoly-

6

nomials.m, and multiplyPolynomials.m in the directory subPrograms/Mfiles/ are useful in
describing a POP in terms of the SparsePOP format. See Rosenbrock.m, and also other .m
files in the directory example/POPformat/ for more general description of the SparsePOP
format.

3 Sample executions of SparsePOP

Execution of SparsePOP is illustrated with examples. While SparsePOP can read a POP
described in either the GAMS scalar format or the SparsePOP format shown in Section 2,
there are three ways to solve a POP with SparsePOP.

3.1 The GAMS scalar format

Consider the POP (2) in Section 2, and assume that the POP is described in the GAMS
scalar format in the file example1.gms. Execution of SparsePOP can be done by the following
commands in Command window of MATLAB:

>> param.relaxOrder = 3;

>> sparsePOP(’example1.gms’,param);

Then, the following output appears in Command window:

SparsePOP 2.00 by H.Waki, S.Kim, M.Kojima, M.Muramatsu and H.Sugimoto

June 1, 2007

Computational Results by sparsePOP.m with SeDuMi

Printed by printSolution.m

Problem File Name = example1.gms

parameters:

relaxOrder = 3 % = param.relaxOrder.

sparseSW = 1 % = param.sparseSW.

SeDuMiOutFile = 0 % = param.SeDuMiOutFile.

SDP solved by SeDuMi:

size of A = [83,1085] % = [SDPinfo.rowSize, SDPinfo.colSize];

no of nonzeros in A = 2349 % = SDPinfo.nonzeroInA.

no of LP variables = 50 % = SDPinfo.noOfLPvariables.

no of FR variables = 35 % = SDPinfo.noOfFRvariables.

no of SDP blocks = 7 % <--- SDPinfo.SDPblock.

max size SDP block = 20 % <--- SDPinfo.SDPblock.

ave.size SDP block = 1.14e+01 % <--- SDPinfo.SDPblock.

SeDuMi information:

SeDuMi.pars.eps = 1.00e-09 % = param.SeDuMiEpsilon.

SeDuMiInfo.numerr = 0 % = SeDuMiInfo.numerr.

SeDuMiInfo.pinf = 0 % = SeDuMiInfo.pinf.

SeDuMiInfo.dinf = 0 % = SeDuMiInfo.dinf.

Approximate optimal value information:

SDPobjValue = -7.9550950e+00 % a lower bound for the unknown

7

% optimal value obtained by

% the sparse SDP relaxation.

POP.objValue = -7.9550951e+00 % an approximated optimal value.

relative obj error = +1.086e-09 % the relative error in the objective

% value.

POP.absError = -1.295e-06 % the absolute error in the equality and

% inequality constraints.

POP.scaledError = -2.642e-08 % the scaled error in equality and

% inequality constraints.

cpu time:

cpuTime.conversion = 0.05 % the cpu time for conversion from the POP

% into an SDP relaxation problem.

cpuTime.SeDuMi = 0.27 % the cpu time to solve the SDP relaxation

% problem by SeDuMi.

cpuTime.total = 0.32 % the total cpu time.

Approximate optimal solution information:

POP.xVect =

1:+4.7754773e-01 2:+5.1726097e-08 3:+3.4999999e+00

Here param is a structure with optional fields for various parameters that affect the perfor-
mance of sparsePOP.m. The fields of param are explained in Section 6, and the meaning of
other outputs in Section 5.

The second input argument param in the function sparsePOP.m can be omitted as

>> sparsePOP(’example1.gms’);

In this case, the default parameters given in the function defaultParameter.m are used. One
of the default parameters is param.relaxOrder = ωmax = 1, which will provide us with an
inaccurate approximate solution for example1.gms.

3.2 The SparsePOP format

Since example1.m contains the description of the SparsePOP format of the POP (2), the
POP (2) can be solved by SparsePOP as follows:

>> [objPoly,ineqPolySys,lbd,ubd] = example1;

>> param.relaxOrder = 3;

>> sparsePOP(objPoly,ineqPolySys,lbd,ubd,param);

This gives the same output as issuing commands

>> param.relaxOrder = 3;

>> sparsePOP(’example1.gms’,param)

as previously discussed in Section 4.1. When the last input argument param is omitted,
the default values in defaultParameter.m are used for the parameters. If a given POP
doesn’t have lower and upper bounds on some variable xi of the POP, assigning -1.0e+10
and 1.0e+10 to lbd(i) and ubd(i), respectively, is necessary. In particular, when a given

8

POP is unconstrained problem, it is necessary to set ineqPolySys = [] (the empty set), lbd(i)
= -1.0e+10 and ubd(i)= 1.0e+10 for all i.

A simpler way to solve the POP (2) using the file example1.m in the SparsePOP format
of the POP (2) is:

>> param.relaxOrder = 3;

>> sparsePOP(’example1’,param);

or

>> sparsePOP(’example1’);

Executing sparsePOP.m as the last command is especially convenient when we handle a
POP with varying parameters. As an example, consider a minimization of the generalized
Rosenbrock function

1 +
n∑

i=1

(
100(xi − x2

i−1)
2 + (1 − xi)

2
)
.

This function has the minimum 0 at x1 = (−1, 1, 1, . . . , 1)T ∈ Rn and x2 = (1, 1, 1, . . . , 1)T

∈ Rn. The description in the SparsePOP format of this problem is written in the file
Rosenbrock.m whose function declaration line is

function [objPoly,ineqPolySys,lbd,ubd] = Rosenbrock(nDim,s);

Here nDim stands for the variable dimension n of the generalized Rosenbrock function. We
specify s = −1 for the constraint x1 ≤ 0, s = 0 for no constraint, and s = 1 for the
constraint x1 ≥ 0. The commands to solve the problem of n = 60 subject to x1 ≤ 0 are

>> param.relaxOrder = 2;

>> sparsePOP(’Rosenbrock(60,-1)’,param);

And, for the problem of n = 120 subject to x1 ≥ 0,

>> param.relaxOrder = 2;

>> sparsePOP(’Rosenbrock(120,1)’,param);

4 Solving POPs with multiple optimal solutions

Consider solving the problem of minimizing the generalized RosenBrock function with n =
40 over the entire space by issuing the commands

>> param.relaxOrder = 2;

>> sparsePOP(’Rosenbrock(40,0)’,param);

The output data is

9

.

Approximate optimal value information:

SDPobjValue = +1.0000022e+00

POP.objValue = +1.0099885e+02

relative obj error = +9.901e-01

POP.absError = +0.000e+00

POP.scaledError = +0.000e+00

.

A big difference between SDPobjValue and POP.objValue indicates that no accurate approx-
imate optimal solution has been found. This is because SparsePOP can not handle
efficiently a POP having multiple optimal solutions. One way to resolve this diffi-
culty is to add either x1 ≤ 0 or x1 ≥ 0 as an inequality constraint to select only one optimal
solution. This is actually shown in the previous subsection. Such inequality constraints,
however, can not be known before attaining an approximate optimal solution. This dif-
ficulty can be better handled by linear perturbation to the objective function of a given
POP that possesses possibly multiple solutions. Let ϵ > 0 be a small positive number such
as 1.0e-4, and p ∈ Rn be a column vector whose elements pi (i = 1, 2, . . . , n) are chosen
randomly from the unit interval [0, 1]. The objective function f0(x) of a given POP is then
replaced by a perturbed objective function f0(x)+ ϵpT x such that the resulting POP has a
unique optimal solution. The optimal solution of the perturbed POP is expected to be an
approximation for an optimal solution of the original POP. We refer to [11] for more details.
In the minimization of the generalized Rosenbrock function, this perturbation technique is
carried out as follows:

>> param.relaxOrder = 2;

>> param.perturbation = 1.0e-4;

>> sparsePOP(’Rosenbrock(40,0)’,param);

The result is:

.

Approximate optimal value information:

SDPobjValue = +9.9991951e-01

POP.objValue = +1.0001360e+00

relative obj error = +2.164e-04

POP.absError = +0.000e+00

POP.scaledError = +0.000e+00

.

Once we obtain an approximate solution x̂ of a POP by applying the perturbation tech-
nique, we can apply sparsePOP.m again to the original POP with updated lower and upper
constraints such that

lbdi = max{lbdi, x̂i − δi} (i = 1, 2, . . . , n),

ubdi = min{ubdi, x̂i + δi} (i = 1, 2, . . . , n).

10

for some small positive numbers δi (i = 1, 2, . . . , n). If the new lower and upper bounds
separate a single optimal solution from all other optimal solutions of the original POP, this
method is expected to work effectively.

5 Description of main and principal subfunctions

The main function and principal subfunctions are described in terms of input and output
arguments in this section.

5.1 The MATLAB functions sparsePOP.m, SDPrelaxation.m, and
SDPrelaxationMex.m

The main function sparsePOP.m, its principal subfunctions SDPrelaxation.m and SDPrelax-
ationMex.m shown in Figure 1 have the following function declarations:

function [param,SDPobjValue,POP,cpuTime,SeDuMiInfo,SDPinfo] = ...

sparsePOP(objPoly,ineqPolySys,lbd,ubd,param);

function [param,SDPobjValue,POP,cpuTime,SeDuMiInfo,SDPinfo] = ...

SDPrelaxation(param,objPoly,ineqPolySys,lbd,ubd);

function [param,SDPobjValue,POP,cpuTime,SeDuMiInfo,SDPinfo] = ...

SDPrelaxationMex(param,objPoly,ineqPolySys,lbd,ubd);

respectively. These three functions have the same input and output arguments. Among the
input arguments, param contains a set of parameters whose detailed description is included
in Section 6. The other input arguments, if all of them are specified, describe a POP in the
SparsePOP format, as presented in Section 4.2.

Although sparsePOP.m is defined with 5 input arguments, using 1 or 2 input arguments
is also possible as mentioned in Section 3.

• >> sparsePOP(’example1.gms’) for solving a POP described in the GAMS scalar
format with the default param.

• >> sparsePOP(’example1.gms’,param) for solving a POP described in the GAMS scalar
format with the user-specified param.

• >> sparsePOP(’example1’) for solving a POP described in the SparsePOP format with
the default param.

• >> sparsePOP(’example1’,param) for solving a POP described in the SparsePOP for-
mat with the user-specified param.

If the SDPrelaxation.m or the SDPrelaxationMex.m is to be utilized directly, either a
set of the 5 input arguments

param, objPoly, ineqPolySys, lbd and ubd

11

or a set of the 3 input arguments

param, objPoly and ineqPolySys

needs to be specified. In the case that 3 input arguments are prescribed, the functions
SDPrelaxation.m and SDPrelaxationMex.m assign the default values lbd(i) = −1.0e+10
and ubd(i) = +1.0e+10 (i = 1, 2, . . . , n), which implies that −∞ < xi < ∞ (i = 1, 2, . . . , n).

For the output arguments, user-specified or default values for the parameters are stored
in param. SDPobjValue contains a lower bound for the optimal objective value of the POP
(1). For every feasible solution x of the POP (1),

SDPobjValue ≤ f0(x) (3)

holds. The output argument POP has four components:

• POP.xVect: a candidate xω of an optimal solution of the POP (1).

• POP.objValue: the objective function value f0(x
ω) at xω = POP.xVect.

• POP.absError: an absolute feasibility error at xω.

• POP.scaledError: a scaled feasibility error xω.

(Recall that the relaxation order ω = param.relaxOrder determines the quality of the SDP
relaxation of the POP). Here the absolute feasibility error at xω is given by

min {min{fi(x
ω), 0} (i = 1, 2, . . . , ℓ), −|fj(x

ω)| (j = ℓ + 1, . . . ,m)} ,

and the scaled feasibility error is given by

min {min{fi(x
ω)/σi(x

ω), 0} (i = 1, 2, . . . , ℓ), −|fj(x
ω)|/σj(x

ω) (j = ℓ + 1, . . . ,m)} ,

where σi(x
ω) denotes the maximum of the absolute values of all monomials of fi(x) evaluated

at xω if the maximum is greater than 1, or σi(x
ω) = 1 otherwise (i = 1, 2, . . . ,m). Note

that both errors are always nonpositive. The relative error in the objective value at xω in
the output of sparsePOP.m, which has been illustrated in Section 4, is computed as

relative obj error =
POP.objValue − SDPobjValue

max{1, |POP.objValue|}
.

If POP.scaledError ≤ 0 is close to 0, say −1.0e-6 ≤ POP.scaledError ≤ 0, we may regard that
xω is feasible approximately. If, in addition, relative obj error ≥ 0 is close to 0, say 0 ≤
relative obj error ≤ 1.0e-6, xω is an approximate optimal solution of the POP (1).

The output argument cpuTime shows various cpu times consumed by sparsePOP.m:

• cpuTime.conversion: the cpu time consumed to convert the POP into its SDP relax-
ation.

• cpuTime.SeDuMi: the cpu time consumed by SeDuMi to solve the SDP.

• cpuTime.Total: the cpu time for the entire process.

12

The output argument SDPinfo has information of the SDP relaxation problem solved by
SeDuMi.

• SDPinfo.rowSizeA: the number of rows of the coefficient matrix A of the SDP.

• SDPinfo.colSizeA: the number of columns of the coefficient matrix A.

• SDPinfo.nonzeroInA: the number of nonzeros of the coefficient matrix A.

• SDPinfo.noOfLPvariables: the number of LP variables of the SDP.

• SDPinfo.noOfFRvariables: the number of free variables of the SDP.

• SDPinfo.SDPblock: the row vector of the sizes of SDP blocks.

Finally, the output argument SeDuMiInfo contains SeDuMiInfo.numerr, SeDuMiInfo.pinf,
and SeDuMi.dinf, which are equivalent to info.numerr, info.pinf, and info.dinf in SeDuMi
output. See [8] for the details.

5.2 The MATLAB function readGMS.m

The MATLAB function readGMS.m has the following function declaration:

function [objPoly,ineqPolySys,lbd,ubd] = readGMS(fileName,symbolicMath);

The first argument fileName, a string in MATLAB, is the name of the file where a problem
is described in the GAMS scalar format. It must have the extension .gms such as ’exam-
ple1.gms’. The second input argument symbolicMath is set to be 1 by default, assuming
that the Symbolic Math Tool is available. It should be set to 0 if it is not available. The
output of objPoly, ineqPolySys, lbd, and ubd is a POP data in the SparsePOP format, and
can be passed to SDPrelaxation.m or SDPrelaxationMex.m.

5.3 The MATLAB function printSolution.m

The function printSolution.m for printing the results has the following function declaration.

function printSolution(fileId,printLevel,dataFileName,param,SDPobjValue,...

POP,cpuTime,SeDuMiInfo,SDPinfo);

The meaning of each input argument is as follows.

• fileId: fileId where output is printed. If fileId is 1, then the result is displayed on the
screen (i.e., the standard output). If the result in a file is desired, the file should be
open in writable mode before specifying it in fileId.

• printLevel: a larger value of printLevel gives more detailed description of the result.
Default is 2.

• dataFileName: the name of the problem solved.

The rest of the input arguments, i.e., param, SDPobjValue, POP, cpuTime, SeDuMiInfo, and
SDPinfo should be the output of SDPrelaxation.m and SDPrelaxationMex.m.

13

6 Parameters

In addition to objPoly, ineqPolySys, lbd and ubd for describing a POP in the SparsePOP
format, the MATLAB function sparsePOP.m has param as an input argument. It is a
structure consisting of many parameters that control the performance of the function. Table
1 shows the list of parameters defined in SparsePOP. The default values of all parameters are
given in the MATLAB function defaultParameters.m. They can be modified if necessary.

Table 1: The fields of param, default values and possible values

field of param default values possible values
relaxOrder ωmax a positive integer not less than ωmax

sparseSW 1 0 and 1
multiCliquesFactor 1 0, 1 and ’objPoly.dimVar’

scalingSW 1 0 and 1
boundSW 1 0, 1 and 2

eqTolerance 0.0 0.0 and a positive real number > 1.0e-10
perturbation 0.0 0.0 and a positive real number > 1.0e-10

reduceMomentMatSW 1 0 and 1
complementaritySW 1 0 and 1

SeDuMiSW 1 0 and 1
SeDuMiOutFile 0 0, 1 and a file name
SeDuMiEpsilon 1.0e-9 a positive real value
sdpaDataFile ’ ’ ’ ’ and a file name with the extension .dat-s
detailedInfFile ’ ’ ’ ’ and a file name
printFileName 1 1 and a file name

printLevel [2,2] 0,1 or 2 for both elements
symbolicMath 1 0 and 1

mex 1 0 and 1

These parameters can be divided into five categories:

1. Parameters for controlling the basic relaxation scheme.

2. Switches for techniques to reduce numerical difficulties.

3. Parameters for SDP solvers.

4. Parameters for printing.

5. Parameters for Symbolic Math Toolbox and C++ subroutines.

6.1 Parameters to choose the relaxation method

The relaxation order should be specified as

param.relaxOrder = ω ≥ ωmax = max{ωk : k = 0, 1, . . . ,m}

14

to execute the sparse or dense SDP relaxation for a POP, where

ωk = ⌈deg(fk(x))/2⌉ (k = 0, 1, 2, . . . ,m).

The default is param.relaxOrder = ωmax. If the accuracy of the obtained approximate optimal
solution is not satisfactory, increasing the relaxation order param.relaxOrder = ω ≥ ωmax

is one way to obtain more accurate optimal solution. We should mention, however, that
increasing the relaxation order may take more cpu time and numerical difficulty might occur
while solving the SDP relaxation problem.

The type of SDP relaxation can be chosen by setting param.sparseSW = 0 for the dense
relaxation based on [6], or = 1 for the sparse relaxation based on [11]. The sparsity of
the sparse SDP relaxation problem is varied by param.multiCliquesFactor. Suppose that
param.sparseSW= 1; otherwise this parameter is not relevant. The purpose of this parameter
is to strengthen the sparse relaxation by taking the union of some of the maximal cliques Cℓ

(ℓ = 1, 2, . . . , p) of a chordal extension G(N,E ′) of the csp graph induced from the POP (1)

for C̃k (k = 1, 2, . . . ,m). Let ρmax denote the maximum over ♯Cℓ (ℓ = 1, 2, . . . , p), where ♯Cℓ

denotes the cardinality of Cℓ. Recall that Fk = {i : xi appears in fk(x) ≥ 0}. Let Jk = {ℓ :

Fk ⊂ Cℓ}. Take one clique from Cℓ (ℓ ∈ Jk) for C̃k. Add another clique from Cℓ (ℓ ∈ Jk) to

C̃k if ♯
(
C̃k

∪
Cℓ

)
does not exceed param.multiCliquesFactor ×ρmax. Repeat this procedure to

obtain the union C̃k of some cliques from Cℓ (ℓ ∈ Jk). If param.multiCliquesFactor = 0, then

C̃k consists of a single clique Cℓ for some ℓ ∈ Jk. If param.multiCliquesFactor=objPoly.dimVar,
then C̃k consists of the union of all Cℓ (ℓ ∈ Jk). The default value is 1, which means that

the cardinality of C̃k is bounded by ρmax. If the accuracy of the obtained approximate
optimal solution is not satisfactory, sparsePOP.m can be executed again with the choice
of either param.multiCliquesFactor=objPoly.dimVar or param.sparseSW = 0 before increasing
the relaxation order param.relaxOrder = ω.

6.2 Switches for techniques to handle numerical difficulties

Because the POP (1) is basically a hard optimization problem, numerical difficulties are
often unavoidable while solving its SDP relaxation, and/or an inaccurate approximate solu-
tion might be obtained. The switches described in this subsection are intended to prevent
numerical difficulties from occuring, and improve the accuracy of an obtained solution.

With param.scalingSW= 1, the objective polynomial, constraint polynomials, lower and
upper bounds are scaled such that the maximum of {|lower bound of xj|, |upper bound of xj|}
= 1 (j ∈ J) and that the maximum absolute value of the coefficients of all monomials in
each polynomial is 1, where J denotes the set of indices j for which the variable xj has finite
lower and upper bounds; −1.0e+10 < lbd(j) ≤ ubd(j) < 1.0e+10. This scaling technique is
very effective to improve the numerical stability when solving the resulting SDP relaxation.
The default is param.scalingSW = 1.

Appropriate bounds are added for all linearized variables yα (α ∈ F̃) if param.boundSW
= 1. If param.boundSW= 2, some redundant bounds of variables yα are removed from
the added bounds for all yα. Otherwise, no bounds are added to yα. The default is
param.boundSW= 2. In particular, when every variable xj is scaled such that lbd(j) = 0

and ubd(j) = 1 (j = 1, 2, . . . , n), the bounds 0 ≤ yα ≤ 1 (α ∈ F̃) are added. Empirically, we
know such a bounding is very effective to improve the numerical stability in solving the SDP

15

relaxation. Therefore, our recommendation is to modify a POP so that every variable xj is
nonnegative and has a finite positive upper bound; then the desired scaling and bounding
of variables yα (α ∈ F̃) are performed in sparsePOP.m by taking param.scalingSW = 1 and
param.boundSW = 1 or 2.

The parameter param.eqTolerance is used to convert every equality constraint into two
inequality constraints; if 1.0e-10 < param.eqTolerance, then each equality constraint is re-
placed by f(x) = 0 by f(x) ≥ −param.eqTolerance and −f(x) ≥ −param.eqTolerance.
When SeDuMi displays numerical difficulty while solving the SDP relaxation of a POP
with equality constraints, this technique with 1.0e-3 ≤ param.eqTolerance ≤ 1.0e-7 often
provides a more stable SDP relaxation problem that can be solved by SeDuMi. The default
is param.eqTolerance = 0, i.e., no conversion of the equality constraints is specified.

Perturbing the objective polynomial to compute an optimal solution of a POP with mul-
tiple optimal solutions is described in Section 5. See also Section 5.1 of [11]. The parameter
param.perturbation is used for this purpose. If 1.0e-10 < param.perturbation, then the ob-
jective polynomial f0(x) is modified to f0(x) + pT x, where 0 ≤ pi ≤ param.perturbation.
Otherwise, no perturbation is performed. The default value for param.perturbation is 0.0,
i.e., no perturbation of the objective polynomial is desired.

The parameter param.reduceMomentMatSW is intended for SDP relaxations too large to
solve. If param.reduceMomentMatSW = 1, then sparsePOP.m eliminates redundant elements
of ACℓ

ω (ℓ = 1, 2, . . . , p) in the SDP relaxation problem using the method proposed in the
paper [5]. See also [11].

When the complementarity condition exists in the constraints of a POP, we can set
param.complementaritySW = 1. Suppose that xixj = 0 appears as an equality constraint.
Then, any variable yα corresponding to a monomial xα such that αi ≥ 1 and αj ≥ 1 is set to
zero and eliminated from the SDP relaxation problem. The default is param.complementaritySW
= 0.

6.3 Parameters for SDP solvers

The function sparsePOP.m can provide three kinds of output for the SDP relaxation prob-
lem: information on the problem itself such as the size and the nonzero elements of the
constraint matrix of the problem, data on an approximate optimal solution of the problem
obtained by SeDuMi, and SDPA sparse format data of the problem.

For infomation on the problem and data on the obtained optimal solution, SeDuMi
should be called from the function SDPrelaxation.m or SDPrelaxationMex.m by setting
param.SeDuMiSW= 1. Users can increase or decrease the desired accuracy of the opti-
mal value and optimal solutions of an SDP relaxation problem by providing a smaller or
larger value for param.SeDuMiEpsilon that corresponds to the parameter pars.eps in Se-
DuMi. The parameter param.SeDuMiOutFile is used in connection with the parameter
param.SeDuMiSW= 1. The default value of param.SeDuMiOutFile= 1 is used to display
the output from SeDuMi on the screen. If the name of a file such as param.SeDuMiOutFile
= ’SeDuMi.out’ is assigned, the output from SeDuMi is written in the file. Information from
SeDuMi is not displayed if param.SeDuMiOutFile = 0. The value 0 for param.SeDuMiSW is
for just printing information on the problem without solving the SDP relaxation problem.
The default value for param.SeDuMiSW is 1.

In SparsePOP, SeDuMi [8] is used for solving SDPs because SeDuMi seems to have better

16

numerical stability than other SDP solvers. The use of an iterative method (a variant of CG
method) for solving ill-conditional linear systems in SeDuMi leads to more accurate optimal
solutions than other SDP solvers. Also, SparsePOP can provide SDPA sparse format data
for (1) and a file that contains necessary information to extract an approximated solution
of (1).

SDPA sparse format data of the SDP relaxation problem can be also obtained by assign-
ing the name of a file for SDPA sparse format data to the parameter param.sdpaDataFile,
for example, param.sdpaDataFile = ’test.dat-s’. With the SDPA sparse format input file
’test.dat-s’, the SDP relaxation problem can be solved later by using some software pack-
ages such as SDPA [10] and SDPT3 [9]. The default is param.sdpaDataFile = ”, i.e., no
SDPA sparse format data is created.

If the name of a file for SDPA sparse format data is provided, SparsePOP also generates
the file containing necessary information for extracting an approximated solution of (1) from
the SDP relaxation problem. The file has the extension “info” and the structure of the file is
as follows: Here k1, . . . , kn are integers, and a1, . . . , an and b1, . . . , bn are real numbers. After

k1 a1 b1

k2 a2 b2
...
kj aj bj
...

kn an bn

solving the SDP relaxation problem in SDPA sparse format by an SDP solver, if kj = −1
for some j, set xj = bj. Otherwise, set xj = ajykj

+ bj, where ykj
is the kjth element of the

optimal solution of the primal of SDP relaxation problem in SDPA sparse format. Then, x
is an approximated solution for (1) computed by SparsePOP.

6.4 Parameters for printing numerical results

Whether we have param.SeDuMiSW= 1 or 0, we can store detailed information of the
POP and its SDP relaxation in a file specified using param.detailedInfFile; for example,
param.detailedInfFile = ’details.out’. The default is param.detailedInfFile = ”, i.e., no de-
tailed information is printed.

param.printFileName is the parameter for displaying the computational results, such as
param, SDPinfo, and POP. That is, param.printFileName= 1 is for displaying the results on
screen, and param.printFileName= 0 prevents them from displaying. In addition, the name
of a file to param.printFileName can be assigned to print the results in the file, such as
param.printFileName=’result.out’.

The default value 2 for param.printLevel(1) is used to display the computational result
with an approximate optimal solution of the POP on screen. Setting param.printLevel(1)= 1
stops displaying an approximate optimal solution of the POP on the screen. The value 0
for param.printLevel(1) displays no computational result on the screen. The default value
2 for param.printLevel(2) is used to write the computational result with an approximate
optimal solution of the POP in a file whose name is defined by param.printFileName. Setting

17

param.printLevel(2)= 1 prevents printing an approximate optimal solution on the file. If
param.printLevel(2)= 0, no information is written in the file.

6.5 Parameters to use Symbolic Math Toolbox and C++ subrou-
tines

The parameter param.symbolicMath indicates whether Symbolic Math Toolbox can be uti-
lized for reading a POP in the GAMS scalar format, or not. Setting param.symbolicMath= 1
means that functions of Symbolic Math Toolbox can be used. See also the last paragraph
of Section 3.1. C++ subroutines can be used by setting the parameter param.mex= 1.

7 Concluding Remarks

We have described the structure and usage of the software package SparsePOP. Solving
POPs has been known difficult mainly because the size of SDP relaxation of POPs becomes
increasingly large as the degree and the number of variables of POPs grow. In addition,
numerical difficulties occur for various reasons. SparsePOP is, by far, one of the most
successful software packages to address these issues among currently available softwares.
Main advantage comes from constructing SDP relaxations of reduced size by utilizing the
sparsity of POPs. In particular, unconstrained problems with 1000 variables has been solved
using the sparsity. For sparse constrained problems, the number of variables of solvable
problems by SparsePOP is 10-30. See the paper [11] for extensive numerical results.

References

[1] J. R. S. Blair and B. Peyton, “An introduction to chordal graphs and clique trees”, in
Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert and J. W. H.
Liu, eds., Springer-Verlag, New York, 1993, pp. 1 – 29.

[2] GAMS HomePage, http://www.gams.com/

[3] GLOBAL Library, http://www.gamsworld.org/global/globallib.htm

[4] S. Kim, M. Kojima and H. Waki, “Generalized Lagrangian duals and sums of square
relaxation of sparse polynomial optimization problems”, SIAM J. Optimization 15
(2005) 697–719.

[5] M. Kojima, S. Kim and H. Waki, “Sparsity in sums of squares of polynomials”, Math-
ematical Programming 103 (2005) 45-62.

[6] J. B. Lasserre: Global optimization with polynomials and the problems of moments,
SIAM Journal on Optimization 11 (2001) 796–817.

[7] J. B. Lasserre: Convergent SDP-relaxations in polynomial optimization with sparsity,
to appear in SIAM Journal on Optimization.

18

[8] J. F. Strum, “SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones”, em Optimization Methods and Software, 11 & 12 (1999) 625-653.

[9] R. H Tutuncu, K. C. Toh, and M. J. Todd, “Solving semidefinite-quadratic-linear
programs using SDPT3”, Mathematical Programming 95 (2003) 189–217.

[10] M. Yamashita, K. Fujisawa and M. Kojima, “Implementation and evaluation of SDPA
6.0 (SemiDefinite Programming Algorithm 6.0)” Optimization Methods and Software
18 (2003) 491-505.

[11] H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of Squares and Semidefi-
nite Programming Relaxations for Polynomial Optimization Problems with Structured
Sparsity”, SIAM J. Optimization 17 (2006) 218–242.

19

